
Software Models

The case of Java

The case of Java

The case of Java

The case of Java

The case of Java

It’s not just the processor …

It’s not just the processor …
Atomic Operations

It’s not just the processor …
Atomic Operations

Synchronizing Operations

It’s not just the processor …
Atomic Operations

Synchronizing Operations

Compiler Optimizations

Reordering

Eliminations (CSE)

Introductions

It’s not just the processor …
Atomic Operations

Synchronizing Operations

Compiler Optimizations

Reordering

Eliminations (CSE)

Introductions

VM Optimizations

Just in time compilation
Lock elision

Biased Locking

Compiler Optimizations

Compiler Optimizations

Compiler Optimizations

Compiler Optimizations

Compiler Optimizations

Compiler Optimizations

Compiler Optimizations

✔

Compiler Optimizations

✔
Do we allow the behavior in the JMM?

Compiler Optimizations

✔
Do we allow the behavior in the JMM?

Do we forbid these simple optimizations?

Thin-Air-Reads
x = 0 & y = 0

r1 = y;
if(r1! = 0)
x = r1;

���
r2 = x;
if(r2! = 0)
x = r2;

r1 = r3 = 42?

Thin-Air-Reads
x = 0 & y = 0

r1 = y;
if(r1! = 0)
x = r1;

���
r2 = x;
if(r2! = 0)
x = r2;

r1 = r3 = 42?

If we consider SC executions this 
program has no data races

Thin-Air-Reads
x = 0 & y = 0

r1 = y;
if(r1! = 0)
x = r1;

���
r2 = x;
if(r2! = 0)
x = r2;

r1 = r3 = 42?

If we consider SC executions this 
program has no data races

The value 42 appears  
nowhere in the program

Thin-Air-Reads
x = 0 & y = 0

r1 = y;
if(r1! = 0)
x = r1;

���
r2 = x;
if(r2! = 0)
x = r2;

r1 = r3 = 42?

If we consider SC executions this 
program has no data races

The value 42 appears  
nowhere in the program

Explicitly forbidden by the JMM and C++11

Thin-Air-Reads
x = 0 & y = 0

r1 = y;
x = (r1 == 1) ? r1 : 1;

��� r2 = x;
y = (r2 == 1)?r2 : 1;

r1 = r2 = 1?

Thin-Air-Reads
x = 0 & y = 0

r1 = y;
x = (r1 == 1) ? r1 : 1;

��� r2 = x;
y = (r2 == 1)?r2 : 1;

r1 = r2 = 1?

≈
x = 0 & y = 0

r1 = y;
x = 1;

��� r2 = x;
y = 1;

r1 = r2 = 1?

The fundamental Property
of Memory Models

The fundamental Property
of Memory Models

The fundamental Property
of Memory Models

• Data Race

• concurrent memory accesses on a single variable

• at least one is a write 
 

x = 1 � x = 2 x = 1 � r = x

The fundamental Property
of Memory Models

• Data Race

• concurrent memory accesses on a single variable

• at least one is a write 
 

• Data Race Freedom

• Every SC execution is free of data races

x = 1 � x = 2 x = 1 � r = x

The fundamental Property
of Memory Models

• Data Race

• concurrent memory accesses on a single variable

• at least one is a write 
 

• Data Race Freedom

• Every SC execution is free of data races

• DRF Guarantee

• DRF programs do not exhibit relaxed behaviors

x = 1 � x = 2 x = 1 � r = x

Relaxed Executions

SC Executions

DRF Executions

Relaxed Executions
SC Executions

DRF Executions

Relaxed Executions
SC Executions

DRF Executions

• Remark: To check if a program is DRF we can use SC tools

Relaxed Executions
SC Executions

DRF Executions

• Remark: To check if a program is DRF we can use SC tools

• Corollary: If a program is DRF we can use any SC too

Relaxed Executions
SC Executions

DRF Executions

• Remark: To check if a program is DRF we can use SC tools

• Corollary: If a program is DRF we can use any SC too

• Verification Strategy:

1. Check that the program is DRF

2. Verify the program using any SC tool

Memory Models in Practice

PowerPC
x86 ARM

Compiler
Optimizations

Memory Model

What if we define DRF to be
the memory model?

