Theme 1: Abstract Reasoning

Lecture 1: Abstract Data Types \& Recursive Functions

Ahmed Bouajjani

Paris Diderot University - Paris 7

January 2014

Data manipulation

- Programs transform data
- They implement functions between inputs and outputs
- Examples of data domains: Booleans, Characters, Integers, Reals, Strings, Lists, Trees, etc.

Data manipulation

- Programs transform data
- They implement functions between inputs and outputs
- Examples of data domains: Booleans, Characters, Integers, Reals, Strings, Lists, Trees, etc.
- A function has a type (domain and co-domain):

$$
f: D_{1} \times \cdots \times D_{n} \rightarrow D
$$

- Examples:

$$
\begin{aligned}
\wedge & : \text { Boolean } \times \text { Boolean } \rightarrow \text { Boolean } \\
+ & \text { Nat } \times \text { Nat } \rightarrow \text { Nat } \\
\text { Sort }: & \text { List }[\text { Nat }] \rightarrow \text { List }[\text { Nat }]
\end{aligned}
$$

Data manipulation

- Programs transform data
- They implement functions between inputs and outputs
- Examples of data domains: Booleans, Characters, Integers, Reals, Strings, Lists, Trees, etc.
- A function has a type (domain and co-domain):

$$
f: D_{1} \times \cdots \times D_{n} \rightarrow D
$$

- Examples:

$$
\begin{aligned}
& \wedge: \text { Boolean } \times \text { Boolean } \rightarrow \text { Boolean } \\
&+: \\
& \text { Nat } \times \text { Nat } \rightarrow \text { Nat } \\
& \text { Sort }: \text { List }[\text { Nat }] \rightarrow \text { List }[N a t]
\end{aligned}
$$

- Types must be given precisely. This avoids many errors.

Defining Functions

- Finite data domains: Enumeration of its values
- Example:

$$
\begin{aligned}
& 0 \wedge 0=0 \\
& 0 \wedge 1=0 \\
& 1 \wedge 0=0 \\
& 1 \wedge 1=1
\end{aligned}
$$

Defining Functions

- Finite data domains: Enumeration of its values
- Example:

$$
\begin{aligned}
& 0 \wedge 0=0 \\
& 0 \wedge 1=0 \\
& 1 \wedge 0=0 \\
& 1 \wedge 1=1
\end{aligned}
$$

- Not always practical, but possible in theory
- A more compact definition using a conditional construct: $x \wedge y=($ if $x=0$ then 0 else $y)$

Defining Functions

- Finite data domains: Enumeration of its values
- Example:

$$
\begin{aligned}
& 0 \wedge 0=0 \\
& 0 \wedge 1=0 \\
& 1 \wedge 0=0 \\
& 1 \wedge 1=1
\end{aligned}
$$

- Not always practical, but possible in theory
- A more compact definition using a conditional construct: $x \wedge y=($ if $x=0$ then 0 else $y)$
- How to write functions over infinite domains?

Defining Functions

- Finite data domains: Enumeration of its values
- Example:

$$
\begin{aligned}
& 0 \wedge 0=0 \\
& 0 \wedge 1=0 \\
& 1 \wedge 0=0 \\
& 1 \wedge 1=1
\end{aligned}
$$

- Not always practical, but possible in theory
- A more compact definition using a conditional construct: $x \wedge y=($ if $x=0$ then 0 else $y)$
- How to write functions over infinite domains ?
- We need more powerful constructs
- We need to give a structure to infinite data domains

Inductive Definition of (Potentially Infinite) Sets

- An element (object) is either basic or constructed from other objects.

Inductive Definition of (Potentially Infinite) Sets

- An element (object) is either basic or constructed from other objects.
- A set is defined by a set of constants and a set of constructors
- Example: The set Nat of natural numbers
- Constant:

$$
0: N a t
$$

- Constructor:

$$
s: N a t \rightarrow N a t
$$

Inductive Definition of (Potentially Infinite) Sets

- An element (object) is either basic or constructed from other objects.
- A set is defined by a set of constants and a set of constructors
- Example: The set Nat of natural numbers
- Constant:

$$
0: N a t
$$

- Constructor:

$$
s: N a t \rightarrow N a t
$$

- Example of elements of Nat:

