
Distributed
Consistency

Shared database

q.push(e)
c.inc()

c.inc()

q.val()
c.val()

q: Queue
c: Counter
{ |q| ≤ c }

Geo-replicated

5 ms – ∞

q.push(e)
c.inc()

c.inc()

q.val()
c.val()

q: Queue
c: Counter
{ |q| ≤ c } q: Queue

c: Counter
{ |q| ≤ c }

q: Queue
c: Counter
{ |q| ≤ c }

Geo-replicated

5 ms – ∞

q.push(e)
c.inc()

c.inc()

q.val()
c.val() q3 ∈ Queue?

q1 = q2 ?
|q1| ≤ c4 ?

q: Queue
c: Counter
{ |q| ≤ c } q: Queue

c: Counter
{ |q| ≤ c }

q: Queue
c: Counter
{ |q| ≤ c }

Consistency

• More replicas:

• Better read availability, responsiveness, performance

• More work to keep replicas in sync

• Consistent = behavior similar to sequential:

• Satisfies specs: does q behave like a queue?

• Replicas agree: is q identical everywhere?

• Objects agree: is |q| ≤ c?

• Same flow of time? q1.push() before q2.push()

CAP Theorem

CAP Theorem

CAP Theorem

Consistency and Availability under Network Partitions?

CAP Theorem

Consistency and Availability under Network Partitions?

Impossible:

• Consistency: the system has to stop until the network is restored

• Availability: we have to let different replicas diverge (for a while)

[Consistency in 3D]

Strict Serialisability

6

T1

T1

R1

R2
R3

client
T1

T2

[Consistency in 3D]

Strict Serialisability

6

T1

T1

R1

R2
R3

client
T1

T2

T2

[Consistency in 3D]

Strict Serialisability

6

T1

T1

R1

R2
R3

client
T1

T3

T3

T2

T2

[Consistency in 3D]

Eventual consistency

7

Op1

R1

R2
R3

Op2

Replicated operation

origin
replica

client

replica

replica
v? v!

u: state ⤻ (retval, (state ⤻ state))
Prepare (@origin) u?; deliver u!
Read one, write all (ROWA)
Deferred-update replication (DUR)

Replicated operation

origin
replica u?

client u

replica

replica
v? v!

u: state ⤻ (retval, (state ⤻ state))
Prepare (@origin) u?; deliver u!
Read one, write all (ROWA)
Deferred-update replication (DUR)

Replicated operation

origin
replica

u!

u?

client u

replica

replica
v? v!

u: state ⤻ (retval, (state ⤻ state))
Prepare (@origin) u?; deliver u!
Read one, write all (ROWA)
Deferred-update replication (DUR)

Replicated operation

origin
replica

u!

u!

u?

client u

replica

u!
replica

v? v!

u: state ⤻ (retval, (state ⤻ state))
Prepare (@origin) u?; deliver u!
Read one, write all (ROWA)
Deferred-update replication (DUR)

• We will adopt a client view of consistency

• Just like with Memory Models

• Different protocols implement different consistency criteria

• Stronger protocols are more expensive in performance 
but limit the non-determinism for clients

• We will use a uniform semantics for clients that over-
approximates the non-determinism  
 [Burckhardt,Gotsman,Yang’15]

In this Class

• We will adopt a client view of consistency

• Just like with Memory Models

• Different protocols implement different consistency criteria

• Stronger protocols are more expensive in performance 
but limit the non-determinism for clients

• We will use a uniform semantics for clients that over-
approximates the non-determinism  
 [Burckhardt,Gotsman,Yang’15]

In this Class

Client View of the system

• We will explain in an axiomatic way (à la CAT) the possible
results of each operation

• As in CAT, we will posit the existence of certain orders
that explain why a behavior is possible

• We will describe Distributed Data Structure specifications
by exploiting these orders

• Implementations of distributed data structures can be
verified agains these specifications

• We will not talk about verification

Client Operations
• Client submit operations which can in turn be

transactions

• A client is represented as a Session

• A single session could issue multiple operations and
transactions

• We will consider a session to be the equivalent of the
program order in relaxed memory models

Axiomatic Consistency

Histories

H = (E, op, rval, rb, ss)

Axiomatic Consistency

Histories

H = (E, op, rval, rb, ss)

A set of events

Axiomatic Consistency

Histories

H = (E, op, rval, rb, ss)

