Theme 1: Abstract Reasoning

Lecture 2: Logic-based Program Specification

Ahmed Bouajjani
Paris Diderot University, Paris 7

January 2014

Abstract Specification of a Function

- Consider a function

$$
f: \text { Dom } \rightarrow \text { CoDom }
$$

- How to describe in an abstract way its behavior ?
- Abstraction: No implementation details.
- Specification: A relation Spec_f between inputs and outputs of f

$$
\text { Spec_f }(\operatorname{In}, O u t) \subseteq D o m \times C o D o m
$$

- What is a suitable (natural) formalism for describing such a relation?

Logic-based Specification Language

- Example: Specification of the Append function:

$$
\begin{aligned}
& \text { Spec_Append }\left(\ell_{1}, \ell_{2}, \ell\right)= \\
& |\ell|=\left|\ell_{1}\right|+\left|\ell_{2}\right| \wedge \\
& \forall i \in N a t .\left(0 \leq i<\left|\ell_{1}\right|\right) \Rightarrow \ell[i]=\ell_{1}[i] \wedge \\
& \forall i \in \operatorname{Nat.}\left(0 \leq i<\left|\ell_{2}\right|\right) \Rightarrow \ell\left[\left|\ell_{1}\right|+i\right]=\ell_{2}[i]
\end{aligned}
$$

where:

$$
\begin{aligned}
& \forall \ell \in \operatorname{List}[\star] . \forall i \in N a t . \forall e \in \star . \quad \ell[i]=e \Longleftrightarrow \\
& \quad(i<|\ell|) \wedge \\
& \exists \ell^{\prime} .\left(\ell=a \cdot \ell^{\prime} \wedge\right. \\
& \left.\quad\left((i=0 \wedge e=a) \vee\left(i>0 \wedge e=\ell^{\prime}[i-1]\right)\right)\right)
\end{aligned}
$$

Logic-based Specification Language

- Example: Specification of the Append function:

$$
\begin{aligned}
& \text { Spec_Append }\left(\ell_{1}, \ell_{2}, \ell\right)= \\
& |\ell|=\left|\ell_{1}\right|+\left|\ell_{2}\right| \wedge \\
& \forall i \in \operatorname{Nat.}\left(0 \leq i<\left|\ell_{1}\right|\right) \Rightarrow \ell[i]=\ell_{1}[i] \wedge \\
& \forall i \in \operatorname{Nat.}\left(0 \leq i<\left|\ell_{2}\right|\right) \Rightarrow \ell\left[\left|\ell_{1}\right|+i\right]=\ell_{2}[i]
\end{aligned}
$$

where:

$$
\begin{aligned}
& \forall \ell \in \operatorname{List}[\star] . \forall i \in N a t . \forall e \in \star . \quad \ell[i]=e \Longleftrightarrow \\
& \quad(i<|\ell|) \wedge \\
& \exists \ell^{\prime} .\left(\ell=a \cdot \ell^{\prime} \wedge\right. \\
& \left.\quad\left((i=0 \wedge e=a) \vee\left(i>0 \wedge e=\ell^{\prime}[i-1]\right)\right)\right)
\end{aligned}
$$

- \Rightarrow First-order logic over data domains (natural numbers, lists, etc.)

Domains of Interpretation

- Data domain with a set of operations and predicates
- Consider a data domain D
- Let $O p$ be a set of operations interpreted as functions over D
- Let Pred be a set of predicates interpreted as relations over D
- Remark:

Here the set Op may include constants, seen as operators or arity 0 .

Domains of Interpretation

- Data domain with a set of operations and predicates
- Consider a data domain D
- Let $O p$ be a set of operations interpreted as functions over D
- Let Pred be a set of predicates interpreted as relations over D
- Remark:

Here the set Op may include constants, seen as operators or arity 0 .

- Domain of interpretation is a triple ($D, O p, R e l$).

Domains of Interpretation

- Data domain with a set of operations and predicates
- Consider a data domain D
- Let $O p$ be a set of operations interpreted as functions over D
- Let Pred be a set of predicates interpreted as relations over D
- Remark:

Here the set Op may include constants, seen as operators or arity 0 .

