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Dekker's Mutual Exclusion

tl = false; t2 = false;

tl = true; t2 = true;
if (1t2) A if (1t1) A
// I'm alone in the // I'm alone in the
// critical section // critical section
+ + Dekker.java
public class Dekker {
N public static boolean tl1 = false;
What went wrong public static boolean t2 = false;
e t1 and t2 aren’t SyNc public static int nonNeg = 1;
° nonNeg is not Sync public static void main(String[] args) {
iy i+7 for (550 {
* can we fix it Dekker.tl = false;
° nonNeg——’? Dekker.t2 = false;

Dekker.nonNeg = 1;

' i+?
e How do we know we fixed it Thiead 1 = Aol ‘Threadt) I

public void runC) {
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What is a memory model?

* What are the possible results of a memory read operation

Understanding Memory Models  Using Memory Models
e Testing * Programming
 Formalization e Optimization

e \alidation e \erification
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Seqguential Consistency (SC)

* R1: Each processor issues memory requests in the order
specified by its program

e R2: Memory requests from all processors issued to an
individual memory module are serviced from a single FIFO

queue. Entering a memory request consists of entering
the request on this queue

Dekker Is safe

tl = false; t2 = false;
tl = true; t2 = true;
if ('t2) o if ('t1) {
// I'm alone in the // I'm alone in the
// critical section // critical section
+ }
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Sequential Consistency

Model Data Race Detection
Checkina

Yet most machines don’t deliver SC!

Owicky/Gries

Rely/
Guarantee
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Hardware Models
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Sequential Program Optimizations
* Memory store takes 10 cycles™
* Memory load takes 1 cycle”

* Memory stores stall memory loads

x = 1; r'n = Y
rsr =Y, Optimization Yo = 2Z,;
ro = Z; x = 1;

) L 2)
-~ -~

12 Cycles 10 Cycles

*numbers made up for the example
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The Case for Relaxed

e Store x: enqueue into a
1 1 0

FIFO buffer per processor

e | oad Xx:
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The Case for Relaxed

Architectural Mechanisms

Store Buffers

Caches at different levels (L1, L2)
Instruction Level Parallelism (ILP)
Pipelines

Branch Prediction

Parallelization

NUMA

GPU

etc.

To/From Reorder
Buffer

____________________________________________

E‘ »  Control Unit

237

Load/Store Buffer
218

y

Overflow Handling Unit

Speculative 225

Store Buffer
240

1
—Pp
1

Overflow List
235

P | SSB Utility
245 l"—i—From Bus

/
|I\)
N
[o¢]

To Data Cache To Data Cache

Overflow handling of speculative store buffers
US Patent 20110066820 A1



The Case for Relaxed

Architectural Mechanisms Architectural Choices

Store Buffers e Manuals are explicitly obscure
Caches at different levels (L1, L2) about the actual mechanisms

Instruction Level Parallelism (ILP) o Eg: x86 behaves as if it had

Pipelines store buffers

Branch Prediction e Eg: Power behaves as if it had
Parallelization predictive caches

NUMA e The Manuals tend to be

GPU informal (at best)

etc.



Total Store Ordering
(TSO)
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A simple relaxed model TSO

The Anomalies / Litmus test

x=0 & y=0

x = 0& vy =0 x — 1. —
L [77 5 rex | rey
I =Y, s = X, ro = V; ry = X;
ri = 0 & ro = 0 ri=r3=1 & ro=1r,=0



A simple relaxed model TSO

The Anomalies / Litmus test

x=0 & y=0

x =0& vy =20 x = 1. e —
x = 13 y = 1; r{ = X; H r's =Y,
r's = Vs || Y2 = X, ro = Y; ry = X;
ri = 0 & ro = 0 ri=r3=1 & ro=1r,=0
x=0 & y=0
ry — Xj I'3—y, Y
ro = ; ry = X; ’