A set of events

Operation function: 
 op(e) is the operation  
 of event e

Axiomatic Consistency

Histories

H = (E, op, rval, rb, ss)

A set of events

Operation function: 
 op(e) is the operation  
 of event e

Return value function: 
 rval(e) is the value returned 
 by the operation in e

Axiomatic Consistency

Histories

H = (E, op, rval, rb, ss)

A set of events

Operation function: 
 op(e) is the operation  
 of event e

Return value function: 
 rval(e) is the value returned 
 by the operation in e

Returns Before  
partial order

Axiomatic Consistency

Histories

H = (E, op, rval, rb, ss)

A set of events

Operation function: 
 op(e) is the operation  
 of event e

Return value function: 
 rval(e) is the value returned 
 by the operation in e

Returns Before  
partial order

Same Session 
Equivalence

Axiomatic Consistency

Histories

H = (E, op, rval, rb, ss)

A set of events

Operation function: 
 op(e) is the operation  
 of event e

Return value function: 
 rval(e) is the value returned 
 by the operation in e

Returns Before  
partial order

Same Session 
Equivalence

so = ss � rbSession order

Axiomatic Consistency

Abstract Executions

A = (E, op, rval, rb, ss, vis, ar)

︷
History

Axiomatic Consistency

Abstract Executions

A = (E, op, rval, rb, ss, vis, ar)

︷
History

Visibility partial order: 
 represents that  
 the effects of e are available 
 when executing e’

e
vis�� e�

Axiomatic Consistency

Abstract Executions

A = (E, op, rval, rb, ss, vis, ar)

︷
History

Visibility partial order: 
 represents that  
 the effects of e are available 
 when executing e’

e
vis�� e�

Arbitration TOTAL order: 
 represents that  
 the globally the effects of e 
 are assume to “happen prior” 
 to the effects of e’

e
ar�� e�

Session Guarantees (Anomalies)

Session Guarantees (Anomalies)

rb

Session Guarantees (Anomalies)

w1!

w1!

w1
Read My Writes

r2

Client / RMW: r2 must include w1

rb

Session Guarantees (Anomalies)

w1!

w1!

w1
Read My Writes

r2

Client / RMW: r2 must include w1

rb

rb
vis

Session Guarantees (Anomalies)

w1!

w1!

Monotonic reads
r2 r3

Client / No rollback: r3 must include w1

w1!

w1!

w1
Read My Writes

r2

Client / RMW: r2 must include w1

rb

rb
vis

Session Guarantees (Anomalies)

rb

vis

vis

Session Guarantees (Anomalies)

w1!

w1

w1!

Monotonic writes

w2!

w2

w2!

Global / No rollback: r3 must include w1

rb

vis

vis

Session Guarantees (Anomalies)

w1!

w1

w1!

Monotonic writes

w2!

w2

w2!

Global / No rollback: r3 must include w1

rb

vis

vis

rb

vis

rb
vis

vis

Session Guarantees (Anomalies)

w1!

w1

w1!

Monotonic writes

w2!

w2

w2!

Global / No rollback: r3 must include w1

Global / WR dependence: w3 must follow w1

Writes Follow Reads

w1!

w1!

w3!

w3

w3!

r2

rb

vis

vis

rb

vis

rb
vis

vis

Session Guarantees (Anomalies)

w1!

w1

w1!

Monotonic writes

w2!

w2

w2!

Global / No rollback: r3 must include w1

Global / WR dependence: w3 must follow w1

Writes Follow Reads

w1!

w1!

w3!

w3

w3!

r2

rb

vis

vis

rb

vis

rb
vis

vis

We called this WRC before

Causality

rb rb
vis

vis

Specifying Objects

S = (�, �0, �)Sequential type

Set of object states

Transition Relation
� : Operations � � � (Values � �)

Initial Object state
�0 � �

A register Reg = (N, 0, �r)

�r(n, rd) = (n, n)
�r(n, wr(m)) = (�, m)

From Burckhardt’s

What is the state in a DS?

• Much like in memory models, there is no unique state σ at
every point

• Instead, we have to define the data type based on what is
visible at the replica where the operation happens

• We need to change our sequential specifications

Replicated DT Specifications
Instead of a state we use a context for operations

C = (E, op, vis, ar)

We specify an object based on contexts

F : Operations � C � Values

C Type of all contexts

Counter

What about conflicts

vis vis

rd(x, ?)