• Someone has to implement the JVM

• Someone has to implement java.util.concurrent

• There are no complete DRF detection algorithms

• Performance critical lock-free data structures

• What happens if despite the programmers effort there are
data races?

C++ Memory Model

• Catch-fire semantics for data races

C++ Memory Model

• Catch-fire semantics for data races

• Variables declared atomic cannot race 
std::atomic<int> x;

• Memory Ordering Decorations:  
 x.load(mo), x.store(v, mo)  
 x.store(5, memory_order_release)  
 x.load(memory_order_seq_cst)

• Release/Acquire: Message Passing

• Release/Consume: Message Passing modulo 
 dependencies

• Relaxed: simply not a data race

C++ Memory Model

C++ Memory Model

C++ Memory Model

C++ Memory Model

C++ Memory Model

✗

C++ Memory Model

C++ Memory Model

✗

C++ Memory Model

C++ Memory Model

✔

C++11 demo

CPPMem

http://svr-pes20-cppmem.cl.cam.ac.uk/cppmem/

The Java Memory
Model (JMM)

The JMM by Intimidation

lock(`);
x++;

unlock(`);
k

lock(`);
x++;

unlock(`);
k

lock(`);
x++;

unlock(`);
k while(1) print(x);

x = 0

0 0 0 1 1 2 2 2 2 3 3 ...

The JMM by Intimidation

lock(`);
x++;

unlock(`);
k

lock(`);
x++;

unlock(`);
k

lock(`);
x++;

unlock(`);
k while(1) print(x);

lock(`);

x++;

unlock(`);

k
lock(`);

x++;

unlock(`);

k
lock(`);

x++;

unlock(`);

k while(1)

print(random(0, 3));

⇡

x = 0

0 0 0 1 1 2 2 2 2 3 3 ...

0 3 1 3 2 0 0 1 2 0 0 ...

The JMM by Intimidation

lock(`);
x++;

unlock(`);
k

lock(`);
x++;

unlock(`);
k

lock(`);
x++;

unlock(`);
k while(1) print(x);

lock(`);

x++;

unlock(`);

k
lock(`);

x++;

unlock(`);

k
lock(`);

x++;

unlock(`);

k while(1)

print(random(0, 3));

⇡

x = 0

0 0 0 1 1 2 2 2 2 3 3 ...

0 3 1 3 2 0 0 1 2 0 0 ...

Of course, no reasonable implementation would do that!

JMM in a Nutshell
• happens-before is enforced through locks or volatile variables

• reads can see any non-hb related write, or

• any immediate predecessor in hb

JMM in a Nutshell
• happens-before is enforced through locks or volatile variables

• reads can see any non-hb related write, or

• any immediate predecessor in hb

JMM in a Nutshell
• happens-before is enforced through locks or volatile variables

• reads can see any non-hb related write, or

• any immediate predecessor in hb

JMM in a Nutshell
• happens-before is enforced through locks or volatile variables

• reads can see any non-hb related write, or

• any immediate predecessor in hb

JMM in a Nutshell
• happens-before is enforced through locks or volatile variables

• reads can see any non-hb related write, or

• any immediate predecessor in hb

JMM in a Nutshell
• happens-before is enforced through locks or volatile variables

• reads can see any non-hb related write, or

• any immediate predecessor in hb

Theorem: 
 The JMM respects the  
 DRF guarantee

JMM in a Nutshell
• happens-before is enforced through locks or volatile variables