I'1:I'3:2:>I'2#O\/I'4#O



Litmus

®@ 0O (< El (§) O) diy.inria.fr & th Ol

<L >

A tour of litmus?

o A simple run

o Cross compilation

o Running several tests at once
Controlling test parameters

o Architecture of tests

o Affinity

o Controlling executable files
Advanced control of test parameters

o Timebase synchronisation mode

o Advanced prefetch control
Usage of litmus7

o Arguments

o Options

o Configuration files

Traditionally, a litmus test is a small parallel program designed to exercise the memory model of a parallel, shared-memory, computer. Given a litmus test in
assembler (X86, Power or ARM) litmus7 runs the test.

Using litmus7 thus requires a parallel machine, which must additionally feature gcc and the pthreads library. Our tool litmus7 has some limitations especially

as regards recognised instructions. Nevertheless, litmus7 should accept all tests produced by the companion test generators (see Part II) and has been
successfully used on Linux, MacOS, AIX and Android.



http://diy.inria.fr/doc/litmus.html

Litmus



Litmus

e SB

e SB+rfi-pos
e SBB

e MP

e |IRIW
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A simple language

v € Val = x| Axel|tt]|ff]( values

v | (ve) | (refv) expressions

('U) | (UQ pp— Ul)
(cas v) | (wr|rd) | (wr|wr)

e € Expr

€p;€1 = AT e1 ey

x = 1; y = 1; (z :=1);('y) || (y == 1); (o)
T2 T 5 Oz ) (= 1) ||z lz)(y := 1)




A simple language

v € Val = x| Axel|tt]|ff]( values
e € Expr = v | (ve) | (ref v) expressions
('U) | (UQ C = Ul)
(cas v) | (wr|rd)
€p;€1 = AT e1 ey
r = (Azev) | (refv) redexes
('p) | (p =)
(cas p) | (wr|rd) | (wr|wr)
E = ||| (WvE) evaluation contexts

p:=1 (g = (A (lg) (p:=1)) = Mz (1¢) (p:=1))
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Sequential Consistency

(S.T | E[(M\xev)]) 5 (S,T || E[{z/v}e])




Sequential Consistency

(ST E[(A\xev)]) 5 (S.T | Elfw/v}e))
(S, T || E[(refv)]) =% (SU{pw v} T | E[p]) p ¢ dom(S)
(S,T | El(p:=v)]) —% (S
(S,T | E[(tp)]) % (8.7
(S, T | E[wrrd)]) = (8,7
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Write buffer semantics

(S T | (B,E|[(Az ev)] )) i (S T || (B, E| {az/v}e]))
(S.T | (B.E[(refv)])) 2% (SU{pr v}, T | (B, E[ ) p¢ dom(S)
(S,T || (B,E[(p:=v)])) — (S,T || (Bap+~ v],E[)])
(S.T | (B.E[('p)) % (S.T | (B.E[v))) B<>=e&s<p>=v
(ST | (BE['p)]) =% (ST (BER)) B =ls:=o
(ST | (B E[@wr[rd)])) = (ST (B.E[))))  Yp.B(p)=¢

shsin lshin




Write buffer semantics

(S, T || (B,E[(A\z ev
(S, T || (B, E[(refv
(S.T || (B,E[(p:=v

(V

(S, T
(S, T

(S,T | (B, B[ (wr|rd)

(S,T | (lp — v] I>B,e))

(B, E]|
(B, E]|

(fp

8,
Vp,v

RALTEN
, U

, U

RN

(B,

(B,
(B,

S, T || (B E{az/v}e]))
SU{p— v}, T| (B E[ ) p ¢ dom(S)
S, T || (B<l|p— v,

Elv
Elv

E[(]))

(Slp =], T | (B,e))

