
Theme 1: Abstract Reasoning

Lecture 2: Logic-based Program Specification

Ahmed Bouajjani

Paris Diderot University, Paris 7

January 2014

A. Bouajjani (Univ. Paris Diderot, UP7) L2: Logic-based Program Specification January 2014 1 / 18

Abstract Specification of a Function

Consider a function
f : Dom→ CoDom

How to describe in an abstract way its behavior ?

Abstraction: No implementation details.

Specification: A relation Spec f between inputs and outputs of f

Spec f (In,Out) ⊆ Dom × CoDom

What is a suitable (natural) formalism for describing such a relation?

A. Bouajjani (Univ. Paris Diderot, UP7) L2: Logic-based Program Specification January 2014 2 / 18

Logic-based Specification Language

Example: Specification of the Append function:

Spec Append(`1, `2, `) =
|`| = |`1|+ |`2| ∧
∀i ∈ Nat. (0 ≤ i < |`1|)⇒ `[i] = `1[i] ∧
∀i ∈ Nat. (0 ≤ i < |`2|)⇒ `[|`1|+ i] = `2[i]

where:

∀` ∈ List[?]. ∀i ∈ Nat. ∀e ∈ ?. `[i] = e ⇐⇒
(i < |`|) ∧
∃`′.

(
` = a · `′ ∧
((i = 0 ∧ e = a) ∨ (i > 0 ∧ e = `′[i − 1]))

)

⇒ First-order logic over data domains (natural numbers, lists, etc.)

A. Bouajjani (Univ. Paris Diderot, UP7) L2: Logic-based Program Specification January 2014 3 / 18

Logic-based Specification Language

Example: Specification of the Append function:

Spec Append(`1, `2, `) =
|`| = |`1|+ |`2| ∧
∀i ∈ Nat. (0 ≤ i < |`1|)⇒ `[i] = `1[i] ∧
∀i ∈ Nat. (0 ≤ i < |`2|)⇒ `[|`1|+ i] = `2[i]

where:

∀` ∈ List[?]. ∀i ∈ Nat. ∀e ∈ ?. `[i] = e ⇐⇒
(i < |`|) ∧
∃`′.

(
` = a · `′ ∧
((i = 0 ∧ e = a) ∨ (i > 0 ∧ e = `′[i − 1]))

)
⇒ First-order logic over data domains (natural numbers, lists, etc.)

A. Bouajjani (Univ. Paris Diderot, UP7) L2: Logic-based Program Specification January 2014 3 / 18

Domains of Interpretation

Data domain with a set of operations and predicates
I Consider a data domain D
I Let Op be a set of operations interpreted as functions over D
I Let Pred be a set of predicates interpreted as relations over D

Remark:
Here the set Op may include constants, seen as operators or arity 0.

Domain of interpretation is a triple (D,Op,Rel).

Examples of domains of interpretation:
I (Bool , {tt, ff, not, or, and}, {=})
I (Nat, {0, s,+}, {≤})
I (List[?], {[], ·,@}, {=})

A. Bouajjani (Univ. Paris Diderot, UP7) L2: Logic-based Program Specification January 2014 4 / 18

Domains of Interpretation

Data domain with a set of operations and predicates
I Consider a data domain D
I Let Op be a set of operations interpreted as functions over D
I Let Pred be a set of predicates interpreted as relations over D

Remark:
Here the set Op may include constants, seen as operators or arity 0.

Domain of interpretation is a triple (D,Op,Rel).

Examples of domains of interpretation:
I (Bool , {tt, ff, not, or, and}, {=})
I (Nat, {0, s,+}, {≤})
I (List[?], {[], ·,@}, {=})

A. Bouajjani (Univ. Paris Diderot, UP7) L2: Logic-based Program Specification January 2014 4 / 18

Domains of Interpretation

Data domain with a set of operations and predicates
I Consider a data domain D
I Let Op be a set of operations interpreted as functions over D
I Let Pred be a set of predicates interpreted as relations over D

Remark:
Here the set Op may include constants, seen as operators or arity 0.

Domain of interpretation is a triple (D,Op,Rel).

