
Theme 1: Abstract Reasoning

Lecture 3: Inductive Correctness Proofs

Ahmed Bouajjani

Paris Diderot University, Paris 7

January 2014

A. Bouajjani (Univ. Paris Diderot, UP7) L3: Inductive Correctness Proofs January 2014 1 / 23

Implementation vs. Specification

Assume we want to define

f : Dom→ CoDom

Consider an abstract specification

Spec f (In,Out) ⊆ Dom × CoDom

Let Impl f be an implementation of f (e.g., as a recursive function)

The implementation Impl f satisfies the specification Spec f iff:

∀In ∈ Dom. ∀Out ∈ CoDom. (Impl f (In) = Out) =⇒ Spec f (In,Out)

Correctness is always defined with respect to a given specification!

A. Bouajjani (Univ. Paris Diderot, UP7) L3: Inductive Correctness Proofs January 2014 2 / 23

Example: The Append function

Type:
Append : List[?]× List[?]→ List[?]

Specification:

Spec Append(`1, `2, `) =
|`| = |`1|+ |`2| ∧
∀i ∈ Nat. (0 ≤ i < |`1|)⇒ `[i] = `1[i] ∧
∀i ∈ Nat. (0 ≤ i < |`2|)⇒ `[|`1|+ i] = `2[i]

Implementation:

[]@` = `

(a · `1)@`2 = a · (`1@`2)

Correctness:

∀`1, `2, `. (`1@`2 = `) =⇒ Spec Append(`1, `2, `)

A. Bouajjani (Univ. Paris Diderot, UP7) L3: Inductive Correctness Proofs January 2014 3 / 23

Correctness proof: Induction

Case `1 = []: ` = []@`2 = `2.

(|`| = 0 + |`2|) ∧
(∀i . 0 ≤ i < 0⇒ ...) ∧
(∀i . 0 ≤ i < |`2| ⇒ `[0 + i] = `2[i])

A. Bouajjani (Univ. Paris Diderot, UP7) L3: Inductive Correctness Proofs January 2014 4 / 23

Correctness proof: Induction

Case `1 = a · `′1: ` = a · (`′1@`2). Let `′ = `′1@`2.

Induction hypothesis:

(|`′| = |`′1| + |`2|) ∧
(∀i ∈ Nat. (0 ≤ i < |`′1|)⇒ `′[i] = `′1[i]) ∧
(∀i ∈ Nat. (0 ≤ i < |`2|)⇒ `′[|`′1|+ i] = `2[i])

1st point: |`| = 1 + |`′1@`2| = 1 + |`′1|+ |`2| = |`1| + |`2|
We have (by definition of the At operator):

1 `[0] = a = `1[0],
2 ∀i . 1 ≤ i < |`1| ⇒ `1[i] = `′1[i − 1]
3 ∀i . 1 ≤ i < |`| ⇒ `[i] = `′[i − 1]

2nd point:
I IH.2 ⇒ ∀i . (1 ≤ i < |`′1|+ 1)⇒ `′[i − 1] = `′1[i − 1]
I (2) ⇒ ∀i . (1 ≤ i < |`1|)⇒ `[i] = `1[i]
I (1) ⇒ ∀i . (0 ≤ i < |`1|)⇒ `[i] = `1[i]

3rd point: left as an exercise.

A. Bouajjani (Univ. Paris Diderot, UP7) L3: Inductive Correctness Proofs January 2014 5 / 23

Correctness proof: Induction

Case `1 = a · `′1: ` = a · (`′1@`2). Let `′ = `′1@`2.

Induction hypothesis:

(|`′| = |`′1| + |`2|) ∧
(∀i ∈ Nat. (0 ≤ i < |`′1|)⇒ `′[i] = `′1[i]) ∧
(∀i ∈ Nat. (0 ≤ i < |`2|)⇒ `′[|`′1|+ i] = `2[i])

1st point: |`| = 1 + |`′1@`2| = 1 + |`′1|+ |`2| = |`1| + |`2|

We have (by definition of the At operator):
1 `[0] = a = `1[0],
2 ∀i . 1 ≤ i < |`1| ⇒ `1[i] = `′1[i − 1]
3 ∀i . 1 ≤ i < |`| ⇒ `[i] = `′[i − 1]

2nd point:
I IH.2 ⇒ ∀i . (1 ≤ i < |`′1|+ 1)⇒ `′[i − 1] = `′1[i − 1]
I (2) ⇒ ∀i . (1 ≤ i < |`1|)⇒ `[i] = `1[i]
I (1) ⇒ ∀i . (0 ≤ i < |`1|)⇒ `[i] = `1[i]

3rd point: left as an exercise.

