Software Models

How to Make 2 yprocessor Compu
Correctly Execw Multiprocess Programs
' '
LESLIE LAMPORT Share
. . Mem
:al comput ut operation® v ory ¢,
orrect €X uty/ Sait v, , iStene o
d
vel &ndK (o) deIS

ny largeé sequentid
ified bY {he progra™
me as would be prodw f
De
Party
ent of E Iectn'
Ccaj

safety and security properties of Java and weak enough to
allow standard compiler and hardware optimizations. To
our knowledge, other models are either too weak because
they do not provide for sufficient safety /security, of are too
strong because they rely on a sLrong notion of data and
control dependences that precludes some standard compiler
transformations.

N e e ety done in compil-

multithreaded access O shared memory requires a memory
model. The model determines the transformations that the
system (compiler, virtual machine, or hardware) can apply
to a program written at that interface. For example, given
a program in machine language, the memory model for the
machine language / hardware interface will determine the

optimizations the hardware can perform.
For a high-level programming language such as Java, the
memory model determines the transformations the compiler
T T i o hvtecode, the trans-

e operationsV Sar: IStenc
large he progr odw f “nd Ko '
nisspec edbyt P . uld be pr De artn, Urosh
Pr REs t\‘e; ¥ ultiproct ®0Of Ejecyy. Chory,, ¢
er. c
The Java Memory Model:
ory
i()n
Jeremy Manson and William Pugh Sarita V. Adve 616
Department of Computer Science Department of Computer Science
University of Maryland, College Park University of lllinois at Urbana-Champaign
College Park, MD Urbana-Champaign, IL
{jmanson, pugh}@cs.umd.edu sadve@cs.uiuc.edu 19515
ABSTRACT Meanings of Programs: Operational Semantics
This paper describes the new Java memory model, which General Terms: Design, Languages
has been rcv:sqd as part of J‘iwa 5.0. The modcl' specifies Keywords: Concurrency, Java, Memory Model, Multithread-
the legal behaviors for a multithreaded prograim; it defines ing
the semantics of multithreaded Java programs and partially
determines legal implementations of Java virtual machines
and compilers. 1. INTRODUCTION 'accepted
[he new Java model provides a simple u}tﬁcrfacc for cor- The memory model for a multithreaded system specifies ',speciﬁcau Y areag
rf’?"“’ synchronized programs — it guarantees acquc:xt{al con- how memory actions (€.8., reads and writes) in a program tal Congysy iy of
giatcnc_\.r w0 data-race-free programs. Its novel ﬂcom.nbupon will appear to execute 10 the programmer, and specifically, harg,,, " \8I‘eao
is requiring that the behavior of incorrectly sy nchrom%cd which value each read of a memory location may return. Ev- "oblep, com o
programs be bounded by a well defined notion of causality. erv hardware and software interface of a system that admits SUppory c e
The causality reguirement is SLrong enough to respect the . N Tted “{Tem

The case of Java

The case of Java

{To appear in Concurrency: Practice and Erperience)

The Java Memory Model is Fatally Flawed

William Pugh
Dept. of Computer Science
Univ. of Maryland, College Park
pugh@cs.umd. edu

Abstract

The Java memory model described in Chapter 17 of
the Java Language Specification gives constraints on
how threads interact through memory. This chapter
is hard to interpret and poorly understood: it im-
poses constraints that prohibit common compiler op-
timizations and are expensive to implement on exist-
ing hardware. Most JVMs violate the constraints of
the existing Java memory model; conforming to the
existing specification would impose significant perfor-
mance penalties,

In addition, programming idioms used by some

existing style of the specification will never be clear,
and that attempts to patch the existing specification
by adding new rules will make even harder to un-
derstand. If we decide to change the Java memory
model, a completely new description of the memory
model should be devised.

A number of terms are used in the Java memory
model but not explicitly related to Java source pro-
grams nor the Java virtual machine. Some of these
terms have been interpreted differently by various
people. I have based my understanding of these terms
on conversations with Guy Steele, Doug Lea and oth-
ers.

programmers and used within Sun’s Java Develop- A variable refers to a static variable of a loaded

The case of Java

The Java Memory Model:

Jeremy Manson and William Pugh
Department of Computer Science
University of Maryland, College Park
College Park, MD

{jmanson, pugh}@w.umd.edu

ABSTRACT

This paper describes the new Java memory model, which
has been revised as part of Java 5.0. The model specifies
the legal behaviors for a multithreaded prograrm; it defines
the semantics of multithreaded Java programs and partially
determines legal implementations of Java virtual machines
and compilers.