0D)
B( ) =€ & S(p) =
B(p) =ls::v
vp, B(p) = ¢
TSO

shsin lshin




Axiomatic Formalizations



0O < L

Herd

diy.inria.fr

=

ey

e Writing simple models
o Sequential consistency
o Total Store Order (TSO),
o Sequential consistency, total order definition
o Computing coherence orders
e Producing pictures of executions
o Graph modes
o Showing forbidden executions
e Model definitions
o QOverview
Identifiers
Expressions
Instructions
Bell extensions
Models
Primitives
o Library
e Usage of herd7
o Arguments
o Options
o Configuration files

O O O 0O 0 O



http://diy.inria.fr/doc/herd.html

Partial Orders

e Strict Partial Orders

e Conditions on Orders

e |rreflexive, transitive

pPo
e PO or —> for program order

e Operations

. —1
e inverse: po

e transitive closure: ]POJr
e composition: po; rf

e set operations: poUrf pofrt

Acyclicity
Irreflexivity
Transitive

Consistency
(poUrf) T Nid =10



Burckhardt’'s cheatsheet

Property | Element-wise Definition Algebraic Definition
Ve,y,z € A:
: rel rel - |
symmetric | T —y=>Yy —< rel = rel
reflexive z g idgq C rel
irreflexive | z 25 idg Nrel = ()

transitive | (x L Y L * %) = L z) | (rel;rel) C rel

acyclic —~(z 5 ... 5 1) idg Nrelt =0

total :U;éy:>(xr—el>y\/yr—e'>x) relUrel™ ' Uidy = A x A
Property Definition

natural Vo € A :|rel™!(z)] < o0

partialorder irreflexive A transitive

totalorder partialorder A total

enumeration totalorder A natural

equivalencerelation reflexive A transitive A symmetric

Figure 2.1: Definitions of common properties of a binary relation rel C A x A.

Principles of Eventual Consistency
Sebastian Burckhardt’14
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PO, program order Total order on the actions of each process
i, reads from Relates a read to the write that stores its value

commit order Relates writes to the same address



SC

fr( poj -

TSO — The Model

'

rf

f = 1,

X;lpo

1; r y
rv = 1 & o = 0

program order Total order on the actions of each process

reads from

commit order

from reads

Relates a read to the write that stores its value

Relates writes to the same address

Read to write order derived from rf and co



SC

TSO — The Model

rf

1;
X;

— ; —

1;
(g
rv = 1 & o = O

'

program order Total order on the actions of each process
reads from Relates a read to the write that stores its value

commit order Relates writes to the same address
from reads Read to write order derived from rf and co

happens before* (po U rf)™
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Formalizing MMs

Events : e = p:R[x]=1 | p:W[x]=1 | p:Fence
Execution: E = <P,Ev,po>

Candidate Execution: C = <E,rf, co>

Memory Access Dec: D =W |R | M
Derived Relations: R=DD

| ext | 1nt | fr
Constraints: acyclic | 1irreflexive
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Causality (Happens-Before)

In the simplest case (SC):

e events from the same process happen in the order of their
program: po < hb

* |f aread sees a value, the write storing that value happens
before that read: rf C hb

e happens before is a transitive relation: hb* € hb

* happens before is acyclic

e we can add fr and co to hb (rf € hb and cp ¢ hb) but it
doesn’t change anything
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Causality (Happens-Before)

TSO™
* Reads can bypass writes on the same processor
e Define the preserved program order: ppo = po/ WR

e events from the same process happen in their preserved program:
pPpo <€ hb

e |f aread sees a value, the write storing that value happens before
that read: rf € hb

e frand co are included in hb (rf € hb and cp ¢ hb)
e happens before is a transitive relation: hb* € hb

* happens before is acyclic

* not quite enough (we’ll see why)
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tso.cat