• This non-determinism is problematic

What about conflicts

vis vis

rd(x, ?)

• This non-determinism is problematic

• Could lead to divergent replicas

What about conflicts

vis vis

rd(x, ?)

• This non-determinism is problematic

• Could lead to divergent replicas

• Yet, synchronization at this scale is too expensive

What about conflicts

vis vis

rd(x, ?)

• This non-determinism is problematic

• Could lead to divergent replicas

• Yet, synchronization at this scale is too expensive

• Conflict-Free Replicated Data Types to the rescue

What about conflicts

vis vis

rd(x, ?)

• This non-determinism is problematic

• Could lead to divergent replicas

• Yet, synchronization at this scale is too expensive

• Conflict-Free Replicated Data Types to the rescue

What about conflicts

vis vis

rd(x, ?)

• This non-determinism is problematic

• Could lead to divergent replicas

• Yet, synchronization at this scale is too expensive

• Conflict-Free Replicated Data Types to the rescue

• aka. Convergent RDTs, Commutative RDTs

• They enforce a winning strategy between conglicts

What about conflicts

vis vis

• This non-determinism is problematic

• Could lead to divergent replicas

• Yet, synchronization at this scale is too expensive

• Conflict-Free Replicated Data Types to the rescue

• aka. Convergent RDTs, Commutative RDTs

• They enforce a winning strategy between conglicts

ar

What about conflicts

vis vis

ar

Last Writer Wins Register

RDTs
Multi-Value Register

RDTs
Multi-Value Register

Add-wins set

Consistency Axioms

w1!

w1!

w1
Read My Writes

r2

Client / RMW: r2 must include w1

so ⊆ vis

Consistency Axioms

w1!

w1!

w1
Read My Writes

r2

Client / RMW: r2 must include w1

so ⊆ vis

vis; so ⊆ vis
w1!

w1!

Monotonic reads
r2 r3

Client / No rollback: r3 must include w1

Consistency Axioms

w1!

w1

w1!

Monotonic writes

w2!

w2

w2!

Global / No rollback: r3 must include w1

ss ∩ (wr × wr) ⊆ ar

Consistency Axioms

w1!

w1

w1!

Monotonic writes

w2!

w2

w2!

Global / No rollback: r3 must include w1

ss ∩ (wr × wr) ⊆ ar

Global / WR dependence: w3 must follow w1

Writes Follow Reads

w1!

w1!

w3!

w3

w3!

r2 Causal Visibility

hb ⊆ vis

hb = (vis ∪ so)+

Consistency Models

vis = ar Principles of Eventual Consistency

Sebastian Burckhardt’14

Consistency Models

vis = ar

F � � F

Principles of Eventual Consistency

Sebastian Burckhardt’14

Consistency Models

vis = ar

F � � F
F � � F

Principles of Eventual Consistency

Sebastian Burckhardt’14

Consistency Models

vis = ar

F � � F
F � � F

F � F

Principles of Eventual Consistency

Sebastian Burckhardt’14

Consistency Models

vis = ar

F � � F
F � � F

F � F

F � F

Principles of Eventual Consistency

Sebastian Burckhardt’14

High
performance

Low
performance

Hard to
program

Predictable

Strong vs. weak?

Replicated Data Bases

Replicated Data Bases

Replicated Data Bases
• Operations are transactions

• Each transaction issues a number of reads and writes

• Writes are ordered by program order (po)

• Visibility and Arbitration relate “transactions” instead of
individual reads and writes

• We consider only the case of a key-value store data base

Replicated Data Bases

Replicated Data Bases

Transaction T = (E, po)

Replicated Data Bases

Transaction T = (E, po)

H = {T0, T1, ..., Tn}History

Replicated Data Bases

Transaction T = (E, po)

H = {T0, T1, ..., Tn}History

A = (H, vis, ar)Abstract Execution

Replicated Data Bases

Transaction T = (E, po)