The new Java model provides a simple interface for cor-
rectly synchronized programs — it guarantees sequential con-
gistency to data-race-free programs. Its novel contribution
is requiring that the behavior of incorrectly synchronizcd
programs be bounded by a well defined notion of causality.
The causality reguirement is Strong enough to respect the
safety and security properties of Java and weak enough to
allow standard compiler and hardware optimizations. To
our knowledge, other models are either too weak because

hev do not provide for sufficient safety /security, or are oo
I L e Asda and

Sarita V. Adve
Department of Computer Science
University of lllinois at Urbana-Champaign
Urbana-Champaign, IL

sadve@cs.uiuc.edu

Meanings of Programs : Operational Semantics

General Terms: Design, Languages

Keywords: Concurrency, Java, Memory Model, Multithread-

ing

1. INTRODUCTION

The memory model for a multithreaded system specifies
how memory actions (e.g., reads and writes) in a program
will appear to execute to the programmer, and specifically,
which value each read of a memory location may return. Ev-
ery hardware and software interface of a system that admits
multithreaded access Lo shared memory requires a memory
model. The model determines the transformations that the
system (compiler, virtual machine, or hardware) can apply
to a program written at that interface. For example, given
a program in machine language, the memory model for the

o hine language [/ hardware interface will determine the

{To appear in Concurrency: P

ractice and Experience)

Th
e Java Memory Model is Fatally Flawed

Pugh
uter Science

L College Park
nd. edu

isting style of
A the specificat: .
d that at pecification will nev
t . never b
addin €mpts to patch the existing s 1;‘: e
g new rules will make even harF:iec S
er to un-

stand. If]
B we decide to change the Jav.
. & completely new descri he memor.

del should be devised ption of the memory

{ number o 3 i

B e € f e;erlr.n? are used in the Java memorv

b oo o]af')a 1c3!:ly related to Java source Y

Houl be(;n : virtual machine. Some of tl?;o-

b T e(xilt:lr-pretfad differently by va.riouz

vermi el Y understanding of these terms
ith Guy Steele, Doug Lea and oglxb

The case of Java

The Java Memory Model:

Jeremy Manson and William Pugh
Department of Computer Science
University of Maryland, College Park
College Park, MD

{jmanson, pugh}@cs.umd.edu

ABSTRACT

This paper describes the new Java memory model, which
has been revised as parl of Java 5.0. The model specifies

the legal behaviors for a multithreaded programm; it defines

the semantics of multithreaded Java programs and partially
tual machines

determines legal implementations of Java vir

and compilers.
The new Java model provides a simple interface for cor-

rectly synchrouized programs — it guarantees sequential con-
gistency 1o data-race-free programs. Its novel contribution
is requiring that the behavior of incorrectly s_vnchronizcd
programs be bounded by a well defined notion of causality.
The causality reguirement is Strong enough to respect the
safety and security properties of Java and weak enough to
allow standard compiler and hardware optimizations. To
our knowledge, other models are either too weak because

hev do not provide for sufficient safety /security, or are 100
UL L f Aata and

Dep
Univers|

Meanin
Genera

Keywo
ing

1. 1
The
how o
will aj
which
ery hi
multi
modt
syste
to a
apr
mar

To appear i
{To appear in Concur‘rcncy- Practice
1 clice and Erperience)

Th
e Java Memory Model is Fatally Flawed

Pugh

uter Science

|, College Park
od. edu

J
ava Memory Mode] Examples:
Good, Bad and Ugly |

Davi :
avid Aspinall and Jaroslav Sevéik

August 8, 2007

We review Abstract

Mem a number of i]
and o Model (JMM) [6 3]1 lgsltrét
Siderg;vmdg intuitive expla.r’latti,one 36t1
: ood, bad an d S
haviours in the JMM usg}gvf' .
. , 3

which can be made precise). We con
amples. .

ples. The good examples arle 3ilow d b i

ed be-

AB!
This
has &
the It
the st
deter!
and ¢
Thy
rectly
gisten
is req
progri
The €
safety
allow
our Ki
thev d

The case of Java

(To appear i
' appear in Concur‘rc-ncy- Practice
1 clice and Erperience)

Th
e Java Memory Model is Fatally Flawed

Pugh
uter Science

The Java Memory Model tdCollege Park
.edu

Jeremy Manson and William Pugh

Department of Computer Science Dep

University of Maryland, College Park Univers|
College Park, MD

{jmanson, pugh}@cs.umd.edu

J
ava Memory Mode] Examples:
)d, Bad and Ugly |

idi sformations in the .
On Validity of Program Tran bl and Jarosiay Soues

Java Memory Model A
ugust 8, 2007

Jaroslav Seveik and David Aspinall
Abstract

(Y nati Iniversity Edinburgh .
LFCS, School of Informatics, U niversity of Edu illustrative oy

Abstract. We analyse the validity of geveral common program transfor-
mations in umlti—t.hrcadcd Java, as defined by the Java Mcmor'y I\'h.)(‘lcl
age Specification. I'he

' possibilitie
nisations.

N socti “ C v e Java Langu The bad
(JMM) section of Chapter 17 of the g ecliCat. - as ad examp] .
main design goal of the JMM was 0 allow as many 9pu.xmaauon.s as ;uie(.i out by the JMM. ’II‘)hZS a7 prohibited
find that commonly used optimisations, such as } tricky cases which illustratu 8y examples
€ some prob-

possible. However, We .

bexpression climination, can I
P o ner, we describe geveral kin

L uammDOS, we gained while formali

is

| KT Fa v

troduce new behaviours and ulation of the —
ry m

common su
is of trans- met.
ds of For some of these w.

am
@ tgl(ta;hprograms for the Java
B e e original desi
(which can be made precise)eSl%;'1 .
. We con-
ngc();(il examples are allowedch-
On sequentially consistent

odel, where the
€ mention possi-
g the memar

It’s not just the processor ...

It’s not just the processor ...

It’s not just the processor ...

It’s not just the processor ...

It’s not just the processor ...