- Domain of interpretation is a triple ($D, O p, R e l$).
- Examples of domains of interpretation:
- (Bool, $\{\mathrm{tt}, \mathrm{ff}$, not, or, and $\},\{=\}$)
- (Nat, $\{0, s,+\},\{\leq\})$
- (List $[\star],\{[], \cdot, @\},\{=\})$

First Order Logic over a Data Domain

- Let (D, Op, Pred) be a domain of interpretation.
- Let Var be a set of variables.
- Terms:

$$
t::=v \in \operatorname{Var} \mid o p(t, \ldots, t)
$$

where $v \in V a r$ and $o p \in O p$.

First Order Logic over a Data Domain

- Let (D, Op, Pred) be a domain of interpretation.
- Let Var be a set of variables.
- Terms:

$$
t::=v \in \operatorname{Var} \mid o p(t, \ldots, t)
$$

where $v \in V a r$ and $o p \in O p$.

- Examples: $x, 2, x+2, x+y+3$, and $2 x$ as an abbreviation of $x+x$.

First Order Logic over a Data Domain

- Let (D, Op, Pred) be a domain of interpretation.
- Let Var be a set of variables.
- Terms:

$$
t::=v \in \operatorname{Var} \mid o p(t, \ldots, t)
$$

where $v \in V a r$ and $o p \in O p$.

- Examples: $x, 2, x+2, x+y+3$, and $2 x$ as an abbreviation of $x+x$.
- Terms are interpreted as elements of the domain D :
- Let $\nu: \operatorname{Var} \rightarrow D$ be a valuation of the variables.
- Then, $\langle t\rangle_{\nu}$ is the value in D obtained by the evaluation of t, using ν as valuation of the variables.

First Order Logic over a Data Domain

- Let (D, Op, Pred) be a domain of interpretation.
- Let Var be a set of variables.
- Terms:

$$
t::=v \in \operatorname{Var} \mid o p(t, \ldots, t)
$$

where $v \in V a r$ and $o p \in O p$.

- Examples: $x, 2, x+2, x+y+3$, and $2 x$ as an abbreviation of $x+x$.
- Terms are interpreted as elements of the domain D :
- Let $\nu: \operatorname{Var} \rightarrow D$ be a valuation of the variables.
- Then, $\langle t\rangle_{\nu}$ is the value in D obtained by the evaluation of t, using ν as valuation of the variables.
- Example: Given $\nu=\{(x, 2),(y, 1),(z, 4)\}$, we have

$$
\langle x\rangle_{\nu}=2 \quad\langle x+2 y\rangle_{\nu}=4 \quad\langle(x * z)+(y+1)\rangle_{\nu}=10
$$

First Order Logic: Syntax of formulas

- Formulas:

$$
\phi::=p\left(t_{1}, \ldots, t_{n}\right)|\neg \phi| \phi \vee \phi \mid \exists v . \phi
$$

where $p \in$ Pred and $v \in \operatorname{Var}$.

- Examples: $2 x+y \leq z, x=y$ as an abbreviation of $x \leq y \wedge y \leq x, x<y$ as an abbrev. of $x \leq y \wedge \neg(x=y)$.
- An occurrence of a variable x is bound in a formula ϕ if it is under a quantifier $\exists x$. We assume that all occurrences of a variable are either bound or unbound in a formula. A variable is free in ϕ if its occurrences in ϕ are unbound. A formula is closed if it has not free variables.
- Examples:
- $\phi_{1}=\forall x, y . x \leq y \Rightarrow \exists z .(x \leq z \wedge z<y)$ is a closed formula.
- $\phi_{2}=\exists x . \forall y . x \leq y$ is a closed formula.
- $\phi_{3}=\forall y . x \leq y$, is an open formula. It has x as free variable.
- $\phi_{4}=x \leq y \wedge \exists z . y \leq z \wedge z \leq 5$ is an open formula. Its free variables are x and y.

First Order Logic: Semantics of formulas

- Given a valuation $\nu: \operatorname{Var} \rightarrow D$ of the variables, ν satisfies ϕ if and only if $\phi[\nu(x) / x]$ is true, i.e., when interpreting the formula using ν, the formula is true.
- Formulas are interpreted as relations over D, i.e., the sets of valuations of the variables that satisfy the formula.
- Let $\llbracket \phi \rrbracket$ be the set of valuations ν which satisfy ϕ.
- A formula is valid if it is satisfied by all valuations. A formula is satisfiable if there exists a valuation that satisfies it.
- Remark:

Closed formulas are either true (valid) or false: Their value does depend on the variable valuation. Either all variable valuations satisfy them, or none of the valuations can satisfy them.

- Question: what can we say about the formulas in the previous slides?