• reads can see any non-hb related write, or

• any immediate predecessor in hb

Theorem: 
 Independent non-synchronizing 
 statements can always be  
 reordered

Theorem: 
 The JMM respects the  
 DRF guarantee

JMM in a Nutshell
• happens-before is enforced through locks or volatile variables

• reads can see any non-hb related write, or

• any immediate predecessor in hb

Theorem: 
 Independent non-synchronizing 
 statements can always be  
 reordered

✗Sevcik,Aspinall 2008

Theorem: 
 The JMM respects the  
 DRF guarantee

JMM Roach Motel Semantics
Increasing happens-before is always safe

JMM Roach Motel Semantics
Increasing happens-before is always safe

JMM Roach Motel Semantics
Increasing happens-before is always safe

JMM Roach Motel Semantics
Increasing happens-before is always safe

JMM Roach Motel Semantics
Increasing happens-before is always safe

JMM Roach Motel Semantics
Increasing happens-before is always safe

JMM Roach Motel Semantics
Increasing happens-before is always safe

Compiler Optimizations

Validity of Program Transformations in the Java Memory Model
Sevcik & Aspinall’2008

The Formal JMM

Adve, Manson, Pugh’05

a = �t, k, v, u�Actions

The Formal JMM

Adve, Manson, Pugh’05

a = �t, k, v, u�Actions

Thread ID

Kind:

• Read

• Write

• Volatile Read

• Volatile Write

• Lock

• Unlock

Value

Unique ID

The Formal JMM

Adve, Manson, Pugh’05

E = �P, A,
po��,

so��, W, V,
sw���,

hb���Executions

a = �t, k, v, u�Actions

The Formal JMM

Adve, Manson, Pugh’05

E = �P, A,
po��,

so��, W, V,
sw���,

hb���Executions

a = �t, k, v, u�Actions

Program

The Formal JMM

Adve, Manson, Pugh’05

E = �P, A,
po��,

so��, W, V,
sw���,

hb���Executions

a = �t, k, v, u�Actions

Program Actions

The Formal JMM

Adve, Manson, Pugh’05

E = �P, A,
po��,

so��, W, V,
sw���,

hb���Executions

a = �t, k, v, u�Actions

Program Actions

Program Order

The Formal JMM

Adve, Manson, Pugh’05

E = �P, A,
po��,

so��, W, V,
sw���,

hb���Executions

a = �t, k, v, u�Actions

Program Actions

Program Order
Synchronization Order 
 Total order over synchronization actions

The Formal JMM

Adve, Manson, Pugh’05

E = �P, A,
po��,

so��, W, V,
sw���,

hb���Executions

a = �t, k, v, u�Actions

Program Actions

Program Order
Synchronization Order 
 Total order over synchronization actions

Write-Seen function 
 For each read, returns the write that stored the value read

The Formal JMM

Adve, Manson, Pugh’05

E = �P, A,
po��,

so��, W, V,
sw���,

hb���Executions

a = �t, k, v, u�Actions

Program Actions

Program Order
Synchronization Order 
 Total order over synchronization actions

Write-Seen function 
 For each read, returns the write that stored the value read

Value-written function

The Formal JMM

Adve, Manson, Pugh’05

E = �P, A,
po��,

so��, W, V,
sw���,

hb���Executions

a = �t, k, v, u�Actions

Program Actions

Program Order
Synchronization Order 
 Total order over synchronization actions

Write-Seen function 
 For each read, returns the write that stored the value read

Value-written function

Synchronized-With

The Formal JMM

Adve, Manson, Pugh’05

E = �P, A,
po��,

so��, W, V,
sw���,

hb���Executions

a = �t, k, v, u�Actions

Program Actions

Program Order
Synchronization Order 
 Total order over synchronization actions

Write-Seen function 
 For each read, returns the write that stored the value read

Value-written function

Synchronized-With

Happens-Before
hb = (po � sw)+

The Formal JMM

Adve, Manson, Pugh’05

Well-Formedness

• for every read r,

• is consistent with (is a partial order)

• lock are consistent with mutual exclusion

• the semantics of single threads is respected

• synchronization is consistent

• happens-before is consistent

V (W (r)) = r.v
po�� so�� hb��

The Formal JMM

Adve, Manson, Pugh’05

Causality: we need to justify each of the actions of  
 the execution

(C0, E0) · (C1, E1) · · · · · (Cn, En)

Commit actions of step by step

Set of committed actions
Justifying execution

E

A E

The Formal JMM

Adve, Manson, Pugh’05

1.