-

Compiler Optimizations

On Validity of Program Transformations in the
Java Memory Model

Jaroslav Seveik and David Aspinall

LFCS, School of Informatics, University of Edinburgh

Abstract. We analyse the validity of geveral common program transfor-
mations in multi-thrcadcd Java, as defined by the Java Memory Model
(JMM) section of Chapter 17 of the Java Language Specification. The
main design goal of the JMM was 10 allow as many optimisations as
possible. However, We find that commonly used optimisations, such as
common subexpression climination, can introduce new behaviours and
so are invalid for Java. In this paper, we describe geveral kinds of trans-
formations and explain the problems with a number of counlcrcxa.mplcs.
More posit.ivcly, we also examine some valid transformations, and prove
their validity. Our study contributes 10 the understanding of the JMM,
and has the pract.'xcal impact of revealing some cases where the Sun
Hotspot JVM does not comply with the Java Memory Model.

1 Int roduction

Although programimers generally assume an interleaved cemantics, the Java Lan-
guage Specification [11] defines more relaxed semantics, which is called the Java
Memory Model [12, 19]. The reasons for having a weaker semantics become ap-

Compiler Optimizations

Compiler Optimizations

rl = z; r2 = Xx;
if (r1 == 1) A r3 = y;
x = 1; if (r2==1 && r3==1) A
y = 1; z = 1;
} else { }
y = 13
x = 1;
}
rl = r2 = r3 =1

Compiler Optimizations

rl = z; r2 = Xx;
if (r1 == 1) A r3 = y;
x = 1; if (r2==1 && r3==1) {
y = 1; z = 1;
} else { }
x = 1;
y = 1;
+

Il
 —

ril r2 r3

Compiler Optimizations

x =y =2 =20
rl = z; r2 = Xx;
x = 1 r3 = y;
y = 1 if (r2==1 && r3==1) {
z = 1;
+

Compiler Optimizations

x =y =2 =20

[
e

r2 = Xx;

X
y r3 = vy,
rl = z; if (r2==1 && r3==1) A
z = 1;
+

Compiler Optimizations

x =y =2 =20
x = 1; r2 = X;
y = 1; r3 = y;
rl = z; if (r2==1 && r3==1) A
z = 1;
+

Compiler Optimizations

x = 1; r2 = X;
y = 1; r3 = y;
rl = z; if (r2==1 && r3==1) A
z = 1;
+

ri = r2 = r3 = 1 V

Do we allow the behavior in the JMM?

Compiler Optimizations

H < X

=1 && r3==1) A

ri = r2 = r3 = 1 V

Do we allow the behavior in the JMM?
Do we forbid these simple optimizations?

Thin-Air-Reads

x=0 & y=0

' =Y, rs = X,
if(r,! = 0) || if(ry! = 0)
X = I'y; X = I'g;

r{ — I3z — 427

Thin-Air-Reads

x=0 & y=0

r'n —=Y; Ty = X
if(rs) =0) | if(r!=0)
X = I'q, X = I'g,

r{ — I3z — 427

If we consider SC executions this
program has no data races

Thin-Air-Reads

x=0 & y=0
r's =Y, Iy = X,
if(ry! = 0) || i£(r,! = 0)
X = I'y, X = I'g,

r{ — I3z — 427

If we consider SC executions this
program has no data races

The value 42 appears
nowhere in the program

Thin-Air-Reads

x=0 & y=0
r's =Y, Iy = X,
if(ry! = 0) || i£(r,! = 0)
X = I'y, X = I'g,

r{ — I3z — 427

If we consider SC executions this
program has no data races

The value 42 appears
nowhere in the program

Explicitly forbidden by the JMM and C++11

Thin-Air-Reads

x=0 & y=0

1=
x=(ry==1) 7 ry:1;

| ro = X,
y = (ro == 1)7ry : 1;

I'1:I'2:1?

Thin-Air-Reads

x=0 & y=0

ry =Y, | ro = X,
x=(ry==1) 7 ry:1; y = (ro == 1)7ry : 1;

I'1:I'2:1?
"~/
a4

x=0 &

X:1,

y=0
o — X|
y=1;
I'1—I'2:1?

The fundamental Property
of Memory Models

The fundamental Property
of Memory Models

The fundamental Property
of Memory Models

e Data Race

e concurrent memory accesses on a single variable

e at |least one Is a write

r=11x=2 r=1|r=x

The fundamental Property
of Memory Models

e Data Race

e concurrent memory accesses on a single variable

e at least one Is a write
r=11x=2 r=1|r=x

e Data Race Freedom

e Every SC execution is free of data races

The fundamental Property
of Memory Models

e Data Race

e concurrent memory accesses on a single variable

e at least one Is a write
r=11x=2 r=1|r=x
e Data Race Freedom

e Every SC execution is free of data races

e DRF Guarantee

e DRF programs do not exhibit relaxed behaviors

e Remark: To check if a program is DRF we can use SC tools

e Remark: To check if a program is DRF we can use SC tools

e Corollary: If a program is DRF we can use any SC too

Relaxed Executions

SC Executions
DRF Executions

e Remark: To check if a program is DRF we can use SC tools
e Corollary: If a program is DRF we can use any SC too
e \lerification Strategy:

1. Check that the program is DRF

2. \Verity the program using any SC tool

Memory Models Iin Practice

Compiler
Optimizations

What if we define DRF to be
the memory model??

e Someone has to implement the JVM

e Someone has to implement java.util.concurrent
e There are no complete DRF detection algorithms
e Performance critical lock-free data structures

e What happens if despite the programmers effort there are
data races?