H = {T0, T1, ..., Tn}History

A = (H, vis, ar)Abstract Execution

These are relation on transactions now
T1

vis�� T2

Replicated Data Bases
Consistency Axioms

Replicated Data Bases
Consistency Axioms

Read Consistency

• Every read in transaction T sees a visible write to T 
that is the maximum visible write according to arbitration

rd(x, v) � E(T) � �T �, T � � vis�1
H (T) �

wr(x, 1) � E(T �) �
maxar(vis

�1
H (T) � WritesH(x)) = T �

Replicated Data Bases
Consistency Axioms

Read Consistency

• Every read in transaction T sees a visible write to T 
that is the maximum visible write according to arbitration

rd(x, v) � E(T) � �T �, T � � vis�1
H (T) �

wr(x, 1) � E(T �) �
maxar(vis

�1
H (T) � WritesH(x)) = T �

Transitive Visibility vis+ ⊆ vis

Replicated Data Bases
Consistency Axioms

Read Consistency

• Every read in transaction T sees a visible write to T 
that is the maximum visible write according to arbitration

rd(x, v) � E(T) � �T �, T � � vis�1
H (T) �

wr(x, 1) � E(T �) �
maxar(vis

�1
H (T) � WritesH(x)) = T �

Transitive Visibility vis+ ⊆ vis

Prefix Consistent ar; vis ⊆ vis

Replicated Data Bases
Consistency Axioms

Read Consistency

• Every read in transaction T sees a visible write to T 
that is the maximum visible write according to arbitration

rd(x, v) � E(T) � �T �, T � � vis�1
H (T) �

wr(x, 1) � E(T �) �
maxar(vis

�1
H (T) � WritesH(x)) = T �

Transitive Visibility vis+ ⊆ vis

Prefix Consistent ar; vis ⊆ vis

Total Visibility ∀T1, T2. T1
vis−→ T2 ∨ T2

vis−→ T1

Replicated Data Bases
Consistency Axioms

Read Consistency

• Every read in transaction T sees a visible write to T 
that is the maximum visible write according to arbitration

rd(x, v) � E(T) � �T �, T � � vis�1
H (T) �

wr(x, 1) � E(T �) �
maxar(vis

�1
H (T) � WritesH(x)) = T �

Transitive Visibility vis+ ⊆ vis

Prefix Consistent ar; vis ⊆ vis

No Conflict {T1, T2} ⊆ WritesH(x) ⇒ T1
vis−→ T2 ∨ T2

vis−→ T1

Total Visibility ∀T1, T2. T1
vis−→ T2 ∨ T2

vis−→ T1

Replicated Data Bases
Consistency Models

Replicated Data Bases
Consistency Models

Replicated Data Bases

vis
popo

Anomalies

Fractured Reads

vis

po po

x = x + 50 x = x + 25

vis

Lost Update

ar

Replicated Data Bases
Anomalies

Long Fork (IRIW)

po po

visvis

Tiny Demo

A Forest of Models

High
performance

Low
performance

Strong vs. weak?

Hard to
program

Predictable Strict Serialisability

Eventual Consistency

Strict Serializability

High
performance

Low
performance

Strong vs. weak?

Hard to
program

Predictable Strict Serialisability

Eventual Consistency

Snapshot Isolation

Strict Serializability

High
performance

Low
performance

Strong vs. weak?

Hard to
program

Predictable Strict Serialisability

Eventual Consistency

Snapshot Isolation

Strict Serializability

PRAM

High
performance

Low
performance

Strong vs. weak?

Hard to
program

Predictable Strict Serialisability

Eventual Consistency

Snapshot
Isolation

Strict Serializability

PRAM

Serializability

PL-1

PL-2

Cursor Stability (PL-CS) Monotonic View (PL-2L)

Monotonic Snapshot
Reads (PL-MSR)

Consistent View (PL-2+)

Forward Consistent View (PL-FCV)

Snapshot Isolation (PL-SI) Update Serializability (PL-3U)

Full Serializability (PL-3)

Strict Serializability (PL-SS)

Repeatable Read (PL-2.99)

Figure 4-1: A partial order to relate various isolation levels.

previous chapter. Various levels can be ranked according to their “strength”: one level is stronger
than another if it allows fewer histories. In the figure, if level Y is stronger than level X, there is a
directed path from X to Y; if there is no path between two levels, they are unrelated to each other.

For all intermediate levels, we have also developed corresponding guarantees that can be
provided to transactions as they execute. As in the previous chapter, the levels defined for running
transactions are similar to the corresponding levels for committed transactions.