$$
0, s(0), s(s(0)), s(s(s(0))), \ldots
$$

- Notation: n abbreviates $s^{n}(0)$

The General Schema

- Given a set of constants $C=\left\{c_{1}, \cdots, c_{m}\right\}$,
- Given a set of constructors of the form $\alpha: D^{n} \times A \rightarrow D$
- The set of element of D is the smallest set such that:
- $C \subseteq D$
- For every constructor $\alpha: D^{n} \times A \rightarrow D$, for every $d_{1}, \ldots, d_{n} \in D$, and every $a \in A, \alpha\left(d_{1}, \ldots, d_{n}, a\right) \in D$

The Domain of Lists

- Examples of lists:
- $[2 ; 5 ; 8 ; 5]$ list of natural numbers
- $[p ; a ; r ; i ; s]$ list of characters
- [[0;2]; [2;5;2;0]] list of lists of natural numbers

The Domain of Lists

- Examples of lists:
- $[2 ; 5 ; 8 ; 5]$ list of natural numbers
- $[p ; a ; r ; i ; s]$ list of characters
- [$[0 ; 2] ;[2 ; 5 ; 2 ; 0]]$ list of lists of natural numbers
- The domain List $[\star]$ parametrized by a domain \star :
- Constant:

$$
[]: \operatorname{List}[\star]
$$

- Left-concatenation:

$$
\cdot: \star \times \operatorname{List}[\star] \rightarrow \operatorname{List}[\star]
$$

The Domain of Lists

- Examples of lists:
- $[2 ; 5 ; 8 ; 5]$ list of natural numbers
- $[p ; a ; r ; i ; s]$ list of characters
- [[0;2]; [2;5;2;0]] list of lists of natural numbers
- The domain List $[\star]$ parametrized by a domain \star :
- Constant:

$$
[]: \operatorname{List}[\star]
$$

- Left-concatenation:

$$
\cdot: \star \times \operatorname{List}[\star] \rightarrow \operatorname{List}[\star]
$$

- Examples:
- $0 \cdot[]=[0]$
- $2 \cdot(5 \cdot(8 \cdot(5 \cdot[])))=2 \cdot 5 \cdot 8 \cdot 5 \cdot[]=[2 ; 5 ; 8 ; 5]$
- (0 $\cdot[]) \cdot[]=[[0]]$
- [] $\cdot[]=[[]] \neq[]$
- $(0 \cdot[]) \cdot((2 \cdot[]) \cdot[])=[[0] ;[2]]$

Defining functions over inductively defined sets

Let $f:$ Nat $\rightarrow D$. Define $f(x)$, for every $x \in$ Nat.

- Case spitting using the structure of the elements
- $f(0)=$?
- $f(s(x))=$?

Defining functions over inductively defined sets

Let $f: N a t \rightarrow D$. Define $f(x)$, for every $x \in N a t$.

- Case spitting using the structure of the elements
- $f(0)=$?
- $f(s(x))=$?
- Inductive definition (Recursion)

Define $f(s(x))$ assuming that we know how to compute $f(x)$

Defining functions over inductively defined sets

Let $f: N a t \rightarrow D$. Define $f(x)$, for every $x \in N a t$.

- Case spitting using the structure of the elements
- $f(0)=$?
- $f(s(x))=$?
- Inductive definition (Recursion)

Define $f(s(x))$ assuming that we know how to compute $f(x)$

- Similar to proofs using structural induction

Prove $P(0)$, and prove that $P(s(x))$ holds assuming $P(x)$.

Recursion: An Example

- Addition + : Nat \times Nat \rightarrow Nat

Recursion: An Example

- Addition + : Nat $\times \mathrm{Nat} \rightarrow \mathrm{Nat}$
- Recursive definition

$$
\begin{aligned}
0+x & =x \\
s\left(x_{1}\right)+x_{2} & =s\left(x_{1}+x_{2}\right)
\end{aligned}
$$

Recursion: An Example

- Addition $+:$ Nat $\times N a t \rightarrow N a t$
- Recursive definition

$$
\begin{aligned}
0+x & =x \\
s\left(x_{1}\right)+x_{2} & =s\left(x_{1}+x_{2}\right)
\end{aligned}
$$