Example: The head and tail functions

- head function:

$$
\begin{aligned}
\text { head } & : \operatorname{List}[\star] \rightarrow \star \\
\operatorname{Spec} \text { _head }(\ell, a) & =\exists \ell^{\prime} \in \operatorname{List}[\star] \cdot \ell=a \cdot \ell^{\prime}
\end{aligned}
$$

- tail function:

$$
\begin{gathered}
\text { tail : List }[\star] \rightarrow \text { List }[\star] \\
\text { Spec_tail }\left(\ell, \ell^{\prime}\right)=\exists a \in \star \cdot \ell=a \cdot \ell^{\prime}
\end{gathered}
$$

Multi-sorted Logics

- In general we need to reason about several data domains simultaneously.
- We will consider domains of interpretation of the form

$$
\left(D_{1}, \ldots, D_{n}, O p, R e l\right)
$$

where the operations and relations are defined over one or several of the data domains D_{1}, \ldots, D_{n}.

- Example: $(\operatorname{List}[\star], N a t,\{[], \cdot, @, L g t h, A t, 0, s,+\},\{=, \leq\})$

Specifying a sorting function

Define an Input-Output relation Spec_Sort $\left(\ell, \ell^{\prime}\right)$?

Specifying a sorting function

Define an Input-Output relation Spec_Sort $\left(\ell, \ell^{\prime}\right)$?

- The output list is ordered:
$\operatorname{Ordered}(\ell)=\forall i, j, \in \operatorname{Nat} .(0 \leq i<j<|\ell| \Rightarrow \ell[i] \leq \ell[j])$

Specifying a sorting function

Define an Input-Output relation Spec_Sort $\left(\ell, \ell^{\prime}\right)$?

- The output list is ordered:

$$
\operatorname{Ordered}(\ell)=\forall i, j, \in \operatorname{Nat} .(0 \leq i<j<|\ell| \Rightarrow \ell[i] \leq \ell[j])
$$

- Is it complete?

Specifying a sorting function (cont.)

- The output list is a permutation of the input list.

Specifying a sorting function (cont.)

- The output list is a permutation of the input list.
- Can we express this property in FO $(\operatorname{List}[\star], N a t,\{[], \cdot, @, \operatorname{Lgth}, A t, 0, s,+\},\{=, \leq\}) ?$

Specifying a sorting function (cont.)

- The output list is a permutation of the input list.
- Can we express this property in FO (List $[\star], N a t,\{[], \cdot, @, \operatorname{Lgth}, A t, 0, s,+\},\{=, \leq\})$?
- Every element in the input appears in the output, and vice-versa: $\forall i \in N a t .0 \leq i<\left|\ell_{1}\right| \Rightarrow \exists j \in \operatorname{Nat} .\left(0 \leq j<\left|\ell_{2}\right| \wedge \ell_{1}[i]=\ell_{2}[j]\right)$ $\forall i \in N a t .0 \leq i<\left|\ell_{2}\right| \Rightarrow \exists j \in \operatorname{Nat} .\left(0 \leq j<\left|\ell_{1}\right| \wedge \ell_{1}[i]=\ell_{2}[j]\right)$

Specifying a sorting function (cont.)

- The output list is a permutation of the input list.
- Can we express this property in FO (List[^], Nat, $\{[], \cdot$, @, Lgth, At $, 0, s,+\},\{=, \leq\})$?
- Every element in the input appears in the output, and vice-versa: $\forall i \in N a t .0 \leq i<\left|\ell_{1}\right| \Rightarrow \exists j \in \operatorname{Nat} .\left(0 \leq j<\left|\ell_{2}\right| \wedge \ell_{1}[i]=\ell_{2}[j]\right)$ $\forall i \in N a t .0 \leq i<\left|\ell_{2}\right| \Rightarrow \exists j \in \operatorname{Nat} .\left(0 \leq j<\left|\ell_{1}\right| \wedge \ell_{1}[i]=\ell_{2}[j]\right)$
- Still not sufficient: $\ell_{1}=[2,5,2]$ and $\ell_{2}=[2,5]$

Specifying a sorting function (cont.)

