Theme 1: Abstract Reasoning

Lecture 3: Inductive Correctness Proofs

Ahmed Bouajjani
Paris Diderot University, Paris 7

January 2014

Implementation vs. Specification

- Assume we want to define

$$
f: \text { Dom } \rightarrow \text { CoDom }
$$

- Consider an abstract specification

$$
\text { Spec_f }(\operatorname{In}, \text { Out }) \subseteq D o m \times \text { CoDom }
$$

- Let Impl_f be an implementation of f (e.g., as a recursive function)
- The implementation Impl_f satisfies the specification Spec_f iff:
$\forall I n \in$ Dom.\forall Out \in CoDom. (Impl_f $\left.(I n)=O u t) \Longrightarrow S p e c _f(I n, O u t) ~_{\text {Sp }}\right)$
- Correctness is always defined with respect to a given specification!

Example: The Append function

- Type:

$$
\text { Append : List }[\star] \times \operatorname{List}[\star] \rightarrow \operatorname{List}[\star]
$$

- Specification:

$$
\begin{aligned}
& \text { Spec_Append }\left(\ell_{1}, \ell_{2}, \ell\right)= \\
& |\ell|=\left|\ell_{1}\right|+\left|\ell_{2}\right| \wedge \\
& \forall i \in N a t .\left(0 \leq i<\left|\ell_{1}\right|\right) \Rightarrow \ell[i]=\ell_{1}[i] \wedge \\
& \forall i \in \operatorname{Nat.}\left(0 \leq i<\left|\ell_{2}\right|\right) \Rightarrow \ell\left[\left|\ell_{1}\right|+i\right]=\ell_{2}[i]
\end{aligned}
$$

- Implementation:

$$
\begin{aligned}
{[] @ \ell } & =\ell \\
\left(a \cdot \ell_{1}\right) @ \ell_{2} & =a \cdot\left(\ell_{1} @ \ell_{2}\right)
\end{aligned}
$$

- Correctness:

$$
\forall \ell_{1}, \ell_{2}, \ell .\left(\ell_{1} @ \ell_{2}=\ell\right) \Longrightarrow \operatorname{Spec} _\operatorname{Append}\left(\ell_{1}, \ell_{2}, \ell\right)
$$

Correctness proof: Induction

Case $\ell_{1}=[]: \ell=[] @ \ell_{2}=\ell_{2}$.

$$
\left(|\ell|=0+\left|\ell_{2}\right|\right) \wedge
$$

$$
(\forall i .0 \leq i<0 \Rightarrow \ldots) \wedge
$$

$$
\left(\forall i .0 \leq i<\left|\ell_{2}\right| \Rightarrow \ell[0+i]=\ell_{2}[i]\right)
$$

Correctness proof: Induction

Case $\ell_{1}=a \cdot \ell_{1}^{\prime}: \ell=a \cdot\left(\ell_{1}^{\prime} @ \ell_{2}\right)$. Let $\ell^{\prime}=\ell_{1}^{\prime} @ \ell_{2}$.

- Induction hypothesis:

$$
\begin{aligned}
& \left(\left|\ell^{\prime}\right|=\left|\ell_{1}^{\prime}\right|+\left|\ell_{2}\right|\right) \wedge \\
& \left(\forall i \in N a t .\left(0 \leq i<\left|\ell_{1}^{\prime}\right|\right) \Rightarrow \ell^{\prime}[i]=\ell_{1}^{\prime}[i]\right) \wedge \\
& \left(\forall i \in N a t .\left(0 \leq i \leq i \ell_{2} \mid\right) \Rightarrow \ell^{\prime}\left[\left|\ell_{1}^{\prime}\right|+i\right]=\ell_{2}[i]\right)
\end{aligned}
$$

Correctness proof: Induction

Case $\ell_{1}=a \cdot \ell_{1}^{\prime}: \ell=a \cdot\left(\ell_{1}^{\prime} @ \ell_{2}\right)$. Let $\ell^{\prime}=\ell_{1}^{\prime} @ \ell_{2}$.