A. Bouajjani (Univ. Paris Diderot, UP7) L3: Inductive Correctness Proofs January 2014 5 / 23

Correctness proof: Induction

Case `1 = a · `′1: ` = a · (`′1@`2). Let `′ = `′1@`2.

Induction hypothesis:

(|`′| = |`′1| + |`2|) ∧
(∀i ∈ Nat. (0 ≤ i < |`′1|)⇒ `′[i] = `′1[i]) ∧
(∀i ∈ Nat. (0 ≤ i < |`2|)⇒ `′[|`′1|+ i] = `2[i])

1st point: |`| = 1 + |`′1@`2| = 1 + |`′1|+ |`2| = |`1| + |`2|
We have (by definition of the At operator):

1 `[0] = a = `1[0],
2 ∀i . 1 ≤ i < |`1| ⇒ `1[i] = `′1[i − 1]
3 ∀i . 1 ≤ i < |`| ⇒ `[i] = `′[i − 1]

2nd point:
I IH.2 ⇒ ∀i . (1 ≤ i < |`′1|+ 1)⇒ `′[i − 1] = `′1[i − 1]
I (2) ⇒ ∀i . (1 ≤ i < |`1|)⇒ `[i] = `1[i]
I (1) ⇒ ∀i . (0 ≤ i < |`1|)⇒ `[i] = `1[i]

3rd point: left as an exercise.

A. Bouajjani (Univ. Paris Diderot, UP7) L3: Inductive Correctness Proofs January 2014 5 / 23

Correctness proof: Induction

Case `1 = a · `′1: ` = a · (`′1@`2). Let `′ = `′1@`2.

Induction hypothesis:

(|`′| = |`′1| + |`2|) ∧
(∀i ∈ Nat. (0 ≤ i < |`′1|)⇒ `′[i] = `′1[i]) ∧
(∀i ∈ Nat. (0 ≤ i < |`2|)⇒ `′[|`′1|+ i] = `2[i])

1st point: |`| = 1 + |`′1@`2| = 1 + |`′1|+ |`2| = |`1| + |`2|
We have (by definition of the At operator):

1 `[0] = a = `1[0],
2 ∀i . 1 ≤ i < |`1| ⇒ `1[i] = `′1[i − 1]
3 ∀i . 1 ≤ i < |`| ⇒ `[i] = `′[i − 1]

2nd point:
I IH.2 ⇒ ∀i . (1 ≤ i < |`′1|+ 1)⇒ `′[i − 1] = `′1[i − 1]
I (2) ⇒ ∀i . (1 ≤ i < |`1|)⇒ `[i] = `1[i]
I (1) ⇒ ∀i . (0 ≤ i < |`1|)⇒ `[i] = `1[i]

3rd point: left as an exercise.

A. Bouajjani (Univ. Paris Diderot, UP7) L3: Inductive Correctness Proofs January 2014 5 / 23

Correctness proof: Induction

Case `1 = a · `′1: ` = a · (`′1@`2). Let `′ = `′1@`2.

Induction hypothesis:

(|`′| = |`′1| + |`2|) ∧
(∀i ∈ Nat. (0 ≤ i < |`′1|)⇒ `′[i] = `′1[i]) ∧
(∀i ∈ Nat. (0 ≤ i < |`2|)⇒ `′[|`′1|+ i] = `2[i])

1st point: |`| = 1 + |`′1@`2| = 1 + |`′1|+ |`2| = |`1| + |`2|
We have (by definition of the At operator):

1 `[0] = a = `1[0],
2 ∀i . 1 ≤ i < |`1| ⇒ `1[i] = `′1[i − 1]
3 ∀i . 1 ≤ i < |`| ⇒ `[i] = `′[i − 1]

2nd point:
I IH.2 ⇒ ∀i . (1 ≤ i < |`′1|+ 1)⇒ `′[i − 1] = `′1[i − 1]
I (2) ⇒ ∀i . (1 ≤ i < |`1|)⇒ `[i] = `1[i]
I (1) ⇒ ∀i . (0 ≤ i < |`1|)⇒ `[i] = `1[i]

3rd point: left as an exercise.