- The output list is a permutation of the input list.
- Can we express this property in FO $(\operatorname{List}[\star], N a t,\{[], \cdot, @, \operatorname{Lgth}, A t, 0, s,+\},\{=, \leq\})$?
- Every element in the input appears in the output, and vice-versa: $\forall i \in N a t .0 \leq i<\left|\ell_{1}\right| \Rightarrow \exists j \in \operatorname{Nat} .\left(0 \leq j<\left|\ell_{2}\right| \wedge \ell_{1}[i]=\ell_{2}[j]\right)$ $\forall i \in N a t .0 \leq i<\left|\ell_{2}\right| \Rightarrow \exists j \in \operatorname{Nat} .\left(0 \leq j<\left|\ell_{1}\right| \wedge \ell_{1}[i]=\ell_{2}[j]\right)$
- Still not sufficient: $\ell_{1}=[2,5,2]$ and $\ell_{2}=[2,5]$
- The input and output lists have the same length: $\left|\ell_{1}\right|=\left|\ell_{2}\right|$

Specifying a sorting function (cont.)

- The output list is a permutation of the input list.
- Can we express this property in FO (List $[\star]$, Nat, $\{[], \cdot, @, \operatorname{Lgth}, A t, 0, s,+\},\{=, \leq\})$?
- Every element in the input appears in the output, and vice-versa: $\forall i \in N a t .0 \leq i<\left|\ell_{1}\right| \Rightarrow \exists j \in \operatorname{Nat} .\left(0 \leq j<\left|\ell_{2}\right| \wedge \ell_{1}[i]=\ell_{2}[j]\right)$ $\forall i \in N a t .0 \leq i<\left|\ell_{2}\right| \Rightarrow \exists j \in \operatorname{Nat} .\left(0 \leq j<\left|\ell_{1}\right| \wedge \ell_{1}[i]=\ell_{2}[j]\right)$
- Still not sufficient: $\ell_{1}=[2,5,2]$ and $\ell_{2}=[2,5]$
- The input and output lists have the same length: $\left|\ell_{1}\right|=\left|\ell_{2}\right|$
- Counter-example: $\ell_{1}=[2,5,2]$ and $\ell_{2}=[5,2,5]$

Specifying a sorting function (cont.)

- The output list is a permutation of the input list.
- Can we express this property in FO (List[$[\star]$, Nat, $\{[], \cdot, @, \operatorname{Lgth}, A t, 0, s,+\},\{=, \leq\})$?
- Every element in the input appears in the output, and vice-versa: $\forall i \in N a t .0 \leq i<\left|\ell_{1}\right| \Rightarrow \exists j \in \operatorname{Nat} .\left(0 \leq j<\left|\ell_{2}\right| \wedge \ell_{1}[i]=\ell_{2}[j]\right)$ $\forall i \in N a t .0 \leq i<\left|\ell_{2}\right| \Rightarrow \exists j \in \operatorname{Nat} .\left(0 \leq j<\left|\ell_{1}\right| \wedge \ell_{1}[i]=\ell_{2}[j]\right)$
- Still not sufficient: $\ell_{1}=[2,5,2]$ and $\ell_{2}=[2,5]$
- The input and output lists have the same length: $\left|\ell_{1}\right|=\left|\ell_{2}\right|$
- Counter-example: $\ell_{1}=[2,5,2]$ and $\ell_{2}=[5,2,5]$
- We must to count the number of occurrences of each element!

Multisets

- The domain of multisets: Multiset $[\star] \equiv \star \rightarrow$ Nat

Multisets

- The domain of multisets: Multiset $[\star] \equiv \star \rightarrow$ Nat
- Operations on multisets:
- $\emptyset:$ Multiset $[\star]$
- Sg : $\star \rightarrow$ Multiset $[\star]$
- \uplus : Multiset $[\star] \times$ Multiset $[\star] \rightarrow$ Multiset $[\star]$

Multisets

- The domain of multisets: Multiset $[\star] \equiv \star \rightarrow$ Nat
- Operations on multisets:
- $\emptyset:$ Multiset $[\star]$
- Sg : $\star \rightarrow$ Multiset $[\star]$
- \uplus : Multiset $[\star] \times$ Multiset $[\star] \rightarrow$ Multiset $[\star]$
- Definitions:
- $\emptyset=\lambda x \in \star .0$
- $\operatorname{Sg}(a)=\lambda x \in \star$. if $x=a$ then 1 else 0
- $M_{1} \uplus M_{2}=\lambda x \in \star . M_{1}(x)+M_{2}(x)$