- Induction hypothesis:

$$
\begin{aligned}
& \left(\left|\ell^{\prime}\right|=\left|\ell_{1}^{\prime}\right|+\left|\ell_{2}\right|\right) \wedge \\
& \left(\forall i \in N a t .\left(0 \leq i<\left|\ell_{1}^{\prime}\right|\right) \Rightarrow \ell^{\prime}[i]=\ell_{1}^{\prime}[i]\right) \wedge \\
& \left(\forall i \in N a t .\left(0 \leq i<\left|\ell_{2}\right|\right) \Rightarrow \ell^{\prime}\left[\left|\ell_{1}^{\prime}\right|+i\right]=\ell_{2}[i]\right)
\end{aligned}
$$

- 1st point: $|\ell|=1+\left|\ell_{1}^{\prime} @ \ell_{2}\right|=1+\left|\ell_{1}^{\prime}\right|+\left|\ell_{2}\right|=\left|\ell_{1}\right|+\left|\ell_{2}\right|$

Correctness proof: Induction

Case $\ell_{1}=a \cdot \ell_{1}^{\prime}: \ell=a \cdot\left(\ell_{1}^{\prime} @ \ell_{2}\right)$. Let $\ell^{\prime}=\ell_{1}^{\prime} @ \ell_{2}$.

- Induction hypothesis:

$$
\begin{aligned}
& \left(\left|\ell^{\prime}\right|=\left|\ell_{1}^{\prime}\right|+\left|\ell_{2}\right|\right) \wedge \\
& \left(\forall i \in N a t .\left(0 \leq i<\left|\ell_{1}^{\prime}\right|\right) \Rightarrow \ell^{\prime}[i]=\ell_{1}^{\prime}[i]\right) \wedge \\
& \left(\forall i \in N a t .\left(0 \leq i<\left|\ell_{2}\right|\right) \Rightarrow \ell^{\prime}\left[\left|\ell_{1}^{\prime}\right|+i\right]=\ell_{2}[i]\right)
\end{aligned}
$$

- 1st point: $|\ell|=1+\left|\ell_{1}^{\prime} @ \ell_{2}\right|=1+\left|\ell_{1}^{\prime}\right|+\left|\ell_{2}\right|=\left|\ell_{1}\right|+\left|\ell_{2}\right|$
- We have (by definition of the At operator):
(1) $\ell[0]=a=\ell_{1}[0]$,
(2) $\forall i .1 \leq i<\left|\ell_{1}\right| \Rightarrow \ell_{1}[i]=\ell_{1}^{\prime}[i-1]$
(3) $\forall i .1 \leq i<|\ell| \Rightarrow \ell[i]=\ell^{\prime}[i-1]$

Correctness proof: Induction

$$
\text { Case } \ell_{1}=a \cdot \ell_{1}^{\prime}: \ell=a \cdot\left(\ell_{1}^{\prime} @ \ell_{2}\right) . \text { Let } \ell^{\prime}=\ell_{1}^{\prime} @ \ell_{2} .
$$

- Induction hypothesis:

$$
\begin{aligned}
& \left(\left|\ell^{\prime}\right|=\left|\ell_{1}^{\prime}\right|+\left|\ell_{2}\right|\right) \wedge \\
& \left(\forall i \in N a t .\left(0 \leq i<\left|\ell_{1}^{\prime}\right|\right) \Rightarrow \ell^{\prime}[i]=\ell_{1}^{\prime}[i]\right) \wedge \\
& \left(\forall i \in N a t .\left(0 \leq i<\left|\ell_{2}\right|\right) \Rightarrow \ell^{\prime}\left[\left|\ell_{1}^{\prime}\right|+i\right]=\ell_{2}[i]\right)
\end{aligned}
$$

- 1st point: $|\ell|=1+\left|\ell_{1}^{\prime} @ \ell_{2}\right|=1+\left|\ell_{1}^{\prime}\right|+\left|\ell_{2}\right|=\left|\ell_{1}\right|+\left|\ell_{2}\right|$
- We have (by definition of the At operator):
(1) $\ell[0]=a=\ell_{1}[0]$,
(2) $\forall i .1 \leq i<\left|\ell_{1}\right| \Rightarrow \ell_{1}[i]=\ell_{1}^{\prime}[i-1]$
(3) $\forall i .1 \leq i<|\ell| \Rightarrow \ell[i]=\ell^{\prime}[i-1]$
- 2nd point:
- IH. $2 \Rightarrow \forall i .\left(1 \leq i<\left|\ell_{1}^{\prime}\right|+1\right) \Rightarrow \ell^{\prime}[i-1]=\ell_{1}^{\prime}[i-1]$
- $(2) \Rightarrow \forall i .\left(1 \leq i<\left|\ell_{1}\right|\right) \Rightarrow \ell[i]=\ell_{1}[i]$
- $(1) \Rightarrow \forall i .\left(0 \leq i<\left|\ell_{1}\right|\right) \Rightarrow \ell[i]=\ell_{1}[i]$

Correctness proof: Induction

Case $\ell_{1}=a \cdot \ell_{1}^{\prime}: \ell=a \cdot\left(\ell_{1}^{\prime} @ \ell_{2}\right)$. Let $\ell^{\prime}=\ell_{1}^{\prime} @ \ell_{2}$.