C++ Memory Model

C++ Memory Model

e (Catch-fire semantics for data races

C++ Memory Model

e (Catch-fire semantics for data races

e Variables declared atomic cannot race
std: :atomic<int> x;

e Memory Ordering Decorations:

* Re

e Re

X.load(mo), x.store(v, mo)
x.store(5, memory_order_release)
X .load(memory_order_seq_cst)

ease/Acquire: Message Passing

ease/Consume: Message Passing modulo
dependencies

 Relaxed: simply not a data race

C++ Memory Model

bool t1;
bool t2;
int counter = 1;
tl = true; t2 = true;
if (1t2) if (1t1)
counter —-; counter ——,;

assert (counter >= 0);

C++ Memory Model

bool t1;
bool t2;
int counter = 1;
tl = true; t2 = true;
if (1t2) if (1t1)
counter —-; counter ——,;

assert (counter >= 0);

C++ Memory Model

atomic<bool> t1;
atomic<bool> t2;

int counter = 1;
tl.store(true, relaxed); ||t2.store(true, relaxed);
if (1t2.load(relaxed)) if (!tl.load(relaxed))
counter ——; counter ——;

assert (counter >= 0);

C++ Memory Model

atomic<bool> t1;
atomic<bool> t2;

int counter = 1;
tl.store(true, relaxed); || t2.store(true, relaxed);
if (1t2.load(relaxed)) if (!tl.load(relaxed))
counter ——; counter ——;

assert (counter >= 0);

C++ Memory Model

atomic<bool> t1;
atomic<bool> t2;

int counter = 1;
tl.store(true, release); ||t2.store(true, release);
if (!'t2.load(acquire)) if (!tl.load(acquire))
counter —--; counter ——;

assert (counter >= 0);

C++ Memory Model

atomic<bool> t1;
atomic<bool> t2;

int counter = 1;
tl.store(true, release); ||t2.store(true, release);
if (!'t2.load(acquire)) if (!tl.load(acquire))
counter —--; counter ——;

assert (counter >= 0);

C++ Memory Model

atomic<bool> t1;
atomic<bool> t2;

int counter = 1;
tl.store(true, seq_cst); ||t2.store(true, seq_cst);
if ('t2.load(seq_cst)) if (!tl.load(seq_cst))
counter —--; counter ——;

assert (counter >= 0);

C++ Memory Model

atomic<bool> t1;
atomic<bool> t2;

int counter = 1;
tl.store(true, seq_cst); ||t2.store(true, seq_cst);
if ('t2.load(seq_cst)) if (!tl.load(seq_cst))
counter —--; counter ——;

assert (counter >= 0);

C++11 demo

CPPMem

http://svr-pes20-cppmem.cl.cam.ac.uk/cppmem/

The Java Memory
Model (JMM)

The JMM by Intimidation

r =0
lock({); lock(¥); lock(f);
T+ +; | ozt 4 I z++ | while(1) print(z);
unlock(/); unlock(¥); unlock(/);

00011222233 ...

The JMM by Intimidation

r =20
lock(); lock(¥); lock(f);
T+ +; | ozt 4 I z++ | while(1) print(z);
unlock(/); unlock(¥); unlock(/);
A
lock(¥); lock(¥); lock(f); while(1)
T+ +; | T+ | T¥ T | print(random(0, 3));
unlock(?); unlock(?); unlock(?); e

03132001200 ...

The JMM by Intimidation

r =0
lock(); lock(¥); lock(f);
T+ +; | x4 (R | while(1) print(z);
unlock(/); unlock(¥); unlock(/);
A
lock(¥); lock(¥); lock(f); while(1)
T+ +; | T+ | T¥ T | print(random(0, 3));
unlock(?); unlock(?); unlock(f); T

03132001200 ...

Of course, no reasonable implementation would do that!

JMM In a Nutshell

 happens-before is enforced through locks or volatile variables
* reads can see any non-hb related write, or
* any immediate predecessor in hb

X =y =20

1: lock m 5: lock m
2. rl =x |6 r2 =y
3 yYy=rl | x= r2
4: unlock m | 8: unlock m

JMM In a Nutshell

 happens-before is enforced through locks or volatile variables
* reads can see any non-hb related write, or
* any immediate predecessor in hb

X =y =20

1: lock m 5: lock m
2. rl =x |6 r2 =y
3 yYy=rl | x= r2
4: unlock m | 8: unlock m

po: 1525 3% 4,55 65 7% 8

JMM In a Nutshell

 happens-before is enforced through locks or volatile variables
* reads can see any non-hb related write, or
* any immediate predecessor in hb

X =y =20

1: lock m 5: lock m
2. rl =x |6 r2 =y
3 yYy=rl | x= r2
4: unlock m | 8: unlock m

po: 1525 3% 4,55 65 7% 8

so: 138428558 8v 535 8% 154

JMM In a Nutshell

 happens-before is enforced through locks or volatile variables
* reads can see any non-hb related write, or
* any immediate predecessor in hb

