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g: Queue
c: Coum‘er > N
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Consistency

e More replicas:
e Better read availability, responsiveness, performance
e More work to keep replicas in sync

e Consistent = behavior similar to sequential:
e Satisfies specs: does g behave like a queue?
* Replicas agree: is g identical everywhere?
e Objects agree: is |g| < c?
e Same flow of time? g7.push() before g2.push()
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Consistency and Availability under Network Partitions?




CAP Theorem

@g{g / HL@ @ <:

W1

Consistency and Availability under Network Partitions?

Impossible:
e Consistency: the system has to stop until the network is restored
e Availability: we have to let different replicas diverge (for a while)
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Eventual consistency




Replicated operation

client

origin S
replica

replica

u: state < (retval, (state <« state))
Prepare (@origin) uz; deliver u;
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Replicated operation
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In this Class

 We will adopt a client view of consistency
e Just like with Memory Models
e Different protocols implement different consistency criteria

e Stronger protocols are more expensive in performance
but limit the non-determinism for clients

e We will use a uniform semantics for clients that over-

approximates the non-determinism
[Burckhardt,Gotsman,Yang’15]
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e Just like with Memory Models
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Client View of the system

 We will explain in an axiomatic way (a la CAT) the possible
results of each operation

e As in CAI, we will posit the existence of certain orders
that explain why a behavior is possible

 We will describe Distributed Data Structure specifications
by exploiting these orders

e Implementations of distributed data structures can be
verified agains these specifications

o \We will not talk about verification



Client Operations

Client submit operations which can in turn be
transactions

A client is represented as a Session

A single session could issue multiple operations and
transactions

We will consider a session to be the equivalent of the
program order in relaxed memory models
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A set of events
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Equivalence

/

H = (E,op,rval,rb,ss)
N

Operation function:
op(e) is the operation
of event e

l

Returns Before
partial order

Return value function:

rval(e) is the value returned
by the operation in e




Axiomatic Consistency
Histories

Same Session
Equivalence

A set of events

T /

H = (E,op,rval,rb,ss)
N

l

Operation function:
op(e) is the operation
of event e

Returns Before
partial order

Return value function:
rval(e) is the value returned
by the operation in e

Sessionorder so=ssNrb



Axiomatic Consistency
Abstract Executions

A = (FE,op,rval, rb,ss, vis, ar)
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History
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Axiomatic Consistency
Abstract Executions

Visibility partial order:
e —> o represents that
the effects of e are available

when executing €’

/

A = (FE,op,rval, rb,ss, vis, ar)

—— |

History Arbitration TOTAL order:

e = ¢/ represents that

the globally the effects of e
are assume to “happen prior”
to the effects of €’




Sessi
ion Guarantees (Anomalies

Session Guarantees for Weakly Consistent Replicated Data

Douglas B. Terry, AlanJ. Demers, Karin Petersen Mike J. Spreitzer, Marvin M. Theimer,
and Brent B. Welch

Computer Science Laboratory
Xerox Palo Alto Research Center
Palo Alto, California 04304

Abstract may want t0 read and update data copied onto their porta-
ble computers even if they did not have the foresight tO
lock it pefore either & yoluntary or an involuntary discon-

; 3 A pection occurred. Also, the resence of slow or €X ensive
Read Your Writes, Monotonic Reads, Writes Follow Reads, T S P ) e
communications links in the system can make maintalnng

and M on.otomc. Widtes: The intent is 10 P reserit mdividual closely synchronized copies of data difficult O uneconom-
applications with a view of the database that 1S consistent cal

with their own actions, €ven if they read and write from
various, potentially inconsistent servers. The guaraniees
can be layered on existing systems that employ @ read-any!
write-any replication scheme while retaining the principal
penefits of such a schemé namely high-availability, sim-
plicity, scalability, and support for disconnected opera-
tion. These session guarantees were developed in the
context of the Bayou project at Xerox PARC in which we
are designing and building @ replicated storage system to
support the needs of mobile computing users who may be
only intermittently connected.

Four per-session guarantees are proposed to aid users

and applications of weakly consistent replicated data:

Unfortunately, the lack of guarantees concerning the
ordering of read and write operations 10 weakly consistent
gystems can confuse users and applications, as reported in
experiences with Grapevine [21]. A uset may read some
yalue for 2 data item and then later read an older value.
Similarly, 2 user may ypdate SOmM® data item based on

ous problem with weakly consistent systems is that incon-
sistencies can appear even when only 2 single user or
application ;s making data modifications- For example, 2
mobile client of a distributed database system could issue
a write at one server, and later issue 2 read at 2 different
server. The client would see inconsistent results unless the
two servers had synchronized with one another sometime

petween the tWO operations-
In this paper, W€ introduce session guarantees that alle-
viate this problem of weakly consistent systems while
. T e principle advantages of read—anylwrite—
o S heas ko TOF the