- Computation

$$
\begin{aligned}
s(s(0))+s(0) & =s(s(0)+s(0)) \\
& =s(s(0+s(0))) \\
& =s(s(s(0)))
\end{aligned}
$$

Recursion: Another Example

- Append function @ : List $[\star] \times \operatorname{List}[\star] \rightarrow \operatorname{List}[\star]$
- Example: $[2 ; 5 ; 7] @[1 ; 5]=[2 ; 5 ; 7 ; 1 ; 5]$

Recursion: Another Example

- Append function @ : List $[\star] \times \operatorname{List}[\star] \rightarrow \operatorname{List}[\star]$
- Example: $[2 ; 5 ; 7] @[1 ; 5]=[2 ; 5 ; 7 ; 1 ; 5]$
- Recursive definition

$$
\begin{aligned}
{[] @ \ell } & = \\
\left(a \cdot \ell_{1}\right) @ \ell_{2} & =
\end{aligned}
$$

Recursion: Another Example

- Append function @ : List $[\star] \times \operatorname{List}[\star] \rightarrow \operatorname{List}[\star]$
- Example: $[2 ; 5 ; 7] @[1 ; 5]=[2 ; 5 ; 7 ; 1 ; 5]$
- Recursive definition

$$
\begin{aligned}
{[] @ \ell } & =\ell \\
\left(a \cdot \ell_{1}\right) @ \ell_{2} & =
\end{aligned}
$$

Recursion: Another Example

- Append function @ : List $[\star] \times \operatorname{List}[\star] \rightarrow \operatorname{List}[\star]$
- Example: $[2 ; 5 ; 7] @[1 ; 5]=[2 ; 5 ; 7 ; 1 ; 5]$
- Recursive definition

$$
\begin{aligned}
{[] @ \ell } & =\ell \\
\left(a \cdot \ell_{1}\right) @ \ell_{2} & =a \cdot\left(\ell_{1} @ \ell_{2}\right)
\end{aligned}
$$

Recursion: Another Example

- Append function © : List $[\star] \times \operatorname{List}[\star] \rightarrow \operatorname{List}[\star]$
- Example: $[2 ; 5 ; 7] @[1 ; 5]=[2 ; 5 ; 7 ; 1 ; 5]$
- Recursive definition

$$
\begin{aligned}
{[] @ \ell } & =\ell \\
\left(a \cdot \ell_{1}\right) @ \ell_{2} & =a \cdot\left(\ell_{1} @ \ell_{2}\right)
\end{aligned}
$$

- Computation:

$$
\begin{aligned}
(2 \cdot 5 \cdot 7 \cdot[]) @(1 \cdot 5 \cdot[]) & =2 \cdot((5 \cdot 7 \cdot[]) @(1 \cdot 5 \cdot[])) \\
& =2 \cdot 5 \cdot((7 \cdot[]) @(1 \cdot 5 \cdot[])) \\
& =2 \cdot 5 \cdot 7 \cdot([] @(1 \cdot 5 \cdot[])) \\
& =2 \cdot 5 \cdot 7 \cdot 1 \cdot 5 \cdot[]
\end{aligned}
$$

Composition: Functions can call other functions

- Multiplication $*: N a t \times N a t \rightarrow N a t$

Composition: Functions can call other functions

- Multiplication *: Nat $\times \mathrm{Nat} \rightarrow \mathrm{Nat}$
- Recursive definition

$$
\begin{array}{r}
0 * x= \\
s\left(x_{1}\right) * x_{2}=
\end{array}
$$

Composition: Functions can call other functions

- Multiplication *: Nat $\times \mathrm{Nat} \rightarrow \mathrm{Nat}$
- Recursive definition

$$
\begin{aligned}
0 * x & =0 \\
s\left(x_{1}\right) * x_{2} & =
\end{aligned}
$$

Composition: Functions can call other functions

- Multiplication *: Nat $\times \mathrm{Nat} \rightarrow \mathrm{Nat}$
- Recursive definition

$$
\begin{aligned}
0 * x & =0 \\
s\left(x_{1}\right) * x_{2} & =\left(x_{1} * x_{2}\right)+x_{2}
\end{aligned}
$$