X =y =20

1: lock m 5: lock m
2. rl =x |6 r2 =y
3 yYy=rl | x= r2
4: unlock m | 8: unlock m

po: 1525 3% 4,55 65 7% 8

so: 138428558 8v 535 8% 154

sw: 422 5 v 824 1

JMM In a Nutshell

 happens-before is enforced through locks or volatile variables
* reads can see any non-hb related write, or
* any immediate predecessor in hb

x =y =20

1: lock m 5: lock m
2. rl =x |6 r2 =y
3 yYy=rl | x= r2
4: unlock m | 8: unlock m

po: 1525 3% 4,55 65 7% 8

so: 138428558 8v 535 8% 154

sw: 422 5 v 824 1

hb: 1828 3B 4858 6B 788y

hb: 58 6™ 718 gM 118 28 318 4

JMM In a Nutshell

 happens-before is enforced through locks or volatile variables
* reads can see any non-hb related write, or
* any immediate predecessor in hb

x=y=0 Theorem:

1:lock m | 5! lock o The JMM respects the

2. rl =x | 6. r2 y
B el | ¥ e 9 DRF guarantee

4: unlock m | 8: unlock m

po: 1525 3% 4,55 65 7% 8

so: 1345855 8v 558X 1% 4

sw: 422 5 v 824 1

hb: 1828 3B 4858 6B 788y

Yil® B 600 0l o FN N0 T g

JMM In a Nutshell

 happens-before is enforced through locks or volatile variables
* reads can see any non-hb related write, or
* any immediate predecessor in hb

x =y =20

1: lock m 5: lock m
2. rl =x |6 r2 =y
3 yYy=rl | x= r2
4: unlock m | 8: unlock m

po: 1525 3% 4,55 65 7% 8

so: 138428558 8v 535 8% 154

sw: 422 5 v 824 1

hb: 1828 3B 4858 6B 788y

Yil® B 600 0l o FN N0 T g

Theorem:
The JMM respects the
DRF guarantee

Theorem:
Independent non-synchronizing
statements can always be
reordered

JMM In a Nutshell

 happens-before is enforced through locks or volatile variables
* reads can see any non-hb related write, or
* any immediate predecessor in hb

x =y =20
1: lock m 5: lock m
2. rl =x |6 r2 =y
3 yYy=rl | x= r2
4: unlock m | 8: unlock m

po: 1525 3% 4,55 65 7% 8

so: 138428558 8v 535 8% 154

Theorem:
The JMM respects the
DRF guarantee

Theorem:

sw: 422 5 v 824 1

hb: 1

hb: 5— 6—7— 8— 1

hb Ahb A hb

»2—>3—4—->5—-060—-7—8V

hb - hb

hb - hb

hb ~hb - hb

hb 4 hb

hb A hb

s 2—>3— 4

Independent non-synchronizing
statements can always be

reordered

X Sevcik,Aspinall 2008

JMM Roach Motel Semantics

Increasing happens-before is always safe

x = 1;
synchronized (this) {
y = 1;

rl = x;

+

r2 = y;

JMM Roach Motel Semantics

Increasing happens-before is always safe

x = 1; synchronized (this) {
synchronized (this) { x = 1;

AR AL

rl = x; rl = x;
} r2 = y;

r2 = y; }

JMM Roach Motel Semantics

Increasing happens-before is always safe

x = 1,; synchronized (this) { synchronized (this) {
synchronized (this) { x = 1; x = 1;

y = 1; y = 1; y = 1;

rl = x; # rl = x; rl = x;
} r2 = y; r2 = y;

r2 = y; t ¥

JMM Roach Motel Semantics

Increasing happens-before is always safe

x = 1,; synchronized (this) { synchronized (this) {
synchronized (this) { x = 1; x = 1;
y = 1; y = 1; y = 1;
rl = x; rl = x; rl = x;
¥ r2 = y; r2 = y;
r2 = y; } ¥
v = 1;
x = 1;

JMM Roach Motel Semantics

Increasing happens-before is always safe

x = 1,; synchronized (this) { synchronized (this) {
synchronized (this) { x = 1; x = 1;
y = 1 y = 1; y = 1;
rl = x; rl = x; rl = x;
+ r2 = y; r2 = y;
r2 = y; by ¥
v = x = 1;

P
Il

JMM Roach Motel Semantics

Increasing happens-before is always safe

x = 1,; synchronized (this) { synchronized (this) {
synchronized (this) { x = 1; x = 1;

y = 1; y = 1; y = 1;

} r2 = y; r2 = y;

r2 = y; } }

v = x = 1;

X = v = 1;

rl = x;

r2 = v;

JMM Roach Motel Semantics

Increasing happens-before is always safe

x = 1,; synchronized (this) { synchronized (this) {
synchronized (this) { x = 1; x = 1;
y = 1 y = 1; y = 13
rl = x; rl = x; rl = x;
+ r2 = y; r2 = y;
r2 = y; } }
V:
X:
rl =

r2 =

Compiler Optimizations

Transformation SC | JMM | DRF
Trace-preserving transformations v v v
Reordering normal memory accesses X | xX(V) v
Redundant read after read elimination v X v
Redundant read after write elimination v v v
rrelevant read elimination v v v
rrelevant read introduction v X X
Redundant write before write elimination | v* v v
Redundant write after read elimination 7 X v
Roach-motel reordering v X v
External action reordering X X v

v'— correct, x—incorrect, v'* — correct only for adjacent memory accesses.