2.

3.

4.

5.

6.

7.

Ci � Ai
hbi��� |Ci =

hb�� |Ci

soi��� |Ci =
so�� |Ci

Vi|Ci = V |Ci

�r � Reads(Ai � Ci�1) : Wi(r)
hbi��� r

�r � Reads(Ci � Ci�1) : {Wi(r), W (r)} � Ci�1

Wi|Ci�1 = W |Ci�1

The Formal JMM

Adve, Manson, Pugh’05

1.

2.

3.

4.

5.

6.

7.

Ci � Ai
hbi��� |Ci =

hb�� |Ci

soi��� |Ci =
so�� |Ci

Vi|Ci = V |Ci

�r � Reads(Ai � Ci�1) : Wi(r)
hbi��� r

�r � Reads(Ci � Ci�1) : {Wi(r), W (r)} � Ci�1

Wi|Ci�1 = W |Ci�1

Causality Test Cases

http://www.apple.com

Operational JMM?

• Partial solutions

• Remains elusive

Implementing the JMM

Given a Source Java Program P we expect

JMMJP K

optimJP K

x86JP K

powerPCJP K

ARMJP K

Given a Source Java Program P we expect

JMMJP K

optimJP K

x86JP K
powerPCJP K

ARMJP K

The JSR-133 Cookbook for
Compiler Writers

http://g.oswego.edu/dl/jmm/cookbook.html

http://g.oswego.edu/dl/jmm/cookbook.html

The JSR-133 Cookbook for
Compiler Writers

• A collection of informal arguments about what is possible
under the JMM (Java) — Roach-Motel Semantics for
Volatiles and Locks

The JSR-133 Cookbook for
Compiler Writers

• A collection of informal “recipes” indicating how disallow
unwanted reorderings by adding generic barrier
instructions

The JSR-133 Cookbook for
Compiler Writers

• A final table indicating how to implement each of the
generic barriers in the different architectures

The JSR-133 Cookbook for
Compiler Writers

• A final table indicating how to implement each of the
generic barriers in the different architectures

 }

 }

A Semantical Framework
to Verify the Cookbook

Java Memory Model

Cookbook High (volatiles and locks)

Cookbook Low (fences and cas)

x86 Power

✓

✓

✓ ✓

Fig. 1. Models above PowerMM exhibit Write-Atomicity Relaxations

to di↵erent threads at di↵erent times, a relaxation permitted by some architec-
tures, including Power and ARM [23,4]. One could imagine providing a semantics
which considers reordering of operations as the only source of relaxations in the
style of the TSO, PSO and RMO [10] memory models. However, this would be
insu�cient to capture certain important relaxations that are permitted by ar-
chitectures with weaker memory models; the following example (WRC in [23])
illustrates this issue.

o.f = o0.f = NULL

o.f = o0 k (o.f).f = o k r0 = o0.f ;
k k r1 = r0.f

r0 = o & r1 = NULL?