*SB

* SB+rfi-pos
e SBB

e MP

 |IRIW



notation | name nature | dirns | reference description
po program order execution | any, any | §Relations instruction order lifted to
over events events
rf read-from execution | WR §Relations links a write w to a read r
over events taking its value from w
co coherence execution | WW §Relations total order over writes to
over events the same memory loca-
tion
ppo preserved pro- | architecture | any, any | §Architectures | program order main-
gram order tained by the architecture
ffence, ff | full fence architecture | any, any | §Architectures | e.g. sync on Power, dmb
and dsb on ARM
lwfence, Iwf | lightweight fence | architecture | any, any | §Architectures | e.g. lwsync on Power
cfence control fence architecture | any, any | §Architectures | e.g. isync on Power, isb on
ARM
fences fences architecture | any, any | §Architectures | architecture-dependent
subset of the
fence  relations, e.g.
ffence, lwfence, cfence
prop propagation architecture | WW §Architectures | order in which writes
propagate, typically en-
forced by fences
po-loc program order derived any, any | §SC PER LO- | {(z,y) | (z,y) € po A
restricted to the CATION addr(z) = addr(y)}
same  memory
location
com communications derived any, any | §Relations coUrfUfr
over events
fr from-read derived RW §Relations links a read r to a write v’
over events co-after the write w from
which r takes its value
hb happens before derived any, any | §NO THIN AIR | ppo U fences U rfe
rdw read  different derived RR Fig. 27 two threads; first thread
writes holds a write, second
thread holds two reads

Herding cats: Modeling, Simulation, Testing, and Data-mining for Weak Memory
Alglave, Maranget, Tautschnig TOPLAS’14




notation | name nature | dirns | reference description
po program order execution | any, any | §Relations instruction order lifted to
over events events
rf read-from execution | WR §Relations links a write w to a read r
over events taking its value from w
co coherence execution | WW §Relations total order over writes to
over events the same memory loca-
tion
ppo preserved pro- | architecture | any, any | §Architectures | program order main-
gram order tained by the architecture
ffence, ff | full fence architecture | any, any | §Architectures | e.g. sync on Power, dmb
and dsb on ARM
lwfence, Iwf | lightweight fence | architecture | any, any | §Architectures | e.g. lwsync on Power
cfence control fence architecture | any, any | §Architectures | e.g. isync on Power, isb on
ARM
fences fences architecture | any, any | §Architectures | architecture-dependent
. J
| ~Relax: we won'’t study all of these!
prop propagation architecture
propagave; - typ
forced by fences
po-loc program order derived any, any | §SC PER LO- | {(z,y) | (z,y) € po A
restricted to the CATION addr(z) = addr(y)}
same  memory
location
com communications derived any, any | §Relations coUrfUfr
over events
fr from-read derived RW §Relations links a read r to a write v’
over events co-after the write w from
which r takes its value
hb happens before derived any, any | §NO THIN AIR | ppo U fences U rfe
rdw read  different derived RR Fig. 27 two threads; first thread
writes holds a write, second
thread holds two reads

Herding cats: Modeling, Simulation, Testing, and Data-mining for Weak Memory
Alglave, Maranget, Tautschnig TOPLAS’14




PSO - RMO

* Herd rMO ( PSO

e Other semantical styles
e TSO:

Figure 41 —Memory Models from Least Restrictive (RMO) to Most Restrictive (TSO)
 Denotational semantics based on sequences
 Denotational semantics based on POSETs

e PSO & RMO:
 Axiomatic and operational models are relatively simple

e Denotational”? Not so much

The SPARC Architecture Manual V9



a global— \
 rmisatlons.
SRR, T, 17 Consequences for
S <RAE Proces”



x86 is TSO

e Documentations are really imprecise

e S0 you say x86 is TSO ..., how do you know?
e Litmus Test
e No conclusive proof

e Errors in both the specification and implementations have
been found (mostly ARM/Power)



PowerPC / ARM



Power? ARM

The story is more complicated

Operationally: Store Atomicity relaxations (co)
Axiomatically: Many more axioms

How do we restore assurance?

e Herd/CAT

e Operational Simulators

e Still ..., no guarantees

PCCMEM


http://www.cl.cam.ac.uk/~pes20/ppcmem/

The Semantic Framework In a
Nutshell

Threads contribute operations to a

pipeline-like temporary store
Threads

code;
code;