A. Bouajjani (Univ. Paris Diderot, UP7) L3: Inductive Correctness Proofs January 2014 5 / 23

Sorting function: An Implementation

Reason about the structure of the input list?

Sort([]) =

Sort(a · `) =

How to sort a · ` if we can sort ` ?

A. Bouajjani (Univ. Paris Diderot, UP7) L3: Inductive Correctness Proofs January 2014 6 / 23

Sorting function: An Implementation

Reason about the structure of the input list?

Sort([]) = []

Sort(a · `) = Insert(a,Sort(`))

We need to insert a in the sorted list corresponding to `.

What is the formal specification of Insert?

Type:
Insert : ?× List[?]→ List[?]

Input-Output relation:

Spec Insert(a, `, `′) =
Ordered(`)⇒

(
Ordered(`′) ∧ (Ms(`′) = Sg(a)]Ms(`))

)

A. Bouajjani (Univ. Paris Diderot, UP7) L3: Inductive Correctness Proofs January 2014 7 / 23

Sorting function: An Implementation

Reason about the structure of the input list?

Sort([]) = []

Sort(a · `) = Insert(a,Sort(`))

We need to insert a in the sorted list corresponding to `.

What is the formal specification of Insert?

Type:
Insert : ?× List[?]→ List[?]

Input-Output relation:

Spec Insert(a, `, `′) =
Ordered(`)⇒

(
Ordered(`′) ∧ (Ms(`′) = Sg(a)]Ms(`))

)

A. Bouajjani (Univ. Paris Diderot, UP7) L3: Inductive Correctness Proofs January 2014 7 / 23

Sorting function: An Implementation

Reason about the structure of the input list?

Sort([]) = []

Sort(a · `) = Insert(a,Sort(`))

We need to insert a in the sorted list corresponding to `.

What is the formal specification of Insert?

Type:
Insert : ?× List[?]→ List[?]

Input-Output relation:

Spec Insert(a, `, `′) =
Ordered(`)⇒

(
Ordered(`′) ∧ (Ms(`′) = Sg(a)]Ms(`))

)

A. Bouajjani (Univ. Paris Diderot, UP7) L3: Inductive Correctness Proofs January 2014 7 / 23

Sorting function: Another Implementation

Reason about the structure of the output list?

Sort([]) =

Sort(a · `) =

If the output is of the form e · `′, what is e ? and how to obtain `′ ?

A. Bouajjani (Univ. Paris Diderot, UP7) L3: Inductive Correctness Proofs January 2014 8 / 23

Sorting function: Another Implementation

Reason about the structure of the output list?

Sort([]) = []

Sort(a · `) = let (m, `m) = Extract min(a · `) in m · Sort(`m)

Extract the minimal element m of `, and sort the rest of the list `m.

A. Bouajjani (Univ. Paris Diderot, UP7) L3: Inductive Correctness Proofs January 2014 9 / 23

Sorting function: Another Implementation

Reason about the structure of the output list?

Sort([]) = []

Sort(a · `) = let (m, `m) = Extract min(a · `) in m · Sort(`m)

Extract the minimal element m of `, and sort the rest of the list `m.

Specification of Extract min:

I Type: Extract min : List[?]→ ?× List[?]

I Input-Output relation:

Spec Extract min(`1,m, `2) =

`1 6= []⇒ Is in(m, `1) ∧
∀a ∈ ?. Is in(a, `1)⇒ m ≤ a ∧
Ms(`1) = Sg(m)]Ms(`2)

A. Bouajjani (Univ. Paris Diderot, UP7) L3: Inductive Correctness Proofs January 2014 10 / 23

Sorting function: Yet Another Implementation

Reason again about the structure of the output list?