1. Introduction

Techniques for managing weakly consistent rephcated
A .. amployed in a variety of systems
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Session Guarantees (Anomalies)

Read My Writes

r2

: : —
- wr(xl) E /'\ A
lrb : ‘\“‘ I".'
- rd(x,0) \QWL—+b
b e : Client / RMW: r2 must include w1
Monotonic reads
wr(x,1) g 5 =
\}‘ I'd(X,].) :A.W7/ x ',"* X
' lrb \.W7/ L
: —_—> O
rd(x,0)

Client / No rollback: r3 must include w1
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Session Guarantees (Anomalies)

Monotonic writes

wi w2
'| — |‘ D
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o —> 0

Global / No rollback: r3 must include w1t

Writes Follow Reads
r2 w3
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Session Guarantees (Anomalies)

Monotonic writes

My )

r\/ﬂ.W7/ \ '/‘
\ “,\"'/‘*.WZ/
\ vl \ W2

o —> 0

Global / No rollback: r3 must include w1t

Wr(X’l ; Writes Follow Reads
DL
. A E r2 w3
rd(x,1)§ . rd(x,2) C—)—> )
: vV ~ N X
lrb We called this WRC before § }\/, w3
TATSTT oW N

- — e

Global / WR dependence: w3 must follow w1



Causality




Specifying Objects

Set of object states

/

Sequential type S = (2 00,0)

S

Initial Object state Transition Relation
oo € 2. 0 : Operations x > — (Values x X))

Aregister Reg = (N, 0, d,)
or(n,rd) = (n,n)
5, (n, wr(m)) = (L, m)



From Burckhardt’s

State Oper. Returned | Updated | Condition
(and initial state) value state
Counter S,
n € Ny rd n same
(initially 0) inc ok n+1
Register Sieg
v € Values rd v same
(initially undef) | wr(v') | ok v’
Key-Value Store Sy
f : Values —gq, rd(k) undef same i fik)= 1
Values f(k) same if fik) £ L
(initially 0) wr(k,v) | ok flk — v]
Set ‘Sset
A € Pgn(Values) | rd A same
(initially @) add(v) | ok AU {v}
rem(v) | ok A\ {v}
Queue  Sgueue
w € Values™ enq(v) | ok w - v
(initially €) deq v w’ if w=v-w

ifw=c¢




What is the state in a DS?

e Much like in memory models, there is no unique state o at
every point

e |nstead, we have to define the data type based on what is
visible at the replica where the operation happens

 \We need to change our sequential specifications



Replicated DT Specifications

Instead of a state we use a context for operations

C' = (FE,op,Vvis, ar) C Type of all contexts

We specify an object based on contexts

F : Operations x C — Values

Counter
Fetr(rd, (E,0p,vis,ar)) = [{e' € E | op(e’) = inc}|
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What about conflicts

Last Writer Wins Register

" undef if writes(E) = 0

r d, E, Y, . ) — 1 .
feg(r ( Op, VIS ar)) <\ v it Op(maxar erteS(E)) — WI’(U)




RDTs

Multi-Value Register
Fmvr(rd, (E,0p, vis,ar)) =
{v|de € E:op(e) =wr(v) and Ve’ € writes(E) : e ot e'}



RDTs

Multi-Value Register
Fuvr(rd, (E,0p, vis,ar)) =
{v]|Jde € E :op(e) =wr(v) and Ve’ € writes(E) : e ) .8 e'}

Add-wins set

Je € E: op(e) = add(v) A —(3¢' € E:op(e') = rem(v) Ae 22 ¢)
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Consistency Axioms

Read My Writes

r2
I‘ l——)! D

1

/\‘ Wi so C vis

\ Wi <

o —> (O

Client / RMW: r2 must include w1

v

v

Monotonic reads

r2 r3
( D —>( P

o ey RN vis; so C vis

\ W1/ \< !

o —> O

Client / No rollback: r3 must include wt




Consistency Axioms

Monotonic writes

YTy o "2
P\ f\'//ﬂ. W 1 / ‘\“ "'f >
V\ ‘amx'/-,.wg_, \ ss M (wr x wr) C ar
U >
\ W, \A W2,

o —> 0

Global / No rollback: r3 must include wt



Consistency Axioms

Monotonic writes

=
el S >
N w2 > ss M (wr x wr) C ar
\ w U\ W2

o —> 0

Global / No rollback: r3 must include wt

Writes Follow Reads
r2 w3

. )—> ) Causal Visibility
N LUEG) > hb = (visUso)™
AN P — L
\/
\4 w1 \ W3l hb C VIS