Composition: Functions can call other functions

- Multiplication *: Nat $\times \mathrm{Nat} \rightarrow \mathrm{Nat}$
- Recursive definition

$$
\begin{aligned}
0 * x & =0 \\
s\left(x_{1}\right) * x_{2} & =\left(x_{1} * x_{2}\right)+x_{2}
\end{aligned}
$$

- Computation

$$
\begin{aligned}
s^{2}(0) * s^{3}(0) & =\left(s(0) * s^{3}(0)\right)+s^{3}(0) \\
& =\left(\left(0 * s^{3}(0)\right)+s^{3}(0)\right)+s^{3}(0) \\
& =\left(0+s^{3}(0)\right)+s^{3}(0) \\
& =s^{3}(0)+s^{3}(0)=s\left(s^{2}(0)\right)+s^{3}(0) \\
& =s\left(s^{2}(0)+s^{3}(0)\right) \\
& =s\left(s\left(s(0)+s^{3}(0)\right)\right) \\
& =s\left(s\left(s\left(0+s^{3}(0)\right)\right)\right) \\
& =s\left(s\left(s\left(s^{3}(0)\right)\right)\right)=s^{6}(0)
\end{aligned}
$$

Composition: Another Example

- Factorial function fact: Nat $\rightarrow \mathrm{Nat}$

Composition: Another Example

- Factorial function fact: Nat $\rightarrow \mathrm{Nat}$
- Recursive definition

$$
\begin{array}{r}
\operatorname{fact}(0)= \\
\operatorname{fact}(s(x))=
\end{array}
$$

Composition: Another Example

- Factorial function fact: Nat \rightarrow Nat
- Recursive definition

$$
\begin{aligned}
\operatorname{fact}(0) & =s(0) \\
\operatorname{fact}(s(x)) & =
\end{aligned}
$$

Composition: Another Example

- Factorial function fact: Nat \rightarrow Nat
- Recursive definition

$$
\begin{aligned}
f a c t(0) & =s(0) \\
\operatorname{fact}(s(x)) & =s(x) * \operatorname{fact}(x)
\end{aligned}
$$

Composition: Another Example

- Factorial function fact: Nat \rightarrow Nat
- Recursive definition

$$
\begin{aligned}
\operatorname{fact}(0) & =s(0) \\
\operatorname{fact}(s(x)) & =s(x) * \operatorname{fact}(x)
\end{aligned}
$$

- Computation

$$
\begin{aligned}
\operatorname{fact}(s(s(0))) & =s(s(0)) * f a c t(s(0)) \\
& =s(s(0)) *(s(0) * f a c t(0)) \\
& =s(s(0)) *(s(0) * s(0)) \\
& =s(0) *(s(0) * s(0))+s(0) * s(0) \\
& =0 *(s(0) * s(0))+s(0) * s(0)+s(0) * s(0) \\
& =\ldots
\end{aligned}
$$

Composition: Yet Another Example

- Reverse function Rev: List $[\star] \rightarrow \operatorname{List}[\star]$
- Example: $\operatorname{Rev}([2 ; 5 ; 2 ; 1])=[1 ; 2 ; 5 ; 2]$

Composition: Yet Another Example

- Reverse function Rev: List $[\star] \rightarrow \operatorname{List}[\star]$
- Example: $\operatorname{Rev}([2 ; 5 ; 2 ; 1])=[1 ; 2 ; 5 ; 2]$
- Recursive definition:

$$
\begin{aligned}
\operatorname{Rev}([]) & = \\
\operatorname{Rev}(a \cdot \ell) & =
\end{aligned}
$$

Composition: Yet Another Example

- Reverse function Rev: List $[\star] \rightarrow \operatorname{List}[\star]$
- Example: $\operatorname{Rev}([2 ; 5 ; 2 ; 1])=[1 ; 2 ; 5 ; 2]$
- Recursive definition:

$$
\begin{aligned}
\operatorname{Rev}([]) & =[] \\
\operatorname{Rev}(a \cdot \ell) & =
\end{aligned}
$$

Composition: Yet Another Example

- Reverse function Rev: List $[\star] \rightarrow$ List $[\star]$
- Example: $\operatorname{Rev}([2 ; 5 ; 2 ; 1])=[1 ; 2 ; 5 ; 2]$
- Recursive definition:

$$
\begin{aligned}
\operatorname{Rev}([]) & =[] \\
\operatorname{Rev}(a \cdot \ell) & =\operatorname{Rev}(\ell) @[a]
\end{aligned}
$$