Multisets

- The domain of multisets: Multiset $[\star] \equiv \star \rightarrow$ Nat
- Operations on multisets:
- $\emptyset:$ Multiset $[\star]$
- Sg : $\star \rightarrow$ Multiset $[\star]$
- \uplus : Multiset $[\star] \times$ Multiset $[\star] \rightarrow$ Multiset $[\star]$
- Definitions:
- $\emptyset=\lambda x \in \star .0$
- $\operatorname{Sg}(a)=\lambda x \in \star$. if $x=a$ then 1 else 0
- $M_{1} \uplus M_{2}=\lambda x \in \star . M_{1}(x)+M_{2}(x)$
- Example:
$S g(0) \uplus(S g(5) \uplus S g(0))=$
$\lambda x \in N a t$. if $x=0$ then 2 else (if $x=5$ then 1 else 0)

Multisets: Properties

- Neutral element: $\emptyset \uplus M=M \uplus \emptyset=M$
- Commutativity: $M_{1} \uplus M_{2}=M_{2} \uplus M_{1}$
- Associativity: $M_{1} \uplus\left(M_{2} \uplus M_{3}\right)=\left(M_{1} \uplus M_{2}\right) \uplus M_{3}$

Multisets: Properties

- Neutral element: $\emptyset \uplus M=M \uplus \emptyset=M$
- Commutativity: $M_{1} \uplus M_{2}=M_{2} \uplus M_{1}$
- Associativity: $M_{1} \uplus\left(M_{2} \uplus M_{3}\right)=\left(M_{1} \uplus M_{2}\right) \uplus M_{3}$
- Proofs: Use properties of natural numbers.

From Lists to Multisets

- Abstracting order in a list:

$$
\text { Ms : List }[\star] \rightarrow \text { Multiset }[\star]
$$

- Definition:

$$
\begin{aligned}
\operatorname{Ms}([]) & =\emptyset \\
\operatorname{Ms}(a \cdot \ell) & =S g(a) \uplus \operatorname{Ms}(\ell)
\end{aligned}
$$

From Lists to Multisets

- Abstracting order in a list:

$$
\text { Ms : List }[\star] \rightarrow \text { Multiset }[\star]
$$

- Definition:

$$
\begin{aligned}
\operatorname{Ms}([]) & =\emptyset \\
\operatorname{Ms}(a \cdot \ell) & =S g(a) \uplus \operatorname{Ms}(\ell)
\end{aligned}
$$

- Example: $\operatorname{Ms}(b \cdot a \cdot b \cdot[])=\lambda x \in\{a, b\}$. if $x=a$ then 1 else 2

From Lists to Multisets (cont.): Properties

- $\operatorname{Ms}\left(\ell_{1} @ \ell_{2}\right)=\operatorname{Ms}\left(\ell_{2} @ \ell_{1}\right)=\operatorname{Ms}\left(\ell_{1}\right) \uplus \operatorname{Ms}\left(\ell_{2}\right)$
- $\operatorname{Ms}(\operatorname{Rev}(\ell))=\operatorname{Ms}(\ell)$

From Lists to Multisets (cont.): Properties

- $\operatorname{Ms}\left(\ell_{1} @ \ell_{2}\right)=\operatorname{Ms}\left(\ell_{2} @ \ell_{1}\right)=\operatorname{Ms}\left(\ell_{1}\right) \uplus \operatorname{Ms}\left(\ell_{2}\right)$
- $\operatorname{Ms}(\operatorname{Rev}(\ell))=\operatorname{Ms}(\ell)$
- Proofs: Induction the structure of lists.

From Lists to Multisets (cont.): Checking membership

- Type:

$$
\text { Is_in : } \star \times \text { List }[\star] \rightarrow \text { Bool }
$$

- Definition:

$$
\operatorname{Is_ in}(a, \ell)=M s(\ell)(a)>0
$$

Specifying a sorting function (cont.)

Spec_Sort $\left(\ell, \ell^{\prime}\right)=$

$$
\begin{aligned}
\forall i, j, \in \operatorname{Nat} .(0 \leq i<j & \left.<|\ell| \Rightarrow \ell^{\prime}[i] \leq \ell^{\prime}[j]\right) \\
& \wedge \\
M s(\ell) & =\operatorname{Ms}\left(\ell^{\prime}\right)
\end{aligned}
$$

Conclusion

- Specifications are abstract definitions of the effect of functions
- No implementation details are imposed.
- Logic is a natural for abstract description of input-output relations
- Abstraction allows modular design:
- The user of a function needs only to know its specification.
- The implementor must ensure the satisfaction of the specification.