Memory Temporary Store

X y Z code;
ff| tt | ff (< =

code;
code;



The Semantic Framework In a
Nutshell

Threads contribute operations to a
pipeline-like temporary store

T = [f; HZ::ﬁ; Hy::ﬁ;
ro:=(ly) " z:=tt " r:=(ly)

code;
code;

Temporary Store

X

N

3/ code;
tt | ff Code

code;
code;



The Semantic Framework In a
Nutshell

Threads contribute operations to a
pipeline-like temporary store

T = Jf; HZ::ﬁ; Hy::ﬁ;
ro:=(ly) " z:=tt " r:=(ly)

code;
code;

Temporary Store

X

N

y \W\/ ril code;
’ de;
tt | ff code

code;
code;



The Semantic Framework In a
Nutshell

Threads contribute operations to a
pipeline-like temporary store

T = [f; HZ::ﬁ; Hy::ﬁ;
ro:=(ly) " z:=tt " r:=(ly)

code;
code;

Temporary Store

X

N

y t1 to / .
wrl! pwr e
i | ff S m ) o

code;
code;



The Semantic Framework In a
Nutshell

Threads contribute operations to a
pipeline-like temporary store

T = ff;
o -— ('y

AN
) U ozi=tt

y =l
r1 = (ly)

Temporary Store

X

N

(

WT

t1

z,ff

t

0 1
Wr%ﬁ .

code;
code;

code;

code;
code;



The Semantic Framework In a
Nutshell

Threads contribute operations to a
pipeline-like temporary store

T = ff;
o - — ('y)

AN Aty
1 —

z =1t

(!’y)

code;
code;

Temporary Store

X

N

tt

(

WT

t1

z,ff

WTr

t

., ff

0 tl code;
WrZ,tK code;
code

Placeholder values for reads =«



The Semantic Framework in a

Nutshell

Threads contribute operations to a
pipeline-like temporary store

T = [f; HZ::ﬁ; Hy::ﬁ;
ro:=(ly) " z:=tt " r:=(ly)

Temporary Store

X

N

’Z[ - < Wril, ﬁwr;‘i ﬁwr’; rd tyo,/ KD

Placeholder values for reads

code;
code;

code;
code;

code;
code;



The Semantic Framework In a
Nutshell

Threads contribute operations to a
pipeline-like temporary store

T = ff;
To - — ('y

2= Jf;

) | z = tt

H Y ::ﬁ
1 -—

(!’y)

code;
code;

Temporary Store

X

N

y
tt | ff

WT

t1

2,11

WT

to

., ff

t

1
W 4

to
rdy’y

to o
Wry,ﬁK Eﬁdi
code

Placeholder values for reads =«



The Semantic Framework In a
Nutshell

Threads contribute operations to a
pipeline-like temporary store

= Jf;

To - — ('y

X

2= I
z =1t

Temporary Store

I

| ¢
1 - —

(!’y)

code;

X

N

tt

(

Placeholder values for reads

WT

t1

2,/

WT

to

., ff

t

1
W 4

to
rdy,,/

2
W I
Y, [

t to
rdynu

code;

code;



The Semantic Framework In a
Nutshell

Temporary Store

2= Jf;

z =1t

| Y=

1 Z:(

—xecutes Operations
Reordering as Allowed by the Memory Model

ly)

The Memory
AN
ro := (ly)

X Z N 0
. tyt - < wrtt wro

t

1
W ¢4

to
rd,’,

to

W I
3 Y,

to
rdynu

code;
code;

code;
code;

code;
code;



The Semantic Framework In a
Nutshell

The Memory
AN
ro := (ly)

Temporary Store

2= Jf;
z =1t

| Y=

1 Z:(

—xecutes Operations
Reordering as Allowed by the Memory Model

ly)

X

N

(

to
rdys

WT

t1

to

2,41

t

Wrxﬁ

to

1
W ¢4

W
Y,

to
rdynu

code;
code;

code;
code;

code;
code;