Sort([]) =

Sort(a · `) =

Assume that when a is at its place in the output, it has `left and `right
to its left and right, respectively. How to compute `left and `right?

A. Bouajjani (Univ. Paris Diderot, UP7) L3: Inductive Correctness Proofs January 2014 11 / 23

Sorting function: Yet Another Implementation

Reason again about the structure of the output list?

Sort([]) = []

Sort(a · `) = let (`1, `2) = split (a, `) in Sort(`1)@(a · Sort(`2))

Split ` into 2 lists containing the elements smaller and greater than a.

A. Bouajjani (Univ. Paris Diderot, UP7) L3: Inductive Correctness Proofs January 2014 12 / 23

Sorting function: Yet Another Implementation

Reason again about the structure of the output list?

Sort([]) = []

Sort(a · `) = let (`1, `2) = split (a, `) in Sort(`1)@(a · Sort(`2))

Split ` into 2 lists containing the elements smaller and greater than a.

Specification of Split:

I Type: Split : ?× List[?]→ List[?]× List[?]

I Input-Output relation:

Spec Split(a, `, `1, `2) =

Ms(`) = Ms(`1)]Ms(`2) ∧
∀e ∈ ?. ((Is In(e, `1)⇒ e ≤ a) ∧ (Is In(e, `2)⇒ a < e))

A. Bouajjani (Univ. Paris Diderot, UP7) L3: Inductive Correctness Proofs January 2014 13 / 23

Proving correctness of the Recursive Insertion Sort
Consider the implementation:

Ins Sort([]) = []

Ins Sort(a · `) = Insert(a, Ins Sort(`))

Assume that Insert is correct w.r.t. its specification:

∀a ∈ ?. ∀`, `′ ∈ List[?] . Insert(a, `) = `′ =⇒ Spec Insert(a, `, `′)

where
Spec Insert(a, `, `′) =
Ordered(`)⇒ (Ordered(`′) ∧ (Ms(`′) = Sg(a)]Ms(`)))

and prove that:

∀`, `′ ∈ List[?] . (Ins Sort(`) = `′) =⇒ Spec Sort(`, `′)

where
Spec Sort(`, `′) =
∀i , j ,∈ Nat. (0 ≤ i < j < |`′| ⇒ `′[i] ≤ `′[j]) ∧

Ms(`) = Ms(`′)

A. Bouajjani (Univ. Paris Diderot, UP7) L3: Inductive Correctness Proofs January 2014 14 / 23

Proof

Case ` = []: Trivial.

Case ` = a · `1: We have `′ = Ins Sort(`) = Insert(a, Ins Sort(`1)).

Let `′1 = Ins Sort(`1).

Induction hypothesis: Ordered(`′1) ∧Ms(`1) = Ms(`′1).

We assume Insert correct w.r.t. its specification:

Spec Insert(a, `′1, `
′) =

Ordered(`′1)⇒ (Ordered(`′) ∧ (Ms(`′) = Sg(a)]Ms(`′1)))

Since we have Ordered(`′1) by Ind. Hyp., then the following holds:

Ordered(`′) ∧ (Ms(`′) = Sg(a)]Ms(`′1))

We have Ms(`) = Sg(a)]Ms(`1) = Sg(a)]Ms(`′1) = Ms(`′).

Then, we obtain Ordered(`′) ∧Ms(`) = Ms(`′).

A. Bouajjani (Univ. Paris Diderot, UP7) L3: Inductive Correctness Proofs January 2014 15 / 23

Recursive Insertion

Type:

Insert : ?× List[?]→ List[?]

Input-Output specification:

Spec Insert(a, `, `′) =
Ordered(`)⇒ (Ordered(`′) ∧ (Ms(`′) = Sg(a)]Ms(`)))

Recursive implementation:

Insert(a, []) = a · []
Insert(a, b · `) = if a ≤ b then a · (b · `)

else b · (Insert(a, `))

A. Bouajjani (Univ. Paris Diderot, UP7) L3: Inductive Correctness Proofs January 2014 16 / 23

Recursive Insertion: Correctness proof

left as an exercise ...

