Theme 1: Abstract Reasoning

Lecture 2: Logic-based Program Specification

Ahmed Bouajjani

Paris Diderot University, Paris 7

January 2014

A. Bouajjani (Univ. Paris Diderot, UP7) L2: Logic-based Program Specification

Abstract Specification of a Function

@ Consider a function
f : Dom — CoDom

How to describe in an abstract way its behavior ?

Abstraction: No implementation details.

Specification: A relation Spec_f between inputs and outputs of f

Spec_f(In, Out) C Dom x CoDom

What is a suitable (natural) formalism for describing such a relation?

A. Bouajjani (Univ. Paris Diderot, UP7) L2: Logic-based Program Specification January 2014 2/18

Logic-based Specification Language

@ Example: Specification of the Append function:
Spec_Append ({1, 4z, 0) =
|| = |b1] + |€2| A
Vi€ Nat. (0 <i<|l1]) = L[] =t1[i] A
Vi € Nat. (0 < i < |la|) = L[|l1] + 1] = L2]i]

where:

Ve € List[x]. Vi € Nat. Ve € . {[i] =e <
(i <€) A
. (t=a-l' A
(i=0ne=a)V(i>0Ane="![i—1])))

A. Bouajjani (Univ. Paris Diderot, UP7) L2: Logic-based Program Specification January 2014 3/18

Logic-based Specification Language

@ Example: Specification of the Append function:
Spec_Append ({1, 4z, 0) =
|| = |b1] + |€2| A
Vi e Nat. (0 < i< l1|) = L[i]=]i] A
Vi € Nat. (0 < i < |la|) = L[|l1] + 1] = L2]i]

where:

Ve € List[x]. Vi € Nat. Ve € . {[i] =e <
(i< 1€]) A
. (t=a-l' A

(i=0ne=a)V(i>0Ae="L[i—1]))

e = First-order logic over data domains (natural numbers, lists, etc.)

A. Bouajjani (Univ. Paris Diderot, UP7) L2: Logic-based Program Specification January 2014 3/18

Domains of Interpretation

@ Data domain with a set of operations and predicates

» Consider a data domain D
» Let Op be a set of operations interpreted as functions over D
> Let Pred be a set of predicates interpreted as relations over D

@ Remark:
Here the set Op may include constants, seen as operators or arity Q.

A. Bouajjani (Univ. Paris Diderot, UP7) L2: Logic-based Program Specification January 2014 4/18

Domains of Interpretation

@ Data domain with a set of operations and predicates

» Consider a data domain D
» Let Op be a set of operations interpreted as functions over D
> Let Pred be a set of predicates interpreted as relations over D

@ Remark:
Here the set Op may include constants, seen as operators or arity Q.

e Domain of interpretation is a triple (D, Op, Rel).

A. Bouajjani (Univ. Paris Diderot, UP7) L2: Logic-based Program Specification January 2014 4/18

Domains of Interpretation

Data domain with a set of operations and predicates

» Consider a data domain D
» Let Op be a set of operations interpreted as functions over D
» Let Pred be a set of predicates interpreted as relations over D

@ Remark:
Here the set Op may include constants, seen as operators or arity Q.

@ Examples of domains of interpretation:
» (Bool, {tt,ff,not, or,and}, {=})
> (Nat,{0,s,+},{<})
> (LiSt[*]v {[]7 K @}7 {:})

Domain of interpretation is a triple (D, Op, Rel).

A. Bouajjani (Univ. Paris Diderot, UP7) L2: Logic-based Program Specification January 2014 4/18

First Order Logic over a Data Domain

e Let (D, Op, Pred) be a domain of interpretation.
@ Let Var be a set of variables.

@ Terms:
t=ve Var|op(t,...,t)

where v € Var and op € Op.

A. Bouajjani (Univ. Paris Diderot, UP7) L2: Logic-based Program Specification January 2014 5/18

First Order Logic over a Data Domain

e Let (D, Op, Pred) be a domain of interpretation.
@ Let Var be a set of variables.

@ Terms:
t=ve Var|op(t,...,t)

where v € Var and op € Op.

e Examples: x, 2, x +2, x+y + 3, and 2x as an abbreviation of x + x.

A. Bouajjani (Univ. Paris Diderot, UP7) L2: Logic-based Program Specification January 2014 5/18

First Order Logic over a Data Domain

Let (D, Op, Pred) be a domain of interpretation.
@ Let Var be a set of variables.

o Terms:
t=ve Var|op(t,...,t)

where v € Var and op € Op.

Examples: x, 2, x + 2, x +y + 3, and 2x as an abbreviation of x + x.