Validity of Program Transformations in the Java Memory Model

Sevcik & Aspinall’2008

The Formal JMM

Adve, Manson, Pugh’05

Actions a = (t, k, v, u)

The Formal JMM

Adve, Manson, Pugh’05

Thread ID Value

N

Actions a = (t, k, v, u)

= Unique ID
Kind:
e Read
o Write
o \/olatile Read
o \olatile Write
e Lock
e Unlock

The Formal JMM

Adve, Manson, Pugh’05

Actions a = (t, k, v, u)

. PO SO sw hb
Executions £ = (P, A, —, —, W, V,—, —)

The Formal JMM

Adve, Manson, Pugh’05

Actions a = (t, k, v, u)

Program

\

. PO So SwW
Executions £ = (P, A, —, —, W, V, —,

hb
d

The Formal JMM

Adve, Manson, Pugh’05

Actions a = (t, k, v, u)

Program ACtiOnS

\

. PO So SwW
Executions £ = (P, A, —, —, W, V, —,

hb
d

The Formal JMM

Adve, Manson, Pugh’05

Actions a = (t, k, v, u)

Program ACtiOnS

\

Executions F = (P, A, p0>, 2 WLV, 2=,
Program Order "

hb
d

The Formal JMM

Adve, Manson, Pugh’05

Actions a = (t, k, v, u)

Program ACtiOnS
\] N
)

. PO SO Sw
Executions £ = (P, A, —, —, W,V,—, —

Program OrdeAV
Synchronization Order

Total order over synchronization actions

The Formal JMM

Adve, Manson, Pugh’05

Actions a = (t, k, v, u)

Program ACtiOnS
\] N
)

. PO SO Sw
Executions £ = (P, A, —, —, W, V, —, —

Program OrdeAV
Synchronization Order

Total order over synchronization actions

Write-Seen function
For each read, returns the write that stored the value read

The Formal JMM

Adve, Manson, Pugh’05

Actions a = (t, k, v, u)

Program ACtiOnS
\] N
)

. PO SO Sw
Executions £ = (P, A, —, —, W, V, —, —

Program OrdeAV
Synchronization Order

Total order over synchronization actions v
Value-written function

Write-Seen function
For each read, returns the write that stored the value read

The Formal JMM

Adve, Manson, Pugh’05

Actions a = (t, k, v, u)

Program ACtiOnS

\

Executions F = (P, A, 2%, 2% W, V, 2% =)
Program OrdeAV l | |
Synchronization Order Synchronized-With

Total order over synchronization actions v

. Value-written function
Write-Seen function

For each read, returns the write that stored the value read

The Formal JMM

Adve, Manson, Pugh’05

Actions a = (t, k, v, u)

Program Actions Happens-Before
\ T LS (po U sw)™
Executions F = (P, A, p0>, 2 WLV, 25 hb>>
Program OrdeAV l | |
Synchronization Order Synchronized-With
Total order over synchronization actions v

. Value-written function
Write-Seen function

For each read, returns the write that stored the value read

The Formal JMM

Adve, Manson, Pugh’05

Well-Formedness

» foreveryreadr, V(W (r)) = r.u

e 2 is consistent with 2% (ﬂ is a partial order)
e |ock are consistent with mutual exclusion

e the semantics of single threads is respected

e synchronization is consistent

e happens-before is consistent

The Formal JMM

Adve, Manson, Pugh’05

Causality: we need to justify each of the actions of
the execution

Commit actions of I step by step

(Co, Ep) - (C1, Ey) -+ (Ch, Ey)
Vo
Justifying execution A E
Set of committed actions

N o oA W N

The Formal JMM

Adve, Manson, Pugh’05

Cz' g Az

hb; hb
—|c; =~ |C
SO; SO
— C, = |C
Vtilcq; — V‘Cz

. Vr € Reads(A; — C;_1) : W;(r) Ll

' Wi‘ci—l — W‘Ci—l
. Vr € Reads(C; — Cij_1) : {W;(r),W(r)} C C;_4

The Formal JMM

Adve, Manson, Pugh’05

Cz' g Az

hb; hb
—|C; =7 IC;
S0; SO
—|Cc; = |C;
Vtilcq; — V‘Cz

. Vr € Reads(A; — C;_1) : W;(r)
" W’L"C?;_l — W‘Ci—l

hb;
e

. Vr € Reads(C; — Cij_1) : {W;(r),W(r)} C C;_4

Causality Test Cases

http://www.apple.com

Operational JMM?

o .
Partial solutions

[.
Remains elusive

Generative Operational Semantics
for Relaxed Memory Models”™

Radha Jagadeesan, Corin Pitcher and James Riely

School of Computing DePaul University

Abstract. The speciﬁcation of the Java Memory Model (yMM) 18 phrased in
terms of acceptors of execution sequences rather than the standard generat'we
view of operational gemantics. This creates 2 mismatch with language—based tech-
niques, such as simulation arguments and proofs of type safety-

We describe 2 semantics for the JMM using standard programming language tech-
niques that captures its full express'rvity. For data-race-free programs our m
coincides with the IMM- For lockless programs, our model js more expressive

derived, rather than mandated in the style of the IMM.