Composition: Yet Another Example

- Reverse function Rev: List $[\star] \rightarrow \operatorname{List}[\star]$
- Example: $\operatorname{Rev}([2 ; 5 ; 2 ; 1])=[1 ; 2 ; 5 ; 2]$
- Recursive definition:

$$
\begin{aligned}
\operatorname{Rev}([]) & =[] \\
\operatorname{Rev}(a \cdot \ell) & =\operatorname{Rev}(\ell) @[a]
\end{aligned}
$$

- Computation

$$
\begin{aligned}
\operatorname{Rev}([2 ; 5 ; 1]) & =\operatorname{Rev}([5 ; 1]) @[2] \\
& =(\operatorname{Rev}([1]) @[5]) @[2] \\
& =((\operatorname{Rev}([]) @[1]) @[5]) @[2] \\
& =([1] @[5]) @[2] \\
& =[1 ; 5] @[2] \\
& \cdots \\
& =[1 ; 5 ; 2]
\end{aligned}
$$

Functions between different domains

- The Length function $|\cdot|: \operatorname{List}[\star] \rightarrow$ Nat

Functions between different domains

- The Length function $|\cdot|: \operatorname{List}[\star] \rightarrow$ Nat

$$
\begin{aligned}
|[]| & =0 \\
|a \cdot \ell| & =s(|\ell|)
\end{aligned}
$$

Functions between different domains

- The Length function $|\cdot|: \operatorname{List}[\star] \rightarrow$ Nat

$$
\begin{aligned}
|[]| & =0 \\
|a \cdot \ell| & =s(|\ell|)
\end{aligned}
$$

- Sum of the elements $\Sigma: \operatorname{List}[N a t] \rightarrow N a t$

Functions between different domains

- The Length function $|\cdot|: \operatorname{List}[\star] \rightarrow$ Nat

$$
\begin{aligned}
|[]| & =0 \\
|a \cdot \ell| & =s(|\ell|)
\end{aligned}
$$

- Sum of the elements $\Sigma: \operatorname{List}[N a t] \rightarrow N a t$

$$
\begin{aligned}
\Sigma([]) & =0 \\
\Sigma(n \cdot \ell) & =n+\Sigma(\ell)
\end{aligned}
$$

Inductive definition of functions: A General Schema

Let $f: D \times E \rightarrow F$.

- For every constant $c \in D$ and every $e \in E$, define $f(c, e)$ (as an element of F)
- For every constructor $\alpha: D^{n} \times A \rightarrow D$, for every $e \in E$, define $f\left(\alpha\left(x_{1}, \cdots, x_{n}, a\right), e\right)$ using a and $f\left(x_{1}, e\right), \cdots, f\left(x_{n}, e\right)$.

Proving facts about functions

- Neutral element:

$$
\forall x \in N a t . x * s(0)=s(0) * x=x
$$

- Commutativity:

$$
\forall x, y \in N a t . x+y=y+x
$$

- Associativity:

$$
\forall x, y, z \in N a t . x+(y+z)=(x+y)+z
$$

- Distributivity:

$$
\forall x, y, z \in N a t . x *(y+z)=(x * y)+(x * z)
$$

- Idempotence:

$$
\forall \ell \in \operatorname{List}[\star] \cdot \operatorname{Rev}(\operatorname{Rev}(\ell))=\ell
$$

- Kind of distributivity:

$$
\forall \ell_{1}, \ell_{2} \in \operatorname{List}[\star] \cdot \operatorname{Rev}\left(\ell_{1} @ \ell_{2}\right)=\operatorname{Rev}\left(\ell_{2}\right) @ \operatorname{Rev}\left(\ell_{1}\right)
$$

Structural Induction

Let c_{1}, \ldots, c_{m} be the constants, and let $\alpha_{1}, \ldots, \alpha_{n}$ be the constructors.