(1)

This program has three threads, which share two objects o and o0, each with a
single field f initially NULL. We assume that the type of the field is the same as
the type of o and o0. In the result indicated at the end, we have that r0 = o,
therefore we need that the read of o0.f in the third thread returns the object o.
Indeed this is possible if the first thread executes first, then the second thread
dereferences o.f obtaining o0 and after that it writes o into o0.f . Now we can fullfil
the read of r0 in the third thread. It is obvious that the read of r0.f in the third
thread cannot happen before r0 has obtained its value through the previous read.
Therefore these two reads cannot be reordered. In that case, if the only source of
relaxation is reordering, the read r0.f which in actuality is a read of o.f must see
the value o0, since all reorderings are prevented through data dependencies. This
final result cannot be produced by a reordering-only memory model. However,
this is a possible behavior in Power, since a write-atomicity relaxation could
mean that the write of the first thread is only propagated to the second, but
not third, thread, allowing the third thread to read NULL for r1. To admit such
behavior, it is then necessary to introduce write-atomicity relaxations existent
in Power within the (low-level) cookbook semantics to avoid over-synchronizing
normal memory accesses. This motivates the semantics we present in Section 4.

Proof Structure. Figure 1 illustrates the overall proof structure that we follow
in our work. At the top level, we have the semantics of the JMM as described
in [19], or rather the improved version of [24]. Below this level, we have a high-
level, architecture-agnostic, operational semantics which adopts Power semantics
for normal variables, and SC semantics for volatile variables and locks. We de-
note this semantics by cookbook-high. One level down, we have the intermediate

7

A Semantical Framework
to Verify the Cookbook

Java Memory Model

Cookbook High (volatiles and locks)

Cookbook Low (fences and cas)

x86 Power

✓

✓

✓ ✓

Fig. 1. Models above PowerMM exhibit Write-Atomicity Relaxations

to di↵erent threads at di↵erent times, a relaxation permitted by some architec-
tures, including Power and ARM [23,4]. One could imagine providing a semantics
which considers reordering of operations as the only source of relaxations in the
style of the TSO, PSO and RMO [10] memory models. However, this would be
insu�cient to capture certain important relaxations that are permitted by ar-
chitectures with weaker memory models; the following example (WRC in [23])
illustrates this issue.

o.f = o0.f = NULL

o.f = o0 k (o.f).f = o k r0 = o0.f ;
k k r1 = r0.f

r0 = o & r1 = NULL?

(1)

This program has three threads, which share two objects o and o0, each with a
single field f initially NULL. We assume that the type of the field is the same as
the type of o and o0. In the result indicated at the end, we have that r0 = o,
therefore we need that the read of o0.f in the third thread returns the object o.
Indeed this is possible if the first thread executes first, then the second thread
dereferences o.f obtaining o0 and after that it writes o into o0.f . Now we can fullfil
the read of r0 in the third thread. It is obvious that the read of r0.f in the third
thread cannot happen before r0 has obtained its value through the previous read.
Therefore these two reads cannot be reordered. In that case, if the only source of
relaxation is reordering, the read r0.f which in actuality is a read of o.f must see
the value o0, since all reorderings are prevented through data dependencies. This
final result cannot be produced by a reordering-only memory model. However,
this is a possible behavior in Power, since a write-atomicity relaxation could
mean that the write of the first thread is only propagated to the second, but
not third, thread, allowing the third thread to read NULL for r1. To admit such
behavior, it is then necessary to introduce write-atomicity relaxations existent
in Power within the (low-level) cookbook semantics to avoid over-synchronizing
normal memory accesses. This motivates the semantics we present in Section 4.

Proof Structure. Figure 1 illustrates the overall proof structure that we follow
in our work. At the top level, we have the semantics of the JMM as described
in [19], or rather the improved version of [24]. Below this level, we have a high-
level, architecture-agnostic, operational semantics which adopts Power semantics
for normal variables, and SC semantics for volatile variables and locks. We de-
note this semantics by cookbook-high. One level down, we have the intermediate

7

A Semantical Framework
to Verify the Cookbook

Java Memory Model

Cookbook High (volatiles and locks)

Cookbook Low (fences and cas)

x86 Power

✓

✓

✓ ✓

Fig. 1. Models above PowerMM exhibit Write-Atomicity Relaxations

to di↵erent threads at di↵erent times, a relaxation permitted by some architec-
tures, including Power and ARM [23,4]. One could imagine providing a semantics
which considers reordering of operations as the only source of relaxations in the
style of the TSO, PSO and RMO [10] memory models. However, this would be
insu�cient to capture certain important relaxations that are permitted by ar-
chitectures with weaker memory models; the following example (WRC in [23])
illustrates this issue.

o.f = o0.f = NULL

o.f = o0 k (o.f).f = o k r0 = o0.f ;
k k r1 = r0.f

r0 = o & r1 = NULL?