>0

Global / WR dependence: w3 must follow w1



Consistency Models

d .
READMYWRITES = (so C vis)

def . .
MONOTONICREADS =  (vis;so) C vis

def . .
CONSISTENTPREFIX =  (ar;(vis N —ss)) C vis

def .
NOCIRCULARCAUSALITY =  acyclic(hb)
def

CAUSALVISIBILITY = (hb C vis)
def
CAUSALARBITRATION = (hb C ar)
def
CAUSALITY = CAUSALVISIBILITY A CAUSALARBITRATION

SINGLEORDER & Vis = ar L .
= Principles of Eventual Consistency

def
REALTIME = rbCar Sebastian Burckhardt’14
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Replicated Data Bases

A Framework for Transactiona\ Consistency
Models with Atomic Visibility

Andrea Cerone Giovanni Bernardi, and Alexey Gotsman

IMDEA Software Institute, Madrid, Spain

____ Abstract

Modern distributed gystems often rely on databases that achieve scalability by providing only
weak guarantees about the consistency of distributed transaction processing. The semnantics
of programs interacting with such & database depends on its consistency model, defining these
guarantees. Unfortunately, consistency models are usually stated ;nformally OF using disparate
formalisms, often tied to the database internals. To deal with this problem, W€ propose 2 frame-
work for specifying 2 variety of consistency models for transactions uniformly and declaratively-
Our speciﬁcations are given in the style of weak memory models, using gtructures of events and
relations on them. The speciﬁcations are particuiariy concise because they exploit the property
of atomic visibility guaranteed by many consistency models: either all or none of the updates
by & transaction can be visible t0 another one. This allows the speciﬁcations to abstract from
individual events inside transactions. We illustrate the use of our framework by specifying several
existing consistency models. To validate our speciﬁcations, we prove that they are equivalent
to alternative operationai ones, given a8 algorithms closer to actual impiernentations. Our work
provides 2 rigorous foundation for developing the metatheory of the novel form of concurrency

grising in weakly consistent large-scale databases.
1098 ACM Subject Classification c24 Distributed Systems
Keywords and phrases Replication, Consistency models, Transactions

Digital Object \dentifier 10.4230/LIPIcs.xxx.yyy.p

a\ \ntroduction

To achieve availability and scalabilitys modern distributed systems often rely on replicated
databases which maintain multiple replicas of shared data. The database clients can €X-
ecute transactions o1 the data at any of the replicas, which communicate changes t0 each
other using message passing. For example, iarge-scaie Internet gervices use data replicas in
geographicaily distinct locations, and appiications for mobile devices keep replicas locally as
well as in the cloud t0 support offline use. Ideally, we want the concurrent and distributed
s e sy O replicated database 10 be transparent, a8 formaiised by the classical notion
T 1 .4 hehaves a8 if it executed transactions gerially on & non-

B s eTAive coordination



Replicated Data Bases

Operations are transactions
Each transaction issues a number of reads and writes
Writes are ordered by program order (po)

Visibility and Arbitration relate “transactions” instead of
individual reads and writes

We consider only the case of a key-value store data base
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Replicated Data Bases

Transaction 1 = (F, po)
History H ={T1y,T1,...,T,}
Abstract Execution A = (H,vis, ar)

These are relation on transactions now
VIS

17 — 15
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Replicated Data Bases

Consistency Axioms

Read Consistency

* Every read in transaction T sees a visible write to T
that is the maximum visible write according to arbitration

rd(z,v) € E(T) = 31", T’ cvis; (T) A
wr(z,1) € E(T") A
max,. (visy (T) N Writesg (z)) = T

Transitive Visibility ~ vis™ C vis
Prefix Consistent  ar;vis C vis

Total Visibility ~ VI1,72. 11 — Ty vV Th — T}

VIS VIS

No Conflict {71%1,12} C Writesg(x) =11 — Ts V Th — T



Replicated Data Bases

Consistency Models

® Consistency model Axioms (Figure 2) Fractured | Causality Lost Long | Write
reads violation | update | fork | skew
RA | Read Atomic [6] INT, EXT X v v v v
CC Causal INT, EXT, TRANSVIS b 4 b 4 v v v
consistency [12, 19]
PSI Parallel snapshot INT, EXT, TRANSVIS, b 4 b 4 b 4 v v
isolation [21, 24] NOCONFLICT
PC Prefix consistency [13] | INT, EXT, PREFIX X X v X v
SI Snapshot isolation [8] | INT, ExT, PREFIX, X X X X v
NoCoNFLICT
SER | Serialisability [20] INT, EXT, TOTALVIS X X X X X