- Induction hypothesis:

$$
\begin{aligned}
& \left(\left|\ell^{\prime}\right|=\left|\ell_{1}^{\prime}\right|+\left|\ell_{2}\right|\right) \wedge \\
& \left(\forall i \in N a t .\left(0 \leq i<\left|\ell_{1}^{\prime}\right|\right) \Rightarrow \ell^{\prime}[i]=\ell_{1}^{\prime}[i]\right) \wedge \\
& \left(\forall i \in N a t .\left(0 \leq i<\left|\ell_{2}\right|\right) \Rightarrow \ell^{\prime}\left[\left|\ell_{1}^{\prime}\right|+i\right]=\ell_{2}[i]\right)
\end{aligned}
$$

- 1st point: $|\ell|=1+\left|\ell_{1}^{\prime} @ \ell_{2}\right|=1+\left|\ell_{1}^{\prime}\right|+\left|\ell_{2}\right|=\left|\ell_{1}\right|+\left|\ell_{2}\right|$
- We have (by definition of the At operator):
(1) $\ell[0]=a=\ell_{1}[0]$,
(2) $\forall i .1 \leq i<\left|\ell_{1}\right| \Rightarrow \ell_{1}[i]=\ell_{1}^{\prime}[i-1]$
(3) $\forall i .1 \leq i<|\ell| \Rightarrow \ell[i]=\ell^{\prime}[i-1]$
- 2nd point:
- IH. $2 \Rightarrow \forall i .\left(1 \leq i<\left|\ell_{1}^{\prime}\right|+1\right) \Rightarrow \ell^{\prime}[i-1]=\ell_{1}^{\prime}[i-1]$
- $(2) \Rightarrow \forall i .\left(1 \leq i<\left|\ell_{1}\right|\right) \Rightarrow \ell[i]=\ell_{1}[i]$
- $(1) \Rightarrow \forall i .\left(0 \leq i<\left|\ell_{1}\right|\right) \Rightarrow \ell[i]=\ell_{1}[i]$
- 3rd point: left as an exercise.

Sorting function: An Implementation

- Reason about the structure of the input list?

$$
\begin{array}{r}
\operatorname{Sort}([])= \\
\operatorname{Sort}(a \cdot \ell)=
\end{array}
$$

- How to sort $a \cdot \ell$ if we can sort ℓ ?

Sorting function: An Implementation

- Reason about the structure of the input list?

$$
\begin{aligned}
\operatorname{Sort}([]) & =[] \\
\operatorname{Sort}(a \cdot \ell) & =\operatorname{Insert}(a, \operatorname{Sort}(\ell))
\end{aligned}
$$

- We need to insert a in the sorted list corresponding to ℓ.

Sorting function: An Implementation

- Reason about the structure of the input list?

$$
\begin{aligned}
\operatorname{Sort}([]) & =[] \\
\operatorname{Sort}(a \cdot \ell) & =\operatorname{Insert}(a, \operatorname{Sort}(\ell))
\end{aligned}
$$

- We need to insert a in the sorted list corresponding to ℓ.
- What is the formal specification of Insert?

Sorting function: An Implementation

- Reason about the structure of the input list?

$$
\begin{aligned}
\operatorname{Sort}([]) & =[] \\
\operatorname{Sort}(a \cdot \ell) & =\operatorname{Insert}(a, \operatorname{Sort}(\ell))
\end{aligned}
$$

- We need to insert a in the sorted list corresponding to ℓ.
- What is the formal specification of Insert?
- Type:

$$
\text { Insert : } \star \times \operatorname{List}[\star] \rightarrow \operatorname{List}[\star]
$$

- Input-Output relation:

$$
\begin{aligned}
& \text { Spec_Insert }\left(a, \ell, \ell^{\prime}\right)= \\
& \quad \operatorname{Ordered}(\ell) \Rightarrow\left(\operatorname{Ordered}\left(\ell^{\prime}\right) \wedge\left(M s\left(\ell^{\prime}\right)=\operatorname{Sg}(a) \uplus M s(\ell)\right)\right)
\end{aligned}
$$

Sorting function: Another Implementation

- Reason about the structure of the output list?

$$
\begin{array}{r}
\operatorname{Sort}([])= \\
\operatorname{Sort}(a \cdot \ell)=
\end{array}
$$

- If the output is of the form $e \cdot \ell^{\prime}$, what is e ? and how to obtain ℓ^{\prime} ?