(1)

This program has three threads, which share two objects o and o0, each with a
single field f initially NULL. We assume that the type of the field is the same as
the type of o and o0. In the result indicated at the end, we have that r0 = o,
therefore we need that the read of o0.f in the third thread returns the object o.
Indeed this is possible if the first thread executes first, then the second thread
dereferences o.f obtaining o0 and after that it writes o into o0.f . Now we can fullfil
the read of r0 in the third thread. It is obvious that the read of r0.f in the third
thread cannot happen before r0 has obtained its value through the previous read.
Therefore these two reads cannot be reordered. In that case, if the only source of
relaxation is reordering, the read r0.f which in actuality is a read of o.f must see
the value o0, since all reorderings are prevented through data dependencies. This
final result cannot be produced by a reordering-only memory model. However,
this is a possible behavior in Power, since a write-atomicity relaxation could
mean that the write of the first thread is only propagated to the second, but
not third, thread, allowing the third thread to read NULL for r1. To admit such
behavior, it is then necessary to introduce write-atomicity relaxations existent
in Power within the (low-level) cookbook semantics to avoid over-synchronizing
normal memory accesses. This motivates the semantics we present in Section 4.

Proof Structure. Figure 1 illustrates the overall proof structure that we follow
in our work. At the top level, we have the semantics of the JMM as described
in [19], or rather the improved version of [24]. Below this level, we have a high-
level, architecture-agnostic, operational semantics which adopts Power semantics
for normal variables, and SC semantics for volatile variables and locks. We de-
note this semantics by cookbook-high. One level down, we have the intermediate

7

A Semantical Framework
to Verify the Cookbook

Java Memory Model

Cookbook High (volatiles and locks)

Cookbook Low (fences and cas)

x86 Power

✓

✓

✓ ✓

Fig. 1. Models above PowerMM exhibit Write-Atomicity Relaxations

to di↵erent threads at di↵erent times, a relaxation permitted by some architec-
tures, including Power and ARM [23,4]. One could imagine providing a semantics
which considers reordering of operations as the only source of relaxations in the
style of the TSO, PSO and RMO [10] memory models. However, this would be
insu�cient to capture certain important relaxations that are permitted by ar-
chitectures with weaker memory models; the following example (WRC in [23])
illustrates this issue.

o.f = o0.f = NULL

o.f = o0 k (o.f).f = o k r0 = o0.f ;
k k r1 = r0.f

r0 = o & r1 = NULL?

(1)

This program has three threads, which share two objects o and o0, each with a
single field f initially NULL. We assume that the type of the field is the same as
the type of o and o0. In the result indicated at the end, we have that r0 = o,
therefore we need that the read of o0.f in the third thread returns the object o.
Indeed this is possible if the first thread executes first, then the second thread
dereferences o.f obtaining o0 and after that it writes o into o0.f . Now we can fullfil
the read of r0 in the third thread. It is obvious that the read of r0.f in the third
thread cannot happen before r0 has obtained its value through the previous read.
Therefore these two reads cannot be reordered. In that case, if the only source of
relaxation is reordering, the read r0.f which in actuality is a read of o.f must see
the value o0, since all reorderings are prevented through data dependencies. This
final result cannot be produced by a reordering-only memory model. However,
this is a possible behavior in Power, since a write-atomicity relaxation could
mean that the write of the first thread is only propagated to the second, but
not third, thread, allowing the third thread to read NULL for r1. To admit such
behavior, it is then necessary to introduce write-atomicity relaxations existent
in Power within the (low-level) cookbook semantics to avoid over-synchronizing
normal memory accesses. This motivates the semantics we present in Section 4.