Examples of domains of interpretation:
I (Bool , {tt, ff, not, or, and}, {=})
I (Nat, {0, s,+}, {≤})
I (List[?], {[], ·,@}, {=})

A. Bouajjani (Univ. Paris Diderot, UP7) L2: Logic-based Program Specification January 2014 4 / 18

First Order Logic over a Data Domain

Let (D,Op,Pred) be a domain of interpretation.

Let Var be a set of variables.

Terms:
t ::= v ∈ Var | op(t, . . . , t)

where v ∈ Var and op ∈ Op.

Examples: x , 2, x + 2, x + y + 3, and 2x as an abbreviation of x + x .

Terms are interpreted as elements of the domain D:
I Let ν : Var → D be a valuation of the variables.

I Then, 〈t〉ν is the value in D obtained by the evaluation of t, using ν as
valuation of the variables.

I Example: Given ν = {(x , 2), (y , 1), (z , 4)}, we have

〈x〉ν = 2 〈x + 2y〉ν = 4 〈(x ∗ z) + (y + 1)〉ν = 10

A. Bouajjani (Univ. Paris Diderot, UP7) L2: Logic-based Program Specification January 2014 5 / 18

First Order Logic over a Data Domain

Let (D,Op,Pred) be a domain of interpretation.

Let Var be a set of variables.

Terms:
t ::= v ∈ Var | op(t, . . . , t)

where v ∈ Var and op ∈ Op.

Examples: x , 2, x + 2, x + y + 3, and 2x as an abbreviation of x + x .

Terms are interpreted as elements of the domain D:
I Let ν : Var → D be a valuation of the variables.

I Then, 〈t〉ν is the value in D obtained by the evaluation of t, using ν as
valuation of the variables.

I Example: Given ν = {(x , 2), (y , 1), (z , 4)}, we have

〈x〉ν = 2 〈x + 2y〉ν = 4 〈(x ∗ z) + (y + 1)〉ν = 10

A. Bouajjani (Univ. Paris Diderot, UP7) L2: Logic-based Program Specification January 2014 5 / 18

First Order Logic over a Data Domain

Let (D,Op,Pred) be a domain of interpretation.

Let Var be a set of variables.

Terms:
t ::= v ∈ Var | op(t, . . . , t)

where v ∈ Var and op ∈ Op.

Examples: x , 2, x + 2, x + y + 3, and 2x as an abbreviation of x + x .

Terms are interpreted as elements of the domain D:
I Let ν : Var → D be a valuation of the variables.

I Then, 〈t〉ν is the value in D obtained by the evaluation of t, using ν as
valuation of the variables.

I Example: Given ν = {(x , 2), (y , 1), (z , 4)}, we have

〈x〉ν = 2 〈x + 2y〉ν = 4 〈(x ∗ z) + (y + 1)〉ν = 10

A. Bouajjani (Univ. Paris Diderot, UP7) L2: Logic-based Program Specification January 2014 5 / 18

First Order Logic over a Data Domain

Let (D,Op,Pred) be a domain of interpretation.

Let Var be a set of variables.

Terms:
t ::= v ∈ Var | op(t, . . . , t)

where v ∈ Var and op ∈ Op.

Examples: x , 2, x + 2, x + y + 3, and 2x as an abbreviation of x + x .

Terms are interpreted as elements of the domain D:
I Let ν : Var → D be a valuation of the variables.

I Then, 〈t〉ν is the value in D obtained by the evaluation of t, using ν as
valuation of the variables.

I Example: Given ν = {(x , 2), (y , 1), (z , 4)}, we have

〈x〉ν = 2 〈x + 2y〉ν = 4 〈(x ∗ z) + (y + 1)〉ν = 10

A. Bouajjani (Univ. Paris Diderot, UP7) L2: Logic-based Program Specification January 2014 5 / 18

First Order Logic: Syntax of formulas

Formulas:
φ ::= p(t1, . . . , tn) | ¬φ | φ ∨ φ | ∃v . φ

where p ∈ Pred and v ∈ Var .

Examples: 2x + y ≤ z , x = y as an abbreviation of x ≤ y ∧ y ≤ x , x < y

as an abbrev. of x ≤ y ∧ ¬(x = y).