Sorting function: Another Implementation

- Reason about the structure of the output list?

$$
\begin{aligned}
\operatorname{Sort}([]) & =[] \\
\operatorname{Sort}(a \cdot \ell) & =\operatorname{let}\left(m, \ell_{m}\right)=\operatorname{Extract_ min}(a \cdot \ell) \text { in } m \cdot \operatorname{Sort}\left(\ell_{m}\right)
\end{aligned}
$$

- Extract the minimal element m of ℓ, and sort the rest of the list ℓ_{m}.

Sorting function: Another Implementation

- Reason about the structure of the output list?

$$
\begin{aligned}
\operatorname{Sort}([]) & =[] \\
\operatorname{Sort}(a \cdot \ell) & =\operatorname{let}\left(m, \ell_{m}\right)=\operatorname{Extract_ min}(a \cdot \ell) \text { in } m \cdot \operatorname{Sort}\left(\ell_{m}\right)
\end{aligned}
$$

- Extract the minimal element m of ℓ, and sort the rest of the list ℓ_{m}.
- Specification of Extract_min:
- Type: Extract_min: List $[\star] \rightarrow \star \times \operatorname{List}[\star]$
- Input-Output relation:

$$
\begin{aligned}
& \text { Spec_Extract_min }\left(\ell_{1}, m, \ell_{2}\right)= \\
& \left.\qquad \begin{array}{l}
\ell_{1} \neq[] \Rightarrow \\
\\
\\
\\
\forall _i n\left(m, \ell_{1}\right) \wedge \\
\\
\\
M s\left(\ell_{1}\right)=\operatorname{Is_ in}\left(a, \ell_{1}\right) \Rightarrow m \leq a \wedge \\
\end{array}\right)+M s\left(\ell_{2}\right)
\end{aligned}
$$

Sorting function: Yet Another Implementation

- Reason again about the structure of the output list?
$\operatorname{Sort}([])=$
$\operatorname{Sort}(a \cdot \ell)=$
- Assume that when a is at its place in the output, it has $\ell_{\text {left }}$ and $\ell_{\text {right }}$ to its left and right, respectively. How to compute $\ell_{\text {left }}$ and $\ell_{\text {right }}$?

Sorting function: Yet Another Implementation

- Reason again about the structure of the output list?

$$
\begin{aligned}
\operatorname{Sort}([]) & =[] \\
\operatorname{Sort}(a \cdot \ell) & =\operatorname{let}\left(\ell_{1}, \ell_{2}\right)=\operatorname{split}(a, \ell) \operatorname{in} \operatorname{Sort}\left(\ell_{1}\right) @\left(a \cdot \operatorname{Sort}\left(\ell_{2}\right)\right)
\end{aligned}
$$

- Split ℓ into 2 lists containing the elements smaller and greater than a.

Sorting function: Yet Another Implementation

- Reason again about the structure of the output list?

$$
\begin{aligned}
\operatorname{Sort}([]) & =[] \\
\operatorname{Sort}(a \cdot \ell) & =\operatorname{let}\left(\ell_{1}, \ell_{2}\right)=\operatorname{split}(a, \ell) \operatorname{in} \operatorname{Sort}\left(\ell_{1}\right) @\left(a \cdot \operatorname{Sort}\left(\ell_{2}\right)\right)
\end{aligned}
$$

- Split ℓ into 2 lists containing the elements smaller and greater than a.
- Specification of Split:
- Type: Split : $\star \times \operatorname{List}[\star] \rightarrow \operatorname{List}[\star] \times \operatorname{List}[\star]$
- Input-Output relation:

$$
\begin{aligned}
& \text { Spec_Split }\left(a, \ell, \ell_{1}, \ell_{2}\right)= \\
& \quad \operatorname{Ms}(\ell)=M s\left(\ell_{1}\right) \uplus \operatorname{Ms}\left(\ell_{2}\right) \wedge \\
& \quad \forall e \in * .\left(\left(\operatorname{Is} \operatorname{In}\left(e, \ell_{1}\right) \Rightarrow e \leq a\right) \wedge\left(\operatorname{Is} _\ln \left(e, \ell_{2}\right) \Rightarrow a<e\right)\right)
\end{aligned}
$$