Replicated Data Bases

Consistency Models

® Consistency model Axioms (Figure 2) Fractured | Causality Lost Long | Write
reads violation | update | fork | skew
RA | Read Atomic [6] INT, EXT X v v v v RA
CC Causal INT, EXxT, TRANSVIS b 4 X v v v N
consistency [12, 19] »CC"
PSI Parallel hot INT, EXT, TRANSVIS, b 4 b 4 b 4 v v & &
. ara .e snapsho : PC PSI
isolation [21, 24] NOCONFLICT g
PC Prefix consistency [13] | INT, EXT, PREFIX X X v X v \ ST ’
SI Snapshot isolation [8] | INT, ExT, PREFIX, X X X X v N
NOCONFLICT SER
SER | Serialisability [20] INT, EXT, TOTALVIS X X X X X
CC = INT A EXT A SERTOTAL
PSlI = CC A CONFLICT
PC = CC A PREFIX
S| = PSI A PREFIX
SER = INT A EXT A TOTALHB



Replicated Data Bases

Anomalies

Fractured Reads Lost Update

) is w(2) L d(0) |, dG0)
po| ¢ i |po - .



Replicated Data Bases

Anomalies

Long Fork (IRIW)
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A Forest of Models
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Strong vs. weak”?
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|solation /

PRAI\/I

Hard to — ' Hign
—ventual Consistency




Vlonotonic Snapshot
Reads (PL-MSR)

Strong vs. weak”?

Strict Serializability (PL-SS)

Full Serializability (PL-3)

Snapshot Isolation (PL-SI)

Repeatable Read (PL-2.99)

Consistent View (PL-2+)

\

Cursor Stability (PL-CS) Monotonic View (PL-2L)

PL-2

|

PL-1

Transactional
Adya 1999

\
\

Weak
oA
fork-lin. N

Update Serializability (PL-3U)

sequential

Forward Consistent View (PL-FCV)

Writes-follow-reads

& AI'-atomicity

Vel

Sequential

Real-time ™

\

Timed
causal

Causal
models

Read-your-writes
(WFR) (RYW)

Session models

TN

causal \

Monotonic Writes ~ Monotonic Reads

,'Synchronized™,

models

Weak ordering

Release

Lazy release

Scope

*

Entry

. /
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Non-transactional
Viotti & Vukolic 2016
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Consistency in 3D"
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——— Abstract

Comparisons of different consistency models often try to place them in a linear strong-to-weak
order. However this view is clearly inadequate, since it is well known, for instance, that Snapshot
Isolation and Serialisability are incomparable. In the interest of a better understanding, we
propose a new classification, along three dimensions, related to: a total order of writes, a causal
order of reads, and transactional composition of multiple operations. A model may be stronger
than another on one dimension and weaker on another. We believe that this new classification
scheme is both scientifically sound and has good explicative value. The current paper presents
the three-dimensional design space intuitively.
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Consistency & Invariants

e Consistency in 3D

e Characterization of consistency models according to
the guarantees they provide

e Dimensions of Guarantees
e Single object
e Propagation of effects on different objects

e Composition of objects



Three classes...

...of Invariant

... of protocol

Gen

PO

EQ

1

Constrain value of an
object

Ordering between
operations

State equivalence
between objects

Total order of
operations

Visibility

Composition
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Consistency in 3D

Total Order Axis (Gerﬂ)//v

How Operations on Individual
Objects are Updated/Observed

{ 0 < balance <MAX_INT }

Partial Order Axis (PO)

How Operations on Different Objects
are Updated/Observed

{x<y}

Equality Axis (EQ)
How Composed Operations on Different
Objects are Updated/Observed

{ = € friendsOf(y) <= y & friendsOf(x) }
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Total Order Axis

* Assumption: Single Object
* Jotal Order of Effectors and Generators (TOE=TOG)
Lﬁ/\ Ui Vi
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* Assumption: Single Object
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Total Order Axis

* Assumption: Single Object
o Total Order of Effectors and-Generators (TOE-)

o Gapless TOE;4: all replicas apply all eftectors in the same
order

o Capricious TOEq: replicas apply a subset of the effectors
In an order consistent with a global total order

O ® O =
O >
o o >
®
O o>

o Concurrent Updates (No Global Ordering)
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Partial Order AxIS

* Assumption: Multiple (2) Objects

* Client Guarantees: * Visibility Properties:
 Read Own Writes e [ransitive Visibility
* Monotonicity (Reads/Writes) « Causal Visibility

* Preservation of (anti)Dependencies
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Partial Order AxIs
(Invariants)

e Assumptions:
e (i) Multiple Object,
e (iI) State Based,
e (i) O is avalid object for |

* |Invariants Relating Objects ¢ Programming:
e X<V  Demarcation Protocol
¢ P(x) = Q(y) e Escrow
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* Assumption: Multiple (n) Objects

e [ransactions
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Equality Order Axis

* Assumption: Multiple (n) Objects
* [ransactions
* Write-atomicity: All-or-nothing
* Read-atomicity: Snapshot

e Consistent Snapshot
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End of day 4



