
Distributed 
Consistency
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c.val()
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{ |q| ≤ c }
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Geo-replicated 

5 ms – ∞

q.push(e) 
c.inc()

c.inc()

q.val() 
c.val() q3 ∈ Queue? 

q1 = q2 ? 
|q1| ≤ c4 ?

q: Queue 
c: Counter 
{ |q| ≤ c } q: Queue 

c: Counter 
{ |q| ≤ c }

q: Queue 
c: Counter 
{ |q| ≤ c }



Consistency

• More replicas:

• Better read availability, responsiveness, performance

• More work to keep replicas in sync


• Consistent = behavior similar to sequential:

• Satisfies specs: does q behave like a queue?

• Replicas agree: is q identical everywhere?

• Objects agree: is |q| ≤ c?

• Same flow of time? q1.push() before q2.push()
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CAP Theorem

Consistency and Availability under Network Partitions?

Impossible: 

• Consistency: the system has to stop until the network is restored

• Availability: we have to let different replicas diverge (for a while)
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Read one, write all (ROWA) 
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replica

u!
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u?
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replica
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v? v!

u: state ⤻ (retval, (state ⤻ state)) 
Prepare (@origin) u?; deliver u! 
Read one, write all (ROWA) 
Deferred-update replication (DUR)
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Client View of the system

• We will explain in an axiomatic way (à la CAT) the possible 
results of each operation


• As in CAT, we will posit the existence of certain orders 
that explain why a behavior is possible


• We will describe Distributed Data Structure specifications 
by exploiting these orders


• Implementations of distributed data structures can be 
verified agains these specifications


• We will not talk about verification



Client Operations
• Client submit operations which can in turn be 

transactions


• A client is represented as a Session


• A single session could issue multiple operations and 
transactions


• We will consider a session to be the equivalent of the 
program order in relaxed memory models
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Axiomatic Consistency

Histories

H = (E, op, rval, rb, ss)

A set of events

Operation function: 
     op(e) is the operation  
     of event e

Return value function: 
     rval(e) is the value returned 
     by the operation in e

Returns Before  
partial order

Same Session 
Equivalence

so = ss � rbSession order
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Axiomatic Consistency

Abstract Executions

A = (E, op, rval, rb, ss, vis, ar)

︷
History

Visibility partial order: 
                   represents that  
     the effects of e are available 
     when executing e’

e
vis�� e�

Arbitration TOTAL order: 
                   represents that  
     the globally the effects of e 
     are assume to “happen prior” 
     to the effects of e’

e
ar�� e�
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Session Guarantees (Anomalies)

w1!

w1

w1!

Monotonic writes

w2!

w2

w2!

Global / No rollback: r3 must include w1

Global / WR dependence: w3 must follow w1

Writes Follow Reads

w1!

w1!

w3!

w3

w3!

r2

rb

vis

vis

rb

vis

rb
vis

vis

We called this WRC before



Causality

rb rb
vis

vis



Specifying Objects

S = (�, �0, �)Sequential type

Set of object states

Transition Relation
� : Operations � � � (Values � �)

Initial Object state
�0 � �

A register Reg = (N, 0, �r)

�r(n, rd) = (n, n)
�r(n, wr(m)) = (�, m)



From Burckhardt’s



What is the state in a DS?

• Much like in memory models, there is no unique state σ at 
every point


• Instead, we have to define the data type based on what is 
visible at the replica where the operation happens


• We need to change our sequential specifications



Replicated DT Specifications
Instead of a state we use a context for operations

C = (E, op, vis, ar)

We specify an object based on contexts

F : Operations � C � Values

C Type of all contexts

Counter



What about conflicts

vis vis

rd(x, ?)
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What about conflicts

vis vis

• This non-determinism is problematic


• Could lead to divergent replicas


• Yet, synchronization at this scale is too expensive


• Conflict-Free Replicated Data Types to the rescue


• aka. Convergent RDTs, Commutative RDTs


• They enforce a winning strategy between conglicts

ar



What about conflicts

vis vis

ar

Last Writer Wins Register



RDTs
Multi-Value Register



RDTs
Multi-Value Register

Add-wins set
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Consistency Axioms

w1!

w1

w1!

Monotonic writes

w2!

w2

w2!

Global / No rollback: r3 must include w1

ss ∩ (wr × wr) ⊆ ar

Global / WR dependence: w3 must follow w1

Writes Follow Reads

w1!

w1!

w3!

w3

w3!

r2 Causal Visibility

hb ⊆ vis

hb = (vis ∪ so)+
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Consistency Models

vis = ar

F � � F
F � � F

F � F

F � F

Principles of Eventual Consistency

Sebastian Burckhardt’14
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performance
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performance

Hard to 
program

Predictable

Strong vs. weak?
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Replicated Data Bases
• Operations are transactions


• Each transaction issues a number of reads and writes


• Writes are ordered by program order (po)


• Visibility and Arbitration relate “transactions” instead of 
individual reads and writes


• We consider only the case of a key-value store data base
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Replicated Data Bases

Transaction T = (E, po)

H = {T0, T1, ..., Tn}History

A = (H, vis, ar)Abstract Execution

These are relation on transactions now
T1

vis�� T2
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Replicated Data Bases
Consistency Axioms