Proof Structure. Figure 1 illustrates the overall proof structure that we follow
in our work. At the top level, we have the semantics of the JMM as described
in [19], or rather the improved version of [24]. Below this level, we have a high-
level, architecture-agnostic, operational semantics which adopts Power semantics
for normal variables, and SC semantics for volatile variables and locks. We de-
note this semantics by cookbook-high. One level down, we have the intermediate

7

A Semantical Framework
to Verify the Cookbook

• We propagate the semantics of Power for Normal Variables 

• We Give SC semantics to Volatiles and Locks

Java Memory Model

Cookbook High (volatiles and locks)

Cookbook Low (fences and cas)

x86 Power

✓

✓

✓ ✓

Fig. 1. Models above PowerMM exhibit Write-Atomicity Relaxations

to di↵erent threads at di↵erent times, a relaxation permitted by some architec-
tures, including Power and ARM [23,4]. One could imagine providing a semantics
which considers reordering of operations as the only source of relaxations in the
style of the TSO, PSO and RMO [10] memory models. However, this would be
insu�cient to capture certain important relaxations that are permitted by ar-
chitectures with weaker memory models; the following example (WRC in [23])
illustrates this issue.

o.f = o0.f = NULL

o.f = o0 k (o.f).f = o k r0 = o0.f ;
k k r1 = r0.f

r0 = o & r1 = NULL?

(1)

This program has three threads, which share two objects o and o0, each with a
single field f initially NULL. We assume that the type of the field is the same as
the type of o and o0. In the result indicated at the end, we have that r0 = o,
therefore we need that the read of o0.f in the third thread returns the object o.
Indeed this is possible if the first thread executes first, then the second thread
dereferences o.f obtaining o0 and after that it writes o into o0.f . Now we can fullfil
the read of r0 in the third thread. It is obvious that the read of r0.f in the third
thread cannot happen before r0 has obtained its value through the previous read.
Therefore these two reads cannot be reordered. In that case, if the only source of
relaxation is reordering, the read r0.f which in actuality is a read of o.f must see
the value o0, since all reorderings are prevented through data dependencies. This
final result cannot be produced by a reordering-only memory model. However,
this is a possible behavior in Power, since a write-atomicity relaxation could
mean that the write of the first thread is only propagated to the second, but
not third, thread, allowing the third thread to read NULL for r1. To admit such
behavior, it is then necessary to introduce write-atomicity relaxations existent
in Power within the (low-level) cookbook semantics to avoid over-synchronizing
normal memory accesses. This motivates the semantics we present in Section 4.

Proof Structure. Figure 1 illustrates the overall proof structure that we follow
in our work. At the top level, we have the semantics of the JMM as described
in [19], or rather the improved version of [24]. Below this level, we have a high-
level, architecture-agnostic, operational semantics which adopts Power semantics
for normal variables, and SC semantics for volatile variables and locks. We de-
note this semantics by cookbook-high. One level down, we have the intermediate

7

Use the Pipeline Framework

Memory

Threads

Temporary Store
code;&&
code;&
code&

code;&&
code;&
code&

code;&&
code;&
code&

x y z
ff tt ff

• Encode the different architectures: TSO, PPC

• Encode Cookbook Low and Cookbook High

• Prove simulation at every step

• Prove that Cookbook High is a correct implementation of JMM

Power Barriers
• sync: Enforces ordering between all operations

• In our pipeline no action can bypass a sync action of
the same thread

• It requires global consensus

• lwsync: It enforces ordering between all operations  
 except: wr lwsync rd

• It does not enforce consensus

⇥
x := 1;