@ Terms are interpreted as elements of the domain D:
» Let v : Var — D be a valuation of the variables.

» Then, (t), is the value in D obtained by the evaluation of ¢, using v as
valuation of the variables.

A. Bouajjani (Univ. Paris Diderot, UP7) L2: Logic-based Program Specification January 2014 5/18

First Order Logic over a Data Domain

e Let (D, Op, Pred) be a domain of interpretation.
@ Let Var be a set of variables.

o Terms:
t=ve Var|op(t,...,t)

where v € Var and op € Op.

o Examples: x, 2, x+ 2, x+ y + 3, and 2x as an abbreviation of x + x.

@ Terms are interpreted as elements of the domain D:
» Let v: Var — D be a valuation of the variables.
» Then, (t), is the value in D obtained by the evaluation of ¢, using v as
valuation of the variables.
» Example: Given v = {(x,2),(y,1),(z,4)}, we have
(e =2 (x+2y) =4 ((x2)+(y+1)), =10

A. Bouajjani (Univ. Paris Diderot, UP7) L2: Logic-based Program Specification January 2014 5/18

First Order Logic: Syntax of formulas

@ Formulas:
¢ = p(t... tn) 6|9V |Iv. ¢
where p € Pred and v € Var.

@ Examples: 2x +y <z, x =y as an abbreviation of x <y Ay < x, x <y
as an abbrev. of x < y A =(x =y).

@ An occurrence of a variable x is bound in a formula ¢ if it is under a
quantifier 3x. We assume that all occurrences of a variable are either bound
or unbound in a formula. A variable is free in ¢ if its occurrences in ¢ are
unbound. A formula is closed if it has not free variables.

@ Examples:
» 1 =Vx,y. x <y=3z. (x <zAz<y)is a closed formula.
¢o = Ix. Vy. x < y is a closed formula.
¢3 =Vy.x <y, is an open formula. It has x as free variable.
¢ =x<yAN3TJz.y <zAz<5isan open formula. Its free variables
are x and y.

v

v

v

A. Bouajjani (Univ. Paris Diderot, UP7) L2: Logic-based Program Specification January 2014 6 /18

First Order Logic: Semantics of formulas

@ Given a valuation v : Var — D of the variables, v satisfies ¢ if and
only if ¢[v(x)/x] is true, i.e., when interpreting the formula using v,
the formula is true.

@ Formulas are interpreted as relations over D, i.e., the sets of
valuations of the variables that satisfy the formula.

o Let [¢] be the set of valuations v which satisfy ¢.

@ A formula is valid if it is satisfied by all valuations. A formula is
satisfiable if there exists a valuation that satisfies it.

@ Remark:
Closed formulas are either true (valid) or false: Their value does
depend on the variable valuation. Either all variable valuations
satisfy them, or none of the valuations can satisfy them.

@ Question: what can we say about the formulas in the previous slides?

A. Bouajjani (Univ. Paris Diderot, UP7) L2: Logic-based Program Specification January 2014 7 /18

Example: The head and tail functions

@ head function:
head : List[x] — %
Spec_head(¢,a) = ' € List[x]. £ =a- ¥

@ tail function:

tail : List[x] — List[x]
Spec_tail((,0') = Jaecx L=a-l

A. Bouajjani (Univ. Paris Diderot, UP7) L2: Logic-based Program Specification January 2014 8 /18

Multi-sorted Logics

@ In general we need to reason about several data domains
simultaneously.

@ We will consider domains of interpretation of the form
(D1, ...,Dp, Op, Rel)

where the operations and relations are defined over one or several of
the data domains Dy, ..., D,.

e Example: (List[«], Nat,{[],-, @, Lgth, At,0,s,+},{=,<})

A. Bouajjani (Univ. Paris Diderot, UP7) L2: Logic-based Program Specification January 2014 9 /18

Specifying a sorting function

Define an Input-Output relation Spec_Sort(¢,¢') ?

A. Bouajjani (Univ. Paris Diderot, UP7) L2: Logic-based Program Specification

Specifying a sorting function

Define an Input-Output relation Spec_Sort(¢,¢') ?

@ The output list is ordered:

Ordered(¢) = Vi, j, € Nat. (0 <i<j<|l|=[i] <?[])

A. Bouajjani (Univ. Paris Diderot, UP7) L2: Logic-based Program Specification January 2014 10 / 18

Specifying a sorting function

Define an Input-Output relation Spec_Sort(¢,¢') ?

@ The output list is ordered:

Ordered(¢) = Vi, j, € Nat. (0 <i<j<|l|=[i] <?[])

@ Is it complete ?