An occurrence of a variable x is bound in a formula φ if it is under a

quantifier ∃x . We assume that all occurrences of a variable are either bound

or unbound in a formula. A variable is free in φ if its occurrences in φ are

unbound. A formula is closed if it has not free variables.

Examples:
I φ1 = ∀x , y . x ≤ y ⇒ ∃z . (x ≤ z ∧ z < y) is a closed formula.
I φ2 = ∃x . ∀y . x ≤ y is a closed formula.
I φ3 = ∀y . x ≤ y , is an open formula. It has x as free variable.
I φ4 = x ≤ y ∧ ∃z . y ≤ z ∧ z ≤ 5 is an open formula. Its free variables

are x and y .

A. Bouajjani (Univ. Paris Diderot, UP7) L2: Logic-based Program Specification January 2014 6 / 18

First Order Logic: Semantics of formulas

Given a valuation ν : Var → D of the variables, ν satisfies φ if and
only if φ[ν(x)/x] is true, i.e., when interpreting the formula using ν,
the formula is true.

Formulas are interpreted as relations over D, i.e., the sets of
valuations of the variables that satisfy the formula.

Let [[φ]] be the set of valuations ν which satisfy φ.

A formula is valid if it is satisfied by all valuations. A formula is
satisfiable if there exists a valuation that satisfies it.

Remark:
Closed formulas are either true (valid) or false: Their value does

depend on the variable valuation. Either all variable valuations

satisfy them, or none of the valuations can satisfy them.

Question: what can we say about the formulas in the previous slides?

A. Bouajjani (Univ. Paris Diderot, UP7) L2: Logic-based Program Specification January 2014 7 / 18

Example: The head and tail functions

head function:

head : List[?]→ ?

Spec head(`, a) = ∃`′ ∈ List[?]. ` = a · `′

tail function:

tail : List[?]→ List[?]

Spec tail(`, `′) = ∃a ∈ ?. ` = a · `′

A. Bouajjani (Univ. Paris Diderot, UP7) L2: Logic-based Program Specification January 2014 8 / 18

Multi-sorted Logics

In general we need to reason about several data domains
simultaneously.

We will consider domains of interpretation of the form

(D1, . . . ,Dn,Op,Rel)

where the operations and relations are defined over one or several of
the data domains D1, . . . ,Dn.

Example: (List[?],Nat, {[], ·,@, Lgth,At, 0, s,+}, {=,≤})

A. Bouajjani (Univ. Paris Diderot, UP7) L2: Logic-based Program Specification January 2014 9 / 18

Specifying a sorting function

Define an Input-Output relation Spec Sort(`, `′) ?

The output list is ordered:

Ordered(`) = ∀i , j ,∈ Nat. (0 ≤ i < j < |`| ⇒ `[i] ≤ `[j])

Is it complete ?

A. Bouajjani (Univ. Paris Diderot, UP7) L2: Logic-based Program Specification January 2014 10 / 18

Specifying a sorting function

Define an Input-Output relation Spec Sort(`, `′) ?

The output list is ordered:

Ordered(`) = ∀i , j ,∈ Nat. (0 ≤ i < j < |`| ⇒ `[i] ≤ `[j])

Is it complete ?

A. Bouajjani (Univ. Paris Diderot, UP7) L2: Logic-based Program Specification January 2014 10 / 18

Specifying a sorting function

Define an Input-Output relation Spec Sort(`, `′) ?

The output list is ordered:

Ordered(`) = ∀i , j ,∈ Nat. (0 ≤ i < j < |`| ⇒ `[i] ≤ `[j])

Is it complete ?

A. Bouajjani (Univ. Paris Diderot, UP7) L2: Logic-based Program Specification January 2014 10 / 18

Specifying a sorting function (cont.)

The output list is a permutation of the input list.

Can we express this property in
FO(List[?],Nat, {[], ·,@, Lgth,At, 0, s,+}, {=,≤})?

Every element in the input appears in the output, and vice-versa:
∀i ∈ Nat. 0 ≤ i < |`1| ⇒ ∃j ∈ Nat. (0 ≤ j < |`2| ∧ `1[i] = `2[j])
∀i ∈ Nat. 0 ≤ i < |`2| ⇒ ∃j ∈ Nat. (0 ≤ j < |`1| ∧ `1[i] = `2[j])

Still not sufficient: `1 = [2, 5, 2] and `2 = [2, 5]

The input and output lists have the same length: |`1| = |`2|

Counter-example: `1 = [2, 5, 2] and `2 = [5, 2, 5]

We must to count the number of occurrences of each element!