⇤
k

⇥
y := 1;

⇤
k

2

4
r1 := x;

lwsync;
r2 := y;

3

5 k

2

4
r3 := y;

lwsync;
r4 := x;

3

5

r1 = r3 = 0 & r2 = r4 = 1 is allowed

The JSR-133 Cookbook for
Compiler Writers

• A final table indicating how to implement each of the
generic barriers in the different architectures

IRIW with Volatiles

v0 = v1 = 0 and v0, v1 are volatile
�

v0 := 1;
�

�
�

v1 := 1;
�

�
�

r1 := v0;
r2 := v1;

�
�

�
r3 := v1;
r4 := v0;

�

r1 = r3 = 0 & r2 = r4 = 1 is allowed

IRIW with Volatiles

Fix PPC(LoadLoad) = sync

PPC(LoadStore) = lwsync

PPC(StoreStore) = lwsync

PPC(StoreLoad) = sync

v0 = v1 = 0 and v0, v1 are volatile
�

v0 := 1;
�

�
�

v1 := 1;
�

�
�

r1 := v0;
r2 := v1;

�
�

�
r3 := v1;
r4 := v0;

�

r1 = r3 = 0 & r2 = r4 = 1 is allowed

Surprises
• IRIW with volatiles is reproducible on a 32-core Power7

machine

• With two different VM’s

• We found bugs in the implementation of volatiles of the
Fiji ahead of time compiler

• Many implementers of JVM’s follow the Cookbook

Guarantees

Java Memory Model

Cookbook High (volatiles and locks)

Cookbook Low (fences and cas)

x86 Power

✓

✓

✓ ✓

Fig. 1. Models above PowerMM exhibit Write-Atomicity Relaxations

to di↵erent threads at di↵erent times, a relaxation permitted by some architec-
tures, including Power and ARM [23,4]. One could imagine providing a semantics
which considers reordering of operations as the only source of relaxations in the
style of the TSO, PSO and RMO [10] memory models. However, this would be
insu�cient to capture certain important relaxations that are permitted by ar-
chitectures with weaker memory models; the following example (WRC in [23])
illustrates this issue.

o.f = o0.f = NULL

o.f = o0 k (o.f).f = o k r0 = o0.f ;
k k r1 = r0.f

r0 = o & r1 = NULL?

(1)

This program has three threads, which share two objects o and o0, each with a
single field f initially NULL. We assume that the type of the field is the same as
the type of o and o0. In the result indicated at the end, we have that r0 = o,
therefore we need that the read of o0.f in the third thread returns the object o.
Indeed this is possible if the first thread executes first, then the second thread
dereferences o.f obtaining o0 and after that it writes o into o0.f . Now we can fullfil
the read of r0 in the third thread. It is obvious that the read of r0.f in the third
thread cannot happen before r0 has obtained its value through the previous read.
Therefore these two reads cannot be reordered. In that case, if the only source of
relaxation is reordering, the read r0.f which in actuality is a read of o.f must see
the value o0, since all reorderings are prevented through data dependencies. This
final result cannot be produced by a reordering-only memory model. However,
this is a possible behavior in Power, since a write-atomicity relaxation could
mean that the write of the first thread is only propagated to the second, but
not third, thread, allowing the third thread to read NULL for r1. To admit such
behavior, it is then necessary to introduce write-atomicity relaxations existent
in Power within the (low-level) cookbook semantics to avoid over-synchronizing
normal memory accesses. This motivates the semantics we present in Section 4.

Proof Structure. Figure 1 illustrates the overall proof structure that we follow
in our work. At the top level, we have the semantics of the JMM as described
in [19], or rather the improved version of [24]. Below this level, we have a high-
level, architecture-agnostic, operational semantics which adopts Power semantics
for normal variables, and SC semantics for volatile variables and locks. We de-
note this semantics by cookbook-high. One level down, we have the intermediate

7

End of day 2