The rest of this chapter is organized as follows. In Section 4.1, we present our specifications for
PL-2+. In Section 4.2, we present definitions for PL-2L. In Section 4.3, we describe specifications
of Snapshot Isolation. We discuss a new isolation level called Forward Consistent View in 4.4 that
has been inspired by Snapshot Isolation. We describe a level that captures the essence of Oracle’s
Read Consistency in Section 4.5 and compare it with level PL-2L. Cursor Stability is presented in
Section 4.6. Section 4.7 describes update serializability, a consistency guarantee that is useful for
read-only transactions, and compares it with PL-2+ and serializability. Finally, in Section 4.8, we
extend our definitions for intermediate levels to provide guarantees for executing transactions.

4.1 Isolation Level PL-2+

Isolation level PL-2+ is motivated by the fact that certain applications only need to observe a
consistent state of the database and serializability may not be required, e.g., a read-only transaction
in an inventory application may simply want to observe a consistent state of the current orders
and in-stock items. It is the weakest level that ensures that integrity constraints are not observed
as violated as long as update transactions modify the database consistently and are serializable.

67

Strong vs. weak?
Linearizability

Sequential

Regular

Safe

Eventual

Causal+ Real-time
causal

Causal

Read-your-writes
(RYW)

Monotonic Reads
(MR)

Writes-follow-reads
(WFR)

Monotonic Writes
(MW)

PRAM
(FIFO)

Fork

Fork*

Fork-join
causal

Bounded
fork-join

causal

Fork
sequential

Eventual
linearizability

Timed serial
& ∆,Γ-atomicity

Processor

Fork-based
models

Slow
memory

Per-object
models

Per-record
timeline

&
Coherence

Timed
causal

Bounded
staleness

&
Delta

Weak
fork-lin. Strong

eventual

Quiescent

Weak

k-regular

k-safe

PBS
k-staleness

k-atomicity

Release

Weak ordering

Location

Scope

Lazy release

Entry

Synchronized
models

Causal
models

Staleness-based
models

Per-object
causal

Per-key
sequential

Prefix
linearizable

Prefix
sequential

PBS
t-visibility

Hybrid
Tunable
Rationing
RedBlue
Conit
Vector-field
PBS <k,t>-staleness

Composite and tunable
models

Session models

Eventual
serializability

Fi
gu

re
1:

H
ie

ra
rc

hy
of

no
n-

tra
ns

ac
tio

na
lc

on
si

st
en

cy
m

od
el

s.
A

di
re

ct
ed

ed
ge

fr
om

co
ns

is
te

nc
y

se
m

an
tic

s
A

to
co

ns
is

te
nc

y
se

m
an

tic
s

B
m

ea
ns

th
at

an
y

ex
ec

ut
io

n
th

at
sa

tis
fie

s
B

al
so

sa
tis

fie
s

A
.U

nd
er

lin
ed

m
od

el
s

ex
pl

ic
itl

y
re

as
on

ab
ou

tt
im

in
g

gu
ar

an
te

es
.

7

Transactional
Adya 1999

Non-transactional
Viotti & Vukolić 2016

Consistency & Invariants

Consistency & Invariants

Consistency & Invariants

• Consistency in 3D

• Characterization of consistency models according to
the guarantees they provide

• Dimensions of Guarantees

• Single object

• Propagation of effects on different objects

• Composition of objects

Three classes…

…of invariant … of protocol

Gen1 Constrain value of an
object

Total order of
operations

PO Ordering between
operations Visibility

EQ State equivalence
between objects Composition

Consistency in 3D

Consistency in 3D

Total Order Axis (Gen1)
How Operations on Individual

Objects are Updated/Observed

Consistency in 3D

Total Order Axis (Gen1)
How Operations on Individual

Objects are Updated/Observed

{ 0 � balance � MAX INT }

Consistency in 3D

Total Order Axis (Gen1)
How Operations on Individual

Objects are Updated/Observed
Partial Order Axis (PO)

How Operations on Different Objects
are Updated/Observed

{ 0 � balance � MAX INT }

Consistency in 3D

Total Order Axis (Gen1)
How Operations on Individual

Objects are Updated/Observed
Partial Order Axis (PO)

How Operations on Different Objects
are Updated/Observed

{ 0 � balance � MAX INT }

{ x � y }

Consistency in 3D

Total Order Axis (Gen1)
How Operations on Individual

Objects are Updated/Observed
Partial Order Axis (PO)