A. Bouajjani (Univ. Paris Diderot, UP7) L2: Logic-based Program Specification January 2014 11 / 18

Specifying a sorting function (cont.)

The output list is a permutation of the input list.

Can we express this property in
FO(List[?],Nat, {[], ·,@, Lgth,At, 0, s,+}, {=,≤})?

Every element in the input appears in the output, and vice-versa:
∀i ∈ Nat. 0 ≤ i < |`1| ⇒ ∃j ∈ Nat. (0 ≤ j < |`2| ∧ `1[i] = `2[j])
∀i ∈ Nat. 0 ≤ i < |`2| ⇒ ∃j ∈ Nat. (0 ≤ j < |`1| ∧ `1[i] = `2[j])

Still not sufficient: `1 = [2, 5, 2] and `2 = [2, 5]

The input and output lists have the same length: |`1| = |`2|

Counter-example: `1 = [2, 5, 2] and `2 = [5, 2, 5]

We must to count the number of occurrences of each element!

A. Bouajjani (Univ. Paris Diderot, UP7) L2: Logic-based Program Specification January 2014 11 / 18

Specifying a sorting function (cont.)

The output list is a permutation of the input list.

Can we express this property in
FO(List[?],Nat, {[], ·,@, Lgth,At, 0, s,+}, {=,≤})?

Every element in the input appears in the output, and vice-versa:
∀i ∈ Nat. 0 ≤ i < |`1| ⇒ ∃j ∈ Nat. (0 ≤ j < |`2| ∧ `1[i] = `2[j])
∀i ∈ Nat. 0 ≤ i < |`2| ⇒ ∃j ∈ Nat. (0 ≤ j < |`1| ∧ `1[i] = `2[j])

Still not sufficient: `1 = [2, 5, 2] and `2 = [2, 5]

The input and output lists have the same length: |`1| = |`2|

Counter-example: `1 = [2, 5, 2] and `2 = [5, 2, 5]

We must to count the number of occurrences of each element!

A. Bouajjani (Univ. Paris Diderot, UP7) L2: Logic-based Program Specification January 2014 11 / 18

Specifying a sorting function (cont.)

The output list is a permutation of the input list.

Can we express this property in
FO(List[?],Nat, {[], ·,@, Lgth,At, 0, s,+}, {=,≤})?

Every element in the input appears in the output, and vice-versa:
∀i ∈ Nat. 0 ≤ i < |`1| ⇒ ∃j ∈ Nat. (0 ≤ j < |`2| ∧ `1[i] = `2[j])
∀i ∈ Nat. 0 ≤ i < |`2| ⇒ ∃j ∈ Nat. (0 ≤ j < |`1| ∧ `1[i] = `2[j])

Still not sufficient: `1 = [2, 5, 2] and `2 = [2, 5]

The input and output lists have the same length: |`1| = |`2|

Counter-example: `1 = [2, 5, 2] and `2 = [5, 2, 5]

We must to count the number of occurrences of each element!

A. Bouajjani (Univ. Paris Diderot, UP7) L2: Logic-based Program Specification January 2014 11 / 18

Specifying a sorting function (cont.)

The output list is a permutation of the input list.

Can we express this property in
FO(List[?],Nat, {[], ·,@, Lgth,At, 0, s,+}, {=,≤})?

Every element in the input appears in the output, and vice-versa:
∀i ∈ Nat. 0 ≤ i < |`1| ⇒ ∃j ∈ Nat. (0 ≤ j < |`2| ∧ `1[i] = `2[j])
∀i ∈ Nat. 0 ≤ i < |`2| ⇒ ∃j ∈ Nat. (0 ≤ j < |`1| ∧ `1[i] = `2[j])

Still not sufficient: `1 = [2, 5, 2] and `2 = [2, 5]

The input and output lists have the same length: |`1| = |`2|

Counter-example: `1 = [2, 5, 2] and `2 = [5, 2, 5]

We must to count the number of occurrences of each element!