The IMM 18 arguably non—canonical inits treatment of the interaction of data races
and locks a8 it fails to validate roach-motel reorderings and various peephole
optirrﬁzations. Our model differs from the JMM 11 these €ases- We develop 2
theory of simulation and use it 10 yalidate the legality of the above optimizations

1 Introduction

In the context of shared memory jmperative programs, Sequential Consistency (sC)
(Lamport 1979) enforces a global total order o memory operations that includes the
program order of each individual thread in the program- gC may be realized by 2 tra-
ditional interleaving semantics where shared memory 18 represented as a map from
locations O yalues. It has been observed that g disables compiler optimizations such
as reordering of independent statements. Despite arguments that sC does ot impair
efficiency (Kamil et al. 2005), this observation and others have motivated 2 pody of
work on relaxed memory models; Adve and Gharachorloo (1996) provide a tutorial
introduction with detailed pibliography-
A first (conceptual, if not chronological) step in genera\izing sC 1s to consider the
Data Race Free (DRF) models. Informally, 2 program is DRF if nO execution of the pro-
S ahich a write happens concurrently with another operation Oft
gl 2l nrommmgudﬁw—-o—f—cnmnutmion cO-

Implementing the JMM

Given a Source Java Program P we expect

Given a Source Java Program P we expect

The JSR-133 Cookbook for
Compiler Writers

http://g.0swego.edu/dl/[mm/cooklbook.html

The JSR-133 Cookbook for Compiler Writers

by Doug Lea, with help from members of the JMM mailing list.

di@cs.oswego.edu.

Preface: Over the 10+ years since this was initially written, many processor and language memory model specifications and issues have become clearer and
better understood. And many have not. While this guide is maintained to remain accurate, it is incomplete about some of these evolving details. For more
extensive coverage, see especially the work of Peter Sewell and the Cambridge Relaxed Memory Concurrency Group

This is an unofficial guide to implementing the new Java Memory Model (JMM) specified by JSR-133 . It provides at most brief backgrounds about why various rules exist,
instead concentrating on their consequences for compilers and JVMs with respect to instruction reorderings, multiprocessor barrier instructions, and atomic operations. It
includes a set of recommended recipes for complying to JSR-133. This guide is "unofficial" because it includes interpretations of particular processor properties and
specifications. We cannot guarantee that the intepretations are correct. Also, processor specifications and implementations may change over time.

Reorderings

For a compiler writer, the JMM mainly consists of rules disallowing reorderings of certain instructions that access fields (where "fields" include array elements) as well as
monitors (locks).

Volatiles and Monitors

The main JMM rules for volatiles and monitors can be viewed as a matrix with cells indicating that you cannot reorder instructions associated with particular sequences of
bytecodes. This table is not itself the JMM specification; it is just a useful way of viewing its main consequences for compilers and runtime systems.

Can Reorder

2nd operation

1st operation

Normal Load
Normal Store

Volatile Load
MonitorEnter

Volatile Store
MonitorExit

Normal Load
Normal Store

No

Valatile T.oad I

http://g.oswego.edu/dl/jmm/cookbook.html

The JSR-133 Cookbook for
Compiler Writers

e A collection of informal arguments about what is possible
under the JMM (Java) — Roach-Motel Semantics for
Volatiles and Locks

Can Reorder 2nd operation

Ist i Normal Load [Volatile Load |Volatile Store
St OPETAtion INormal Store[MonitorEnter [MonitorExit

Normal Load No

Normal Store

Volatile Load

MonitorEnter No No No

Volatile store

MonitorExit No No

The JSR-133 Cookbook for
Compiler Writers

e A collection of informal “recipes” indicating how disallow
unwanted reorderings by adding generic barrier
instructions

Requ.l red 2nd operation
barriers
| Normal Normal Volatile Volatile
Ist operation Ioad Store Load Store
MonitorEnter||MonitorExit

Normal Load LoadStore
Normal Store StoreStore
Vola.tlle Load LoadLoad ||LoadStore ||LoadlLoad LoadStore
MonitorEnter
Volatile Store
MonitorExit StorelLoad StoreStore

The JSR-133 Cookbook for

Compiler Writers

e A final table indicating how to implement each of the
generic barriers in the different architectures

Idew

Data Atomic |Other |‘Atomics
Processor |LoadStore |[LoadLLoad |StoreStore |StorelL.oad |dependency . . provide
Conditional |Atomics .
orders loads? barrier?
membar CAS: swap,
sparc-TSO |no-op no-op no-op (StoreLoad) yes casa 1dstub full
mfgn ce ot CAS: xchg,
x86 no-op no-op no-op cpuid or yes . full
. cmpxchg |locked insn
locked insn
combine
. with CAS: xchg, target +
s st.rel or i S5l = yes cmpxchg |fetchadd |acq/rel
Id.acq
arm dmb dmb dmb-st dmb indirection |[LL/SC: target
(see below) |(see below) only Idrex/strex only
c Iwsync Iwsync lwsvne hwsvne indirection |[LL/SC: target
PP (see below) |(see below) y y only ldarx/stwex only
LL/SC: target
alpha mb mb wmb mb no 1dx_Ustx_c only
build
pa-risc no-op no-op no-op no-op yes from Idew (NA)