Read Consistency

• Every read in transaction T sees a visible write to T 
that is the maximum visible write according to arbitration

rd(x, v) � E(T ) � �T �, T � � vis�1
H (T ) �

wr(x, 1) � E(T �) �
maxar(vis

�1
H (T ) � WritesH(x)) = T �

Transitive Visibility vis+ ⊆ vis

Prefix Consistent ar; vis ⊆ vis

No Conflict {T1, T2} ⊆ WritesH(x) ⇒ T1
vis−→ T2 ∨ T2

vis−→ T1

Total Visibility ∀T1, T2. T1
vis−→ T2 ∨ T2

vis−→ T1
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Replicated Data Bases

vis
popo

Anomalies

Fractured Reads

vis

po po

x = x + 50 x = x + 25

vis

Lost Update

ar



Replicated Data Bases
Anomalies

Long Fork (IRIW)

po po

visvis



Tiny Demo



A Forest of Models
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Hard to 
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Predictable Strict Serialisability

Eventual Consistency

Snapshot 
Isolation

Strict Serializability

PRAM

Serializability



PL-1

PL-2

Cursor Stability (PL-CS) Monotonic View (PL-2L)

Monotonic Snapshot
Reads (PL-MSR)

Consistent View (PL-2+)

Forward Consistent View (PL-FCV)

Snapshot Isolation (PL-SI) Update Serializability (PL-3U)

Full Serializability (PL-3)

Strict Serializability (PL-SS)

Repeatable Read (PL-2.99)

Figure 4-1: A partial order to relate various isolation levels.

previous chapter. Various levels can be ranked according to their “strength”: one level is stronger
than another if it allows fewer histories. In the figure, if level Y is stronger than level X, there is a
directed path from X to Y; if there is no path between two levels, they are unrelated to each other.

For all intermediate levels, we have also developed corresponding guarantees that can be
provided to transactions as they execute. As in the previous chapter, the levels defined for running
transactions are similar to the corresponding levels for committed transactions.

The rest of this chapter is organized as follows. In Section 4.1, we present our specifications for
PL-2+. In Section 4.2, we present definitions for PL-2L. In Section 4.3, we describe specifications
of Snapshot Isolation. We discuss a new isolation level called Forward Consistent View in 4.4 that
has been inspired by Snapshot Isolation. We describe a level that captures the essence of Oracle’s
Read Consistency in Section 4.5 and compare it with level PL-2L. Cursor Stability is presented in
Section 4.6. Section 4.7 describes update serializability, a consistency guarantee that is useful for
read-only transactions, and compares it with PL-2+ and serializability. Finally, in Section 4.8, we
extend our definitions for intermediate levels to provide guarantees for executing transactions.

4.1 Isolation Level PL-2+

Isolation level PL-2+ is motivated by the fact that certain applications only need to observe a
consistent state of the database and serializability may not be required, e.g., a read-only transaction
in an inventory application may simply want to observe a consistent state of the current orders
and in-stock items. It is the weakest level that ensures that integrity constraints are not observed
as violated as long as update transactions modify the database consistently and are serializable.
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Consistency & Invariants

• Consistency in 3D


• Characterization of consistency models according to 
the guarantees they provide


• Dimensions of Guarantees


• Single object


• Propagation of effects on different objects


• Composition of objects



Three classes…

…of invariant … of protocol

Gen1 Constrain value of an 
object

Total order of 
operations

PO Ordering between 
operations Visibility

EQ State equivalence 
between objects Composition
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Consistency in 3D

Total Order Axis (Gen1)
How Operations on Individual 

Objects are Updated/Observed
Partial Order Axis (PO)

How Operations on Different Objects 
are Updated/Observed

Equality Axis (EQ)
How Composed Operations on Different 

Objects are Updated/Observed

{ 0 � balance � MAX INT }

{ x � y }

{ x � friendsOf(y) �� y � friendsOf(x) }



Gen1 / Total Order
Three dimensions

EQ / Composition

PO / Visibility

Total causal order
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Total Order Axis
• Assumption: Single Object 
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Total Order Axis
• Assumption: Single Object

• Total Order of Effectors and Generators (TOE1)

• Gapless TOE1: all replicas apply all effectors in the same 
order

• Capricious TOE1: replicas apply a subset of the effectors 
in an order consistent with a global total order 
 
 
 

• Concurrent Updates (No Global Ordering)

}
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Partial Order Axis
• Assumption: Multiple (2) Objects

• Client Guarantees:  

• Read Own Writes 

• Monotonicity (Reads/Writes) 

• Preservation of (anti)Dependencies

• Visibility Properties: 

• Transitive Visibility 

• Causal Visibility
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Partial Order Axis 
(Invariants)

• Invariants Relating Objects 
• x ≤ y 
• P(x) ⟹ Q(y)

• Programming:  
• Demarcation Protocol  
• Escrow

• Assumptions: 
• (i) Multiple Object,  
• (ii) State Based,  
• (iii) O is a valid object for I
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Equality Order Axis

• Assumption: Multiple (n) Objects

• Transactions

• Write-atomicity: All-or-nothing

• Read-atomicity: Snapshot

• Consistent Snapshot
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End of day 4