A. Bouajjani (Univ. Paris Diderot, UP7) L2: Logic-based Program Specification January 2014 11 / 18

Specifying a sorting function (cont.)

The output list is a permutation of the input list.

Can we express this property in
FO(List[?],Nat, {[], ·,@, Lgth,At, 0, s,+}, {=,≤})?

Every element in the input appears in the output, and vice-versa:
∀i ∈ Nat. 0 ≤ i < |`1| ⇒ ∃j ∈ Nat. (0 ≤ j < |`2| ∧ `1[i] = `2[j])
∀i ∈ Nat. 0 ≤ i < |`2| ⇒ ∃j ∈ Nat. (0 ≤ j < |`1| ∧ `1[i] = `2[j])

Still not sufficient: `1 = [2, 5, 2] and `2 = [2, 5]

The input and output lists have the same length: |`1| = |`2|

Counter-example: `1 = [2, 5, 2] and `2 = [5, 2, 5]

We must to count the number of occurrences of each element!

A. Bouajjani (Univ. Paris Diderot, UP7) L2: Logic-based Program Specification January 2014 11 / 18

Specifying a sorting function (cont.)

The output list is a permutation of the input list.

Can we express this property in
FO(List[?],Nat, {[], ·,@, Lgth,At, 0, s,+}, {=,≤})?

Every element in the input appears in the output, and vice-versa:
∀i ∈ Nat. 0 ≤ i < |`1| ⇒ ∃j ∈ Nat. (0 ≤ j < |`2| ∧ `1[i] = `2[j])
∀i ∈ Nat. 0 ≤ i < |`2| ⇒ ∃j ∈ Nat. (0 ≤ j < |`1| ∧ `1[i] = `2[j])

Still not sufficient: `1 = [2, 5, 2] and `2 = [2, 5]

The input and output lists have the same length: |`1| = |`2|

Counter-example: `1 = [2, 5, 2] and `2 = [5, 2, 5]

We must to count the number of occurrences of each element!

A. Bouajjani (Univ. Paris Diderot, UP7) L2: Logic-based Program Specification January 2014 11 / 18

Multisets

The domain of multisets: Multiset[?] ≡ ?→ Nat

Operations on multisets:
I ∅ : Multiset[?]
I Sg : ?→ Multiset[?]
I] : Multiset[?]×Multiset[?]→ Multiset[?]

Definitions:
I ∅ = λx ∈ ?. 0
I Sg(a) = λx ∈ ?. if x = a then 1 else 0
I M1]M2 = λx ∈ ?. M1(x) + M2(x)

Example:
Sg(0)] (Sg(5)] Sg(0)) =
λx ∈ Nat. if x = 0 then 2 else (if x = 5 then 1 else 0)

A. Bouajjani (Univ. Paris Diderot, UP7) L2: Logic-based Program Specification January 2014 12 / 18

Multisets

The domain of multisets: Multiset[?] ≡ ?→ Nat

Operations on multisets:
I ∅ : Multiset[?]
I Sg : ?→ Multiset[?]
I] : Multiset[?]×Multiset[?]→ Multiset[?]

Definitions:
I ∅ = λx ∈ ?. 0
I Sg(a) = λx ∈ ?. if x = a then 1 else 0
I M1]M2 = λx ∈ ?. M1(x) + M2(x)

Example:
Sg(0)] (Sg(5)] Sg(0)) =
λx ∈ Nat. if x = 0 then 2 else (if x = 5 then 1 else 0)

A. Bouajjani (Univ. Paris Diderot, UP7) L2: Logic-based Program Specification January 2014 12 / 18

Multisets

The domain of multisets: Multiset[?] ≡ ?→ Nat

Operations on multisets:
I ∅ : Multiset[?]
I Sg : ?→ Multiset[?]
I] : Multiset[?]×Multiset[?]→ Multiset[?]