The Semantic Framework In a
Nutshell

The Memory

T = ff;
To - — ('y

X

Temporary Store

2= Jf;
z =1t

| Y=

1 Z:(

—xecutes Operations
Reordering as Allowed by the Memory Model

ly)

X

N

(

WTr

t1

to

2,41

t

Wrxﬁ

to

1
W ¢4

W
Y,

to
rdynu

code;
code;

code;
code;

code;
code;



Examples

e \We use a commutability relation
constraining the permissible
reorderings

TSO (t,er/v) T (¢, rdg w)
PSO (t,wrg‘fv) T(t,rdg ) & (t,wrg‘fv) T(t,wWrg w)
RMO (t,wrg‘fv) T(t,rdg ) & (t,wrg‘fv) T(t,wrg )

(t,rdpo) T (L, rdg w)




Store-Atomicity Relaxation

see the

Cannot
write

Ctl Wr

tQ Wry £F

(tl rdz ,/

(t() rdz ,u)

<

Mlght see
the ert




Memory Write Rules

Normal Write

(S, 00 (t,wrg‘f;}[) o1, T) v~ (S|p:=wvl],00-01,T)

if aoﬁ(twr N & v € Val

Early Write

(S, 00 - (t,wrg‘;’f) o1, T) vy (S, 00 - (t,wrg‘g’l) o1, T)

if teW &WcW eWw

Extends
visibility




Memory Read Rules

Normal Read

(S, go - (t, rdp,L) ’ O'l,T) : W> (S, {L HU}(O’Q . O'1,T))

if o099 (¢,rd,,) & S(p) =v

Early Read
(S, o - (t’,wrg‘y) 01 (t, rdp’,/) y O'Q,T)
> (S, {t—v}(og - (t’,wrg‘;’fu{b}) 01092, T))

if teW & oq9(t,rdy,,)

T, W



RIW Examp\e

RIW Pt | q:=1tt H

7“0—7“2—?515&7“1—7"3

— .  /

.= 'Z?a H
= 1q

re = 1g;

T3 — !17

\

(to, wr

{to}

ptt

tl,wr

{tl}

qtt

tQ, rdp ,/)

t27 rdq 174 )

(t?n rdq ,u)

(t37 rdp,,u’>




IRIW Example

RIW =1 | q:=tt H

rg—tt&rl—rg

—  /

:'pa H
1 :=1gqg

ro = 1q;

7“3 —!p

\

(to, wrl o) | (b1, wri2d) |(ta, vy ) |(t2, rdgu (t3, rdg . )(ts, dp. o)
VEarly writesy
(t()? Wr;{?fgt’b}) (tla Wr{t1,t3}) (t27 rdpaV) (t27 rdq,l/’)(t37 rd(],,uu) (t37 rdp,,u’)'

q,tt




RIW Example

ro := 1 p; H

RIW 2= it || q:=tt | g

7“2—?515&7“1—7"3

// /

re = 1g;
7“3 —!p

\

{to}

(tOv er tt

{tl}

tQ, rdp ,/) tQ, rdq 1! )

(t3,rdg, u)(tfﬁv rdp,u’>‘

vEarly Writes*

(to, wr

{to,t2}

p,tt

)

(t1,wr

{t1,t3}

q,tt

)

(t27 rdp,v) (t27 rdq,l/’)

(t37 rd(]nu')

(t37 rdp,,u’)'

¥ Early reads V¥

(to, wr

{to,t2}

p,tt

)

(t1, wr

{t1,t3}

q,tt

)

(t27 rdq,l/’)

(tSardiuu’)