The JSR-133 Cookbook for
Compiler Writers

e A final table indicating how to implement each of the

generic barriers in the different architectures

Data Atomic |Other |‘Atomics
Processor |LoadStore |[LoadLLoad |StoreStore |StorelL.oad |dependency . . provide
Conditional |Atomics .
orders loads? barrier?
membar CAS: swap,
sparc-TSO |no-op no-op no-op (StoreLoad) yes casa 1dstub full
I, CAS: xchg,
x86 no-op no-op no-op cpuid or yes . full
. cmpxchg |locked insn
locked insn
combine
. with CAS: xchg, target +
s st.rel or i S5l = yes cmpxchg |fetchadd |acq/rel
Id.acq
arm dmb dmb dmb-st dmb indirection |[LL/SC: target
(see below) |(see below) only Idrex/strex only
{ c Iwsync Iwsync lwsvne hwsvne indirection |[LL/SC: target
PP (see below) |(see below) y y only ldarx/stwex only
LL/SC: target
alpha mb mb wmb mb no 1dx_Ustx_c only
build
pa-risc no-op no-op no-op no-op yes from ldcw (NA)
ldew

A Semantical Framework
to Verify the Cookbook

Java Memory Model

TC
Cookbook High (volatiles and locks)

g

Cookbook Low (fences and cas)

x36 \/ ’x_/ Power

A Semantical Framework
to Verify the Cookbook

Java Memory Model

TC
Cookbook High (volatiles and locks)

g

Cookbook Low (fences and cas)

x36 \/ ’x_/ Power

A Semantical Framework
to Verify the Cookbook

Java Memory Model

TC
Cookbook High (volatiles and locks)

g

Cookbook Low (fences and cas)

x36 \/ ’x_/ Power

A Semantical Framework
to Verify the Cookbook

Java Memory Model

TC
Cookbook High (volatiles and locks)

ge

Cookbook Low (fences and cas)

x36 \/ ’x_/ Power

A Semantical Framework
to Verify the Cookbook

Java Memory Model

TC
Cookbook High (volatiles and locks)

ge

Cookbook Low (fences and cas)

x36 \/ ’x_/ Power

® \/\Ve propagate the semantics of Power for Normal Variables

® \/\le Give SC semantics to Volatiles and Locks

Use the Pipeline Framework
Threads

code;
code;
code

Memory Temporary Store

O O 0
O O O
o O O
®© 00

X |y | z
ff | tt ﬁ‘(

0o 0
o O
o O
42 &

* Encode the different architectures: TSO, PPC
* Encode Cookbook Low and Cookbook High
* Prove simulation at every step

* Prove that Cookbook High is a correct implementation of JMM

Power Barriers

* sync:. Enforces ordering between all operations

e |n our pipeline no action can bypass a sync action of
the same thread

e |t requires global consensus

* /wsync: It enforces ordering between all operations
except: wr lwsync rd

e |t does not enforce consensus

ry = X rs3 = y;
z=1] || |y:=1] | lwsync; | lwsync;
Ty =y | Ty =1

r1=r3=0& ro =ry =1 is allowed

The JSR-133 Cookbook for
Compiler Writers

e A final table indicating how to implement each of the
generic barriers in the different architectures

e Atomic Other S
Processor | LoadStore |LoadLoad |StoreStore|StoreLoad |dependency ces . provide
Conditional |Atomics .
orders loads? barrier?
membar CAS: swap,
sparc-TSO |no-op no-op no-op (StoreLoad) yes casa 1dstub full
I CAS: xchg,
x86 no-op no-op no-op cpuid or yes . full
. cmpxchg |locked insn
locked insn
combine
. with CAS: xchg, target +
s st.rel or Oy e e yes cmpxchg |fetchadd |acq/rel
Id.acq
arm dmb dmb dmb-st dmb indirection |[LL/SC: target
(see below) |(see below) only ldrex/strex only
c Iwsync Iwsync lwsvic hwsvnc indirection |LL/SC: target
PP (see below) |(see below) y y only Idarx/stwcx only
LL/SC: target
alpha mb mb wmb mb no 1dx_Ustx_c only
build
pa-risc no-op no-op no-op no-op yes from Idew (NA)
ldew

IRIW with Volatiles

vo = v1 = 0 and vg, v are volatile

Lvo=1] | [u=1] [Tl::vo;] H [TB:ZU“

r2 1= V1; ra = Vo;

ri=r3=0& ro =ry =1 is allowed

IRIW with Volatiles

vo = v1 = 0 and vg, v are volatile
1. 4 "1 — Vo, ry .— U1,
[vo := 1;] | [=1] | [Ty 1= U1;] | [Ty 1= Uoz

ri=r3=0& ro =ry =1 is allowed

DC(LoadLoad)
PC(LoadStore) = 1lwsync
PC(StoreStore) = lwsync

PC(StoreLoad) Sync

sync

F1x

UUUU

Surprises

e |RIW with volatiles is reproducible on a 32-core Power7/
machine

e \With two different VM’s

e We found bugs in the implementation of volatiles of the
Fiji ahead of time compiler

e Many implementers of JVM’s follow the Cookbook

(Guarantees

Java Memory Model

TC
Cookbook High (volatiles and locks)

ge

Cookbook Low (fences and cas)

X80 \/ _/ Power

End of day 2