Definitions:
I ∅ = λx ∈ ?. 0
I Sg(a) = λx ∈ ?. if x = a then 1 else 0
I M1]M2 = λx ∈ ?. M1(x) + M2(x)

Example:
Sg(0)] (Sg(5)] Sg(0)) =
λx ∈ Nat. if x = 0 then 2 else (if x = 5 then 1 else 0)

A. Bouajjani (Univ. Paris Diderot, UP7) L2: Logic-based Program Specification January 2014 12 / 18

Multisets

The domain of multisets: Multiset[?] ≡ ?→ Nat

Operations on multisets:
I ∅ : Multiset[?]
I Sg : ?→ Multiset[?]
I] : Multiset[?]×Multiset[?]→ Multiset[?]

Definitions:
I ∅ = λx ∈ ?. 0
I Sg(a) = λx ∈ ?. if x = a then 1 else 0
I M1]M2 = λx ∈ ?. M1(x) + M2(x)

Example:
Sg(0)] (Sg(5)] Sg(0)) =
λx ∈ Nat. if x = 0 then 2 else (if x = 5 then 1 else 0)

A. Bouajjani (Univ. Paris Diderot, UP7) L2: Logic-based Program Specification January 2014 12 / 18

Multisets: Properties

Neutral element: ∅]M = M] ∅ = M

Commutativity: M1]M2 = M2]M1

Associativity: M1] (M2]M3) = (M1]M2)]M3

Proofs: Use properties of natural numbers.

A. Bouajjani (Univ. Paris Diderot, UP7) L2: Logic-based Program Specification January 2014 13 / 18

Multisets: Properties

Neutral element: ∅]M = M] ∅ = M

Commutativity: M1]M2 = M2]M1

Associativity: M1] (M2]M3) = (M1]M2)]M3

Proofs: Use properties of natural numbers.

A. Bouajjani (Univ. Paris Diderot, UP7) L2: Logic-based Program Specification January 2014 13 / 18

From Lists to Multisets

Abstracting order in a list:

Ms : List[?] → Multiset[?]

Definition:

Ms([]) = ∅
Ms(a · `) = Sg(a)]Ms(`)

Example: Ms(b · a · b · []) = λx ∈ {a, b}. if x = a then 1 else 2

A. Bouajjani (Univ. Paris Diderot, UP7) L2: Logic-based Program Specification January 2014 14 / 18

From Lists to Multisets

Abstracting order in a list:

Ms : List[?] → Multiset[?]

Definition:

Ms([]) = ∅
Ms(a · `) = Sg(a)]Ms(`)

Example: Ms(b · a · b · []) = λx ∈ {a, b}. if x = a then 1 else 2

A. Bouajjani (Univ. Paris Diderot, UP7) L2: Logic-based Program Specification January 2014 14 / 18

From Lists to Multisets (cont.): Properties

Ms(`1@`2) = Ms(`2@`1) = Ms(`1)]Ms(`2)

Ms(Rev(`)) = Ms(`)

Proofs: Induction the structure of lists.

A. Bouajjani (Univ. Paris Diderot, UP7) L2: Logic-based Program Specification January 2014 15 / 18

From Lists to Multisets (cont.): Properties

Ms(`1@`2) = Ms(`2@`1) = Ms(`1)]Ms(`2)

Ms(Rev(`)) = Ms(`)

Proofs: Induction the structure of lists.

A. Bouajjani (Univ. Paris Diderot, UP7) L2: Logic-based Program Specification January 2014 15 / 18

From Lists to Multisets (cont.): Checking membership

Type:
Is in : ?× List[?]→ Bool

Definition:
Is in(a, `) = Ms(`)(a) > 0

A. Bouajjani (Univ. Paris Diderot, UP7) L2: Logic-based Program Specification January 2014 16 / 18

Specifying a sorting function (cont.)

Spec Sort(`, `′) =

∀i , j ,∈ Nat. (0 ≤ i < j < |`| ⇒ `′[i] ≤ `′[j])
∧

Ms(`) = Ms(`′)

A. Bouajjani (Univ. Paris Diderot, UP7) L2: Logic-based Program Specification January 2014 17 / 18

Conclusion

Specifications are abstract definitions of the effect of functions

No implementation details are imposed.

Logic is a natural for abstract description of input-output relations

Abstraction allows modular design:
I The user of a function needs only to know its specification.
I The implementor must ensure the satisfaction of the specification.

A. Bouajjani (Univ. Paris Diderot, UP7) L2: Logic-based Program Specification January 2014 18 / 18