How Operations on Different Objects
are Updated/Observed

Equality Axis (EQ)
How Composed Operations on Different

Objects are Updated/Observed

{ 0 � balance � MAX INT }

{ x � y }

Consistency in 3D

Total Order Axis (Gen1)
How Operations on Individual

Objects are Updated/Observed
Partial Order Axis (PO)

How Operations on Different Objects
are Updated/Observed

Equality Axis (EQ)
How Composed Operations on Different

Objects are Updated/Observed

{ 0 � balance � MAX INT }

{ x � y }

{ x � friendsOf(y) �� y � friendsOf(x) }

Gen1 / Total Order
Three dimensions

EQ / Composition

PO / Visibility

Total causal order

0 = Rollbacks

Transitive Visibility
Causal Visibility

External

M
onotonic client

All
-o

r-n
ot

hin
g

eff
ec

ts

+
sn

ap
sh

ot 0
=

Ind
ep

en
de

nt

op
er

ati
on

s

Gapless TO effectors

0 = Concurrent

Total order,
capricious

TO generators + TO
effectors

TO generators =
effectors

CAP

Total Order Axis
• Assumption: Single Object

• Total Order of Effectors and Generators (TOE=TOG)

v?

v!

v!

u!

u!u?

u!

v!

Total Order Axis
• Assumption: Single Object

• Total Order of Effectors and Generators (TOE=TOG)

v?

v!

v!

u!

u!u?

u!

v!

u!u?

v? v!

Total Order Axis
• Assumption: Single Object

• Total Order of Effectors and Generators (TOE1)

v?

v!

v!

u!

u!u?

u!

v!

Total Order Axis
• Assumption: Single Object

• Total Order of Effectors and Generators (TOE1)

v?

v!

v!

u!

u!u?

u!

v!

u!
v!

Total Order Axis
• Assumption: Single Object

• Total Order of Effectors and Generators (TOE1)

Total Order Axis
• Assumption: Single Object

• Total Order of Effectors and Generators (TOE1)

• Gapless TOE1: all replicas apply all effectors in the same
order

Total Order Axis
• Assumption: Single Object

• Total Order of Effectors and Generators (TOE1)

• Gapless TOE1: all replicas apply all effectors in the same
order

• Capricious TOE1: replicas apply a subset of the effectors
in an order consistent with a global total order 
 
 
 

Total Order Axis
• Assumption: Single Object

• Total Order of Effectors and Generators (TOE1)

• Gapless TOE1: all replicas apply all effectors in the same
order

• Capricious TOE1: replicas apply a subset of the effectors
in an order consistent with a global total order 
 
 
  }

Total Order Axis
• Assumption: Single Object

• Total Order of Effectors and Generators (TOE1)

• Gapless TOE1: all replicas apply all effectors in the same
order

• Capricious TOE1: replicas apply a subset of the effectors
in an order consistent with a global total order 
 
 
 

• Concurrent Updates (No Global Ordering)

}

(TO)

Concurrent

Negotiated total
order updates

Total order,
capricious

Total order updates
+ queries

Partial Order Axis
• Assumption: Multiple (2) Objects

• Client Guarantees:

• Read Own Writes

• Monotonicity (Reads/Writes)

• Preservation of (anti)Dependencies

• Visibility Properties:

• Transitive Visibility

• Causal Visibility

(TO)

(PO)Concurrent

Negotiated total
order updates

Total order,
capricious

Total order updates
+ queries

M
onotonic Reads

+ Read M
y W

rites

Total causal order

Rollbacks

+ W
rite-Read

dependence

+ Session O
rder

External

Partial Order Axis
(Invariants)

• Invariants Relating Objects
• x ≤ y
• P(x) ⟹ Q(y)

• Programming:
• Demarcation Protocol
• Escrow

• Assumptions:
• (i) Multiple Object,
• (ii) State Based,
• (iii) O is a valid object for I

Equality Order Axis

• Assumption: Multiple (n) Objects

• Transactions

Equality Order Axis

• Assumption: Multiple (n) Objects

• Transactions

• Write-atomicity: All-or-nothing

Equality Order Axis

• Assumption: Multiple (n) Objects

• Transactions

• Write-atomicity: All-or-nothing

• Read-atomicity: Snapshot

Equality Order Axis

• Assumption: Multiple (n) Objects

• Transactions

• Write-atomicity: All-or-nothing

• Read-atomicity: Snapshot

• Consistent Snapshot

(TO)