A. Bouajjani (Univ. Paris Diderot, UP7) L2: Logic-based Program Specification January 2014 10 / 18

Specifying a sorting function (cont.)

@ The output list is a permutation of the input list.

A. Bouajjani (Univ. Paris Diderot, UP7) L2: Logic-based Program Specification

Specifying a sorting function (cont.)

@ The output list is a permutation of the input list.

@ Can we express this property in
FO(List[x], Nat,{]],-, @, Lgth, At,0,s,+},{=,<})?

A. Bouajjani (Univ. Paris Diderot, UP7) L2: Logic-based Program Specification January 2014 11 /18

Specifying a sorting function (cont.)

@ The output list is a permutation of the input list.

@ Can we express this property in
FO(List[«], Nat,{[], -, @, Lgth, At,0,s,+},{=,<})?

@ Every element in the input appears in the output, and vice-versa:
Vie Nat. 0< i < |£1‘ = Jj € Nat. (0 <j< ’52’ /\El[i] = fz[j])
Vie Nat.0 < i< |la] = Fj € Nat. (0 <j < |[l1] A 41]i] = £2[)])

A. Bouajjani (Univ. Paris Diderot, UP7) L2: Logic-based Program Specification January 2014 11 /18

Specifying a sorting function (cont.)

@ The output list is a permutation of the input list.

@ Can we express this property in
FO(LiSt[*]’ Nat’ {[]7 B ©’ Lgth? At? 07 S’ +}’ {:’ S})?

@ Every element in the input appears in the output, and vice-versa:
Vie Nat. 0 <i< |l1] = 3Fj € Nat. (0 <j < |[la] A l1]i] = £2])])
Vie Nat. 0 <i< |la] = 3j € Nat. (0<j<|l1] Nl1][i] = £2]j])

e Still not sufficient: ¢1 = [2,5,2] and ¢, = [2,5]

A. Bouajjani (Univ. Paris Diderot, UP7) L2: Logic-based Program Specification January 2014 11 /18

Specifying a sorting function (cont.)

@ The output list is a permutation of the input list.

@ Can we express this property in
FO(List[x], Nat,{[],-, @, Lgth, At,0,s, +}, {=,<})?

@ Every element in the input appears in the output, and vice-versa:
Vie Nat. 0 <i< |l1] = 3Fj € Nat. (0 <j < |[la] A l1]i] = £2])])
Vie Nat. 0 <i< |la] = 3j € Nat. (0<j<|l1] Nl1][i] = £2]j])

e Still not sufficient: ¢1 = [2,5,2] and ¢, = [2,5]
@ The input and output lists have the same length: |¢1| = |{2]

January 2014 11 /18

A. Bouajjani (Univ. Paris Diderot, UP7) L2: Logic-based Program Specification

Specifying a sorting function (cont.)

@ The output list is a permutation of the input list.

@ Can we express this property in
FO(List[x], Nat,{[],-, @, Lgth, At,0,s, +}, {=,<})?

@ Every element in the input appears in the output, and vice-versa:
Vie Nat. 0 <i< |l1] = 3Fj € Nat. (0 <j < |[la] A l1]i] = £2])])
Vie Nat. 0 <i< |la] = 3j € Nat. (0<j<|l1] Nl1][i] = £2]j])

e Still not sufficient: ¢1 = [2,5,2] and ¢, = [2,5]
@ The input and output lists have the same length: |¢1| = |{2]
e Counter-example: /1 = [2,5,2] and ¢, = [5,2,5]

A. Bouajjani (Univ. Paris Diderot, UP7) L2: Logic-based Program Specification January 2014 11 /18

Specifying a sorting function (cont.)

@ The output list is a permutation of the input list.

@ Can we express this property in
FO(List[x], Nat,{[],-, @, Lgth, At,0,s, +}, {=,<})?

@ Every element in the input appears in the output, and vice-versa:
Vie Nat. 0 <i< |l1] = 3Fj € Nat. (0 <j < |[la] A l1]i] = £2])])
Vie Nat. 0 <i< |la] = 3j € Nat. (0<j<|l1] Nl1][i] = £2]j])

e Still not sufficient: ¢1 = [2,5,2] and ¢, = [2,5]
@ The input and output lists have the same length: |¢1| = |{2]
e Counter-example: /1 = [2,5,2] and ¢, = [5,2,5]

@ We must to count the number of occurrences of each element!