$$
P\left(c_{1}\right)
$$

$$
P\left(c_{m}\right)
$$

$$
\left(\bigwedge_{i=1}^{K_{1}} P\left(x_{i}\right)\right) \Rightarrow P\left(\alpha_{1}\left(x_{1}, \cdots x_{K_{1}}\right)\right)
$$

$$
\frac{\left(\bigwedge_{i=1}^{K_{n}} P\left(x_{i}\right)\right) \Rightarrow P\left(\alpha_{n}\left(x_{1}, \cdots x_{K_{n}}\right)\right)}{\forall x \cdot P(x)}
$$

Proving Neutrality of 1 for $*$

$$
\forall x \in \operatorname{Nat} . x * s(0)=s(0) * x=x
$$

Proving Neutrality of 1 for $*$

$$
\forall x \in N a t . x * s(0)=s(0) * x=x
$$

- Case $x=0$.
- $0 * s(0)=0$
- $s(0) * 0=0 * 0+0=0+0=0$

Proving Neutrality of 1 for $*$

$$
\forall x \in \text { Nat. } x * s(0)=s(0) * x=x
$$

- Case $x=0$.
- $0 * s(0)=0$
- $s(0) * 0=0 * 0+0=0+0=0$
- Case $x=s\left(x^{\prime}\right)$. Induction Hypothesis: $x^{\prime} * s(0)=s(0) * x^{\prime}=x^{\prime}$

Proving Neutrality of 1 for $*$

$$
\forall x \in \text { Nat. } x * s(0)=s(0) * x=x
$$

- Case $x=0$.
- $0 * s(0)=0$
- $s(0) * 0=0 * 0+0=0+0=0$
- Case $x=s\left(x^{\prime}\right)$. Induction Hypothesis: $x^{\prime} * s(0)=s(0) * x^{\prime}=x^{\prime}$
- $s\left(x^{\prime}\right) * s(0)=\left(x^{\prime} * s(0)\right)+s(0)=x^{\prime}+s(0)=s(0)+x^{\prime}=s\left(0+x^{\prime}\right)=s\left(x^{\prime}\right)$ (uses commutativity of +)

Proving Neutrality of 1 for $*$

$$
\forall x \in \text { Nat. } x * s(0)=s(0) * x=x
$$

- Case $x=0$.
- $0 * s(0)=0$
- $s(0) * 0=0 * 0+0=0+0=0$
- Case $x=s\left(x^{\prime}\right)$. Induction Hypothesis: $x^{\prime} * s(0)=s(0) * x^{\prime}=x^{\prime}$
- $s\left(x^{\prime}\right) * s(0)=\left(x^{\prime} * s(0)\right)+s(0)=x^{\prime}+s(0)=s(0)+x^{\prime}=s\left(0+x^{\prime}\right)=s\left(x^{\prime}\right)$ (uses commutativity of +)
- $s(0) * s\left(x^{\prime}\right)=\left(0 * s\left(x^{\prime}\right)\right)+s\left(x^{\prime}\right)=0+s\left(x^{\prime}\right)=s\left(x^{\prime}\right)$

Proving Commutativity of +

$$
\forall x, y \in N a t . x+y=y+x
$$

Proving Commutativity of +

$$
\forall x, y \in N a t . x+y=y+x
$$

- Case $x=0 . \Rightarrow x+y=0+y=y$ $\rightsquigarrow \forall y \in$ Nat. $y=y+0$?

Proving Commutativity of +

$$
\forall x, y \in N a t . x+y=y+x
$$

- Case $x=0$. $\Rightarrow x+y=0+y=y$ $\rightsquigarrow \forall y \in$ Nat. $y=y+0$?
- Case $y=0: y+0=0+0=0$

Proving Commutativity of +

$$
\forall x, y \in N a t . x+y=y+x
$$

- Case $x=0 . \Rightarrow x+y=0+y=y$ $\rightsquigarrow \forall y \in$ Nat. $y=y+0$?
- Case $y=0: y+0=0+0=0$
- Case $y=s\left(y^{\prime}\right)$:
* Induction hypothesis: $y^{\prime}=y^{\prime}+0$
$\star y+0=s\left(y^{\prime}\right)+0=s\left(y^{\prime}+0\right)=s\left(y^{\prime}\right)=y$