(PO)

(EQ)

Concurrent

Negotiated total
order updates

Total order,
capricious

Total order updates
+ queries

M
onotonic Reads

+ Read M
y W

rites

Total causal order

Rollbacks

+ W
rite-Read

dependence

+ Session O
rder

External

In
di

vis
ib

le
 e

ffe
ct

s

+
sn

ap
sh

ot

+
co

ns
ist

en
t

sn
ap

sh
ot

Si
ng

le
 o

pe
ra

tio
n

Gen1 / Total Order
Three dimensions

EQ / Composition

PO / Visibility

Total causal order

0 = Rollbacks

Transitive Visibility
Causal Visibility

External

M
onotonic client

All
-o

r-n
ot

hin
g

eff
ec

ts

+
sn

ap
sh

ot 0
=

Ind
ep

en
de

nt

op
er

ati
on

s

Gapless TO effectors

0 = Concurrent

Total order,
capricious

TO generators + TO
effectors

TO generators =
effectors

CAP

EC

Gen1 / Total Order
Three dimensions

EQ / Composition

PO / Visibility

Total causal order

0 = Rollbacks

Transitive Visibility
Causal Visibility

External

M
onotonic client

All
-o

r-n
ot

hin
g

eff
ec

ts

+
sn

ap
sh

ot 0
=

Ind
ep

en
de

nt

op
er

ati
on

s

Gapless TO effectors

0 = Concurrent

Total order,
capricious

TO generators + TO
effectors

TO generators =
effectors

CAP

Lin

Gen1 / Total Order
Three dimensions

EQ / Composition

PO / Visibility

Total causal order

0 = Rollbacks

Transitive Visibility
Causal Visibility

External

M
onotonic client

All
-o

r-n
ot

hin
g

eff
ec

ts

+
sn

ap
sh

ot 0
=

Ind
ep

en
de

nt

op
er

ati
on

s

Gapless TO effectors

0 = Concurrent

Total order,
capricious

TO generators + TO
effectors

TO generators =
effectors

CAP

SSER

Lin

Gen1 / Total Order
Three dimensions

EQ / Composition

PO / Visibility

Total causal order

0 = Rollbacks

Transitive Visibility
Causal Visibility

External

M
onotonic client

All
-o

r-n
ot

hin
g

eff
ec

ts

+
sn

ap
sh

ot 0
=

Ind
ep

en
de

nt

op
er

ati
on

s

Gapless TO effectors

0 = Concurrent

Total order,
capricious

TO generators + TO
effectors

TO generators =
effectors

CAP

SER SSER

Lin

Gen1 / Total Order
Three dimensions

EQ / Composition

PO / Visibility

Total causal order

0 = Rollbacks

Transitive Visibility
Causal Visibility

External

M
onotonic client

All
-o

r-n
ot

hin
g

eff
ec

ts

+
sn

ap
sh

ot 0
=

Ind
ep

en
de

nt

op
er

ati
on

s

Gapless TO effectors

0 = Concurrent

Total order,
capricious

TO generators + TO
effectors

TO generators =
effectors

CAP

SSERSER

PSI

Lin

Gen1 / Total Order
Three dimensions

EQ / Composition

PO / Visibility

Total causal order

0 = Rollbacks

Transitive Visibility
Causal Visibility

External

M
onotonic client

All
-o

r-n
ot

hin
g

eff
ec

ts

+
sn

ap
sh

ot 0
=

Ind
ep

en
de

nt

op
er

ati
on

s

Gapless TO effectors

0 = Concurrent

Total order,
capricious

TO generators + TO
effectors

TO generators =
effectors

CAP

SSERSER

PSI
SI

Lin

Gen1 / Total Order
Three dimensions

EQ / Composition

PO / Visibility

Total causal order

0 = Rollbacks

Transitive Visibility
Causal Visibility

External

M
onotonic client

All
-o

r-n
ot

hin
g

eff
ec

ts

+
sn

ap
sh

ot 0
=

Ind
ep

en
de

nt

op
er

ati
on

s

Gapless TO effectors

0 = Concurrent

Total order,
capricious

TO generators + TO
effectors

TO generators =
effectors

CAP

Txnl CC

End of day 4