PCC.cat



PCC.cat

e SB-PPC

* SB-PPC-lwsync
e SB-PPC-sync

e WRC
 WRC+realdata

* WRC-lwsync

*|R
*|R
*|R

W
W-lwsync
W-sync



POWER and ARM Litmus Tests

http://www.cl.cam.ac.uk/~pes20/ppc-supplemental

Coherence tests
CoRR1: rf,po,fr forbidden | CoRW: rf,po,co forbidden | CoWR: co,po,rf ! forbidden | COWW: po,co
Thread 0 Thread 1 Thread 0 Thread 1 Thread 0 Thread 1 Thread 0
a: Wx]=2 *b: R[x]=2 a: R[x]=2 c: W[x]=2 a: Wlx]=1 c: W[x]=2 a: W[x]=1
c(f //' /f/,,_
- e po po <o po| |co
T -~ f
rf ¢ R[x]=1 b: W[x]=1 b: R[x]=2 b: W[x]=2
Test CoRR1 Test CoRW Test COWR Test CoWW

forbidden

4-edge 2-thread tests

5-edge extensions along one rf edge

One rf Two rf Preserved read-read program order
PPO000-019: barrier,rf,intra-thread™,fr
Thread 0 Thread 1
MP: rf,fr needs lwsync+RRdep | WRC: rf,rf,fr needs lwsync+RRdep a: WIX]=1 R - RVf]=1
Thread 0 Thread 1 Thread 0 Thread 1 Thread 2 Iwsync ’_//"’/’-_ data
a: W[x]:l 2 ///_3: RT]=1 a: W[x]=1 b: Rlx]:l ¥ ///g': Rjy]:l b: Wy]=1 d: W[z]:l
po ///// . po po ’/_// l___‘ po rf
b: W[y]=1 rf d: R[x]=0 c: W[y]=1 rf e: R[x]=0 e: R[z]=1
Test MP Test WRC *add'l
if f: R[x]=0
Test PPO000
S: rf,co needs Iwsync+RWdep | WWOC: rf,rf,co needs lwsync+RWdep
Thread 0 Thread 1 Thread 0 Thread 1 Thread 2
a: W[X]=Ng,.f—"'g RT]:I a: W[x]=2,___‘_1+_--___j>; ?{(]:2 rf’_,__/”c; Rly]:l
po s S po PO~ po
b: Wiy=1 \d W[xJ=1 WhETT i
Test S Test WWC
No rf One rf 6-edge extensions along two rf edges
SB: fr.fr needs sync+sync | RWC: rf,fr,fr needs sync+sync | IRIW: rf,fr,rf fr needs sync+sync
Thread 0 Thread 1 Thread 0 Thread 1 Thread 2 Thread 0 Thread 1 Thread 2 Thread 3
a: WJx]:l c W[y]:l a: W[x]=1—rf’b: Rlx]:l d: Wf/]:l a: W[x]=1—rf’b: R[x]=1 d: W[y]=1Te: RT]:I
- po - po ” po - po - po - po
i b: R[y]=0 £ d: Rx=0  c Rly]=0 £ e Rix]=0 f o Rjyj=0 f £ RJ=0
Test SB Test RWC Test IRIW
R: co,fr needs sync+sync | WRW+WR: rf,co,fr needs sync+sync | IRRWIW: rf,fr,rf,co needs sync+sync

rmem


https://www.cl.cam.ac.uk/~pes20/ppcmem/
http://www.cl.cam.ac.uk/~jf451/rmem/

Power Barriers

* sync: heavyweight barrier
e cumulative
e lwsync: lightweight barrier
e similar to sync
e does not prevent WR reordering

e Examples
e Herd


http://www.ds.ewi.tudelft.nl/vakken/in1006/instruction-set/

Simple Spin-lock

lock (1) ; lock (1) ;
r = X, r = X;
X = r+1, X = r+1;
unlock (1) ; unlock (1) ;
lock (1) { unlock (1) {
while (!'cas(lock, 0, 1)) { 1 =0
while (lock == 0); }

Iy
¥

To fence or not to fence?



Other Models

e And yet these are not the most complicated models
 NVIDIA
e Alpha (obsolete)

e We’ll see Programming Languages models in the next
lecture