Proving Commutativity of +

$$
\forall x, y \in N a t . x+y=y+x
$$

- Case $x=0 . \Rightarrow x+y=0+y=y$ $\rightsquigarrow \forall y \in$ Nat. $y=y+0$?
- Case $y=0: y+0=0+0=0$
- Case $y=s\left(y^{\prime}\right)$:
* Induction hypothesis: $y^{\prime}=y^{\prime}+0$

$$
\star y+0=s\left(y^{\prime}\right)+0=s\left(y^{\prime}+0\right)=s\left(y^{\prime}\right)=y
$$

- Case $x=s\left(x^{\prime}\right)$. Induction Hypothesis: $\forall z \in$ Nat. $x^{\prime}+z=z+x^{\prime}$ $\rightsquigarrow \forall y \in N a t . s\left(x^{\prime}\right)+y=y+s\left(x^{\prime}\right) ?$

Proving Commutativity of +

$$
\forall x, y \in N a t . x+y=y+x
$$

- Case $x=0 . \Rightarrow x+y=0+y=y$ $\rightsquigarrow \forall y \in$ Nat. $y=y+0$?
- Case $y=0: y+0=0+0=0$
- Case $y=s\left(y^{\prime}\right)$:
* Induction hypothesis: $y^{\prime}=y^{\prime}+0$

$$
\star y+0=s\left(y^{\prime}\right)+0=s\left(y^{\prime}+0\right)=s\left(y^{\prime}\right)=y
$$

- Case $x=s\left(x^{\prime}\right)$. Induction Hypothesis: $\forall z \in$ Nat. $x^{\prime}+z=z+x^{\prime}$ $\rightsquigarrow \forall y \in N a t . s\left(x^{\prime}\right)+y=y+s\left(x^{\prime}\right) ?$
- Case $y=0: s\left(x^{\prime}\right)+0=s\left(x^{\prime}+0\right)=s\left(0+x^{\prime}\right)=s\left(x^{\prime}\right)=0+s\left(x^{\prime}\right)$

Proving Commutativity of +

$$
\forall x, y \in N a t . x+y=y+x
$$

- Case $x=0 . \Rightarrow x+y=0+y=y$ $\rightsquigarrow \forall y \in$ Nat. $y=y+0$?
- Case $y=0: y+0=0+0=0$
- Case $y=s\left(y^{\prime}\right)$:
« Induction hypothesis: $y^{\prime}=y^{\prime}+0$

$$
\star y+0=s\left(y^{\prime}\right)+0=s\left(y^{\prime}+0\right)=s\left(y^{\prime}\right)=y
$$

- Case $x=s\left(x^{\prime}\right)$. Induction Hypothesis: $\forall z \in$ Nat. $x^{\prime}+z=z+x^{\prime}$ $\rightsquigarrow \forall y \in N a t . s\left(x^{\prime}\right)+y=y+s\left(x^{\prime}\right)$?
- Case $y=0: s\left(x^{\prime}\right)+0=s\left(x^{\prime}+0\right)=s\left(0+x^{\prime}\right)=s\left(x^{\prime}\right)=0+s\left(x^{\prime}\right)$
- Case $y=s\left(y^{\prime}\right)$:
* Induction hypothesis: $s\left(x^{\prime}\right)+y^{\prime}=y^{\prime}+s\left(x^{\prime}\right)$
$\star s\left(x^{\prime}\right)+s\left(y^{\prime}\right)=s\left(x^{\prime}+s\left(y^{\prime}\right)\right)=s\left(s\left(y^{\prime}\right)+x^{\prime}\right)=s\left(s\left(y^{\prime}+x^{\prime}\right)\right)$
$\star s\left(y^{\prime}\right)+s\left(x^{\prime}\right)=s\left(y^{\prime}+s\left(x^{\prime}\right)\right)=s\left(s\left(x^{\prime}\right)+y^{\prime}\right)=s\left(s\left(x^{\prime}+y^{\prime}\right)\right)$
$\star s\left(s\left(x^{\prime}+y^{\prime}\right)\right)=s\left(s\left(y^{\prime}+x^{\prime}\right)\right)$

Summary

- The first step in defining a function is to define its type (its domain and its co-domain).
- Infinite data domain can be defined inductively (set of constants and a set of constructors).
- Functions over infinite data domains by reasoning on the inductive structure of the data domains.
- Facts about recursive functions can be proved by reasoning on the inductive structure of the data domains.