A. Bouajjani (Univ. Paris Diderot, UP7) L3: Inductive Correctness Proofs January 2014 17 / 23

Correctness of the Quick sort

Consider the sorting function:

qsort([]) = []

qsort(a · `) = let (`1, `2) = split (a, `) in

qsort(`1)@(a · qsort(`2))

Prove that:

∀`, `′. (qsort(`) = `′) =⇒ Spec Sort(`, `′)

We need to assume that the two recursive calls are correct.

What is the proof principle which allows that ?

A. Bouajjani (Univ. Paris Diderot, UP7) L3: Inductive Correctness Proofs January 2014 18 / 23

Correctness of the Quick sort

Consider the sorting function:

qsort([]) = []

qsort(a · `) = let (`1, `2) = split (a, `) in

qsort(`1)@(a · qsort(`2))

Prove that:

∀`, `′. (qsort(`) = `′) =⇒ Spec Sort(`, `′)

We need to assume that the two recursive calls are correct.

What is the proof principle which allows that ?

A. Bouajjani (Univ. Paris Diderot, UP7) L3: Inductive Correctness Proofs January 2014 18 / 23

Correctness of the Quick sort

Consider the sorting function:

qsort([]) = []

qsort(a · `) = let (`1, `2) = split (a, `) in

qsort(`1)@(a · qsort(`2))

Prove that:

∀`, `′. (qsort(`) = `′) =⇒ Spec Sort(`, `′)

We need to assume that the two recursive calls are correct.

What is the proof principle which allows that ?

A. Bouajjani (Univ. Paris Diderot, UP7) L3: Inductive Correctness Proofs January 2014 18 / 23

Well founded relations

Let E be a set, and let ≺⊆ E × E a binary relation over E .

The relation ≺ is well founded if it has no infinite descending chains,
i.e., no sequences of the form

e0 � e1 � · · · � ei � · · ·

(E ,≺) is said to be a well founded set (WFS for short).

Thm: ≺ is well founded iff

∀F ⊆ E . F 6= ∅ ⇒ (∃e ∈ F . ∀e ′ ∈ F . e ′ 6≺ e)

A. Bouajjani (Univ. Paris Diderot, UP7) L3: Inductive Correctness Proofs January 2014 19 / 23

Well founded relations: Examples

(N, <) is a WFS.

(Z, <) is not a WFS.

(R≥0, <) is not a WFS.

A. Bouajjani (Univ. Paris Diderot, UP7) L3: Inductive Correctness Proofs January 2014 20 / 23

Noetherian Induction

Let (E ,≺) be a WFS, and let ρ : D → E .

Let ≺ρ⊆ D × D be the relation such that:

x ≺ρ y ⇐⇒ ρ(x) ≺ ρ(y)

Induction rule:

∀x ∈ D.
(
(∀y . y ≺ρ x ⇒ P(y))⇒ P(x)

)
∀x ∈ D. P(x)

A. Bouajjani (Univ. Paris Diderot, UP7) L3: Inductive Correctness Proofs January 2014 21 / 23

Correctness of the Quick sort (cont.)

Consider the WFS (N, <) and the function ρ : List[?]→ N such that

∀` ∈ List[?]. ρ(`) = |`|

The rest of the proof is left as an exercise ...

A. Bouajjani (Univ. Paris Diderot, UP7) L3: Inductive Correctness Proofs January 2014 22 / 23

Conclusion

Specifications are abstract definitions of the effect of functions.

No implementation details are imposed. Several implementations can
be provided and proved correct w.r.t. an abstract specification.

Logic is a natural for abstract description of input-output relations

Abstraction allows modular design:
I The user of a function needs only to know its specification. This allows

to separate issues.
I The implementor must ensure the satisfaction of the specification:

He/she must prove that its implementation satisfies the required
satisfaction.

I It is possible to implement a function and prove its correctness w.r.t.
to its specification, assuming that the functions it uses (in external
modules) are correct w.r.t. their own specifications.

A. Bouajjani (Univ. Paris Diderot, UP7) L3: Inductive Correctness Proofs January 2014 23 / 23