A. Bouajjani (Univ. Paris Diderot, UP7) L2: Logic-based Program Specification January 2014 11 /18

Multisets

@ The domain of multisets: Multiset[x] = x — Nat

A. Bouajjani (Univ. Paris Diderot, UP7) L2: Logic-based Program Specification

Multisets

@ The domain of multisets: Multiset[x] = x — Nat

@ Operations on multisets:
» () : Multiset[x]
> Sg :* — Multiset[*]
» W Multiset[x] x Multiset[x] — Multiset[x]

A. Bouajjani (Univ. Paris Diderot, UP7) L2: Logic-based Program Specification January 2014 12 /18

Multisets

@ The domain of multisets: Multiset[x] = x — Nat

@ Operations on multisets:
» () : Multiset[x]
> Sg :x — Multiset[x]
» W Multiset[x] x Multiset[x] — Multiset[x]

@ Definitions:
» P=Xxe*0
» Sg(a) = Ax € x. if x = athenlelse
> My W My, = Ax € *. Ml(X) + M2(X)

A. Bouajjani (Univ. Paris Diderot, UP7) L2: Logic-based Program Specification January 2014 12 /18

Multisets

@ The domain of multisets: Multiset[x] = x — Nat

Operations on multisets:

» () : Multiset[x]

> Sg :* — Multiset[*]

» W Multiset[x] x Multiset[x] — Multiset[x]
@ Definitions:
» =X x€ex0

» Sg(a) = Ax € x. if x = athenlelse
> My W My, = Ax € *. Ml(X) + M2(X)

Example:
5g(0) ¥ (Sg(5) ¥ 5¢(0)) =
Ax € Nat. if x = 0 then 2 else (if x =5 then 1 else 0)

A. Bouajjani (Univ. Paris Diderot, UP7) L2: Logic-based Program Specification January 2014 12 /18

Multisets: Properties

o Neutral element: QWM =My =M
o Commutativity: My & My = My W My
@ Associativity: M W (M2] M3) = (M1 (] Mg) W M3

A. Bouajjani (Univ. Paris Diderot, UP7) L2: Logic-based Program Specification January 2014 13 /18

Multisets: Properties

o Neutral element: WM =My =M

o Commutativity: My & My = My W My
@ Associativity: M W (M2] M3) = (M1 (] Mg) W M3
@ Proofs: Use properties of natural numbers.

A. Bouajjani (Univ. Paris Diderot, UP7) L2: Logic-based Program Specification January 2014 13 /18

From Lists to Multisets

@ Abstracting order in a list:

Ms : List[*] — Multiset[*]

@ Definition:

Ms(l) = 0
Ms(a-¢) = Sg(a)Ww Ms(¢)

A. Bouajjani (Univ. Paris Diderot, UP7) L2: Logic-based Program Specification January 2014 14 / 18

From Lists to Multisets

@ Abstracting order in a list:

Ms : List[*] — Multiset[*]

@ Definition:

Ms(l) = 0
Ms(a-¢) = Sg(a)Ww Ms(¢)

e Example: Ms(b-a-b-[]) = Ax € {a,b}. if x = athen 1 else 2

A. Bouajjani (Univ. Paris Diderot, UP7) L2: Logic-based Program Specification January 2014 14 / 18

From Lists to Multisets (cont.): Properties

o Ms(fl@fz) = Ms(éz@él) = Ms(el) (] MS(EQ)

o Ms(Rev(¢)) = Ms(¢)

A. Bouajjani (Univ. Paris Diderot, UP7) L2: Logic-based Program Specification January 2014 15 / 18

From Lists to Multisets (cont.): Properties

o I\/Is(£1©€2) = Ms(ﬁz@él) = Ms(él) (] MS(EQ)
o Ms(Rev(¢)) = Ms(¢)

@ Proofs: Induction the structure of lists.

A. Bouajjani (Univ. Paris Diderot, UP7) L2: Logic-based Program Specification January 2014 15 / 18

From Lists to Multisets (cont.): Checking membership

o Type:
Is_in : % x List[x] — Bool

@ Definition:

Is_in(a,¢) = Ms(£)(a) >0

A. Bouajjani (Univ. Paris Diderot, UP7) L2: Logic-based Program Specification January 2014 16 / 18

Specifying a sorting function (cont.)

Spec_Sort(¢,0') =

Vi,j,€ Nat. (0 <i<j<|l =[] <[]
A
Ms(¢) = Ms(¢')

A. Bouajjani (Univ. Paris Diderot, UP7) L2: Logic-based Program Specification

Conclusion

Specifications are abstract definitions of the effect of functions

@ No implementation details are imposed.

Logic is a natural for abstract description of input-output relations

Abstraction allows modular design:

» The user of a function needs only to know its specification.
» The implementor must ensure the satisfaction of the specification.

A. Bouajjani (Univ. Paris Diderot, UP7) L2: Logic-based Program Specification January 2014 18 / 18