Proving correctness of the Recursive Insertion Sort

- Consider the implementation:

$$
\begin{aligned}
\operatorname{Ins} S_{-} \operatorname{Sort}([]) & =[] \\
\operatorname{Ins} \operatorname{Sort}(a \cdot \ell) & =\operatorname{Insert}\left(a, \operatorname{Ins}{ }_{\text {_Sort }}(\ell)\right)
\end{aligned}
$$

- Assume that Insert is correct w.r.t. its specification:

$$
\forall a \in \star . \forall \ell, \ell^{\prime} \in \operatorname{List}[\star] . \operatorname{Insert}(a, \ell)=\ell^{\prime} \Longrightarrow \operatorname{Spec} _\operatorname{Insert}\left(a, \ell, \ell^{\prime}\right)
$$

where

$$
\begin{aligned}
& \text { Spec_Insert }\left(a, \ell, \ell^{\prime}\right)= \\
& \quad \operatorname{Ordered}(\ell) \Rightarrow\left(\operatorname{Ordered}\left(\ell^{\prime}\right) \wedge\left(M s\left(\ell^{\prime}\right)=\operatorname{Sg}(a) \uplus M s(\ell)\right)\right)
\end{aligned}
$$

- and prove that:

$$
\forall \ell, \ell^{\prime} \in \operatorname{List}[\star] .\left(\operatorname{Ins} _\operatorname{Sort}(\ell)=\ell^{\prime}\right) \Longrightarrow \operatorname{Spec} _\operatorname{Sort}\left(\ell, \ell^{\prime}\right)
$$

where

$$
\begin{aligned}
& \text { Spec_Sort }\left(\ell, \ell^{\prime}\right)= \\
& \forall i, j, \in \operatorname{Nat.}\left(0 \leq i<j<\left|\ell^{\prime}\right| \Rightarrow \ell^{\prime}[i] \leq \ell^{\prime}[j]\right) \wedge \\
& \operatorname{Ms}(\ell)=\operatorname{Ms}\left(\ell^{\prime}\right)
\end{aligned}
$$

Proof

Case $\ell=[]$: Trivial.
Case $\ell=a \cdot \ell_{1}$: We have $\ell^{\prime}=\operatorname{Ins}$ _Sort $(\ell)=\operatorname{Insert}\left(a, \operatorname{Ins}\right.$ _Sort $\left.\left(\ell_{1}\right)\right)$.

- Let $\ell_{1}^{\prime}=\operatorname{Ins}$ _Sort $\left(\ell_{1}\right)$.
- Induction hypothesis: $\operatorname{Ordered}\left(\ell_{1}^{\prime}\right) \wedge \operatorname{Ms}\left(\ell_{1}\right)=\operatorname{Ms}\left(\ell_{1}^{\prime}\right)$.
- We assume Insert correct w.r.t. its specification:

$$
\begin{aligned}
& \text { Spec_Insert }\left(a, \ell_{1}^{\prime}, \ell^{\prime}\right)= \\
& \operatorname{Ordered}\left(\ell_{1}^{\prime}\right) \Rightarrow\left(\operatorname{Ordered}\left(\ell^{\prime}\right) \wedge\left(M s\left(\ell^{\prime}\right)=\operatorname{Sg}(a) \uplus \operatorname{Ms}\left(\ell_{1}^{\prime}\right)\right)\right)
\end{aligned}
$$

- Since we have Ordered $\left(\ell_{1}^{\prime}\right)$ by Ind. Hyp., then the following holds:

$$
\operatorname{Ordered}\left(\ell^{\prime}\right) \wedge\left(M s\left(\ell^{\prime}\right)=\operatorname{Sg}(a) \uplus M s\left(\ell_{1}^{\prime}\right)\right)
$$

- We have $\operatorname{Ms}(\ell)=\operatorname{Sg}(a) \uplus M s\left(\ell_{1}\right)=S g(a) \uplus M s\left(\ell_{1}^{\prime}\right)=M s\left(\ell^{\prime}\right)$.
- Then, we obtain $\operatorname{Ordered}\left(\ell^{\prime}\right) \wedge M s(\ell)=M s\left(\ell^{\prime}\right)$.

Recursive Insertion

- Type:

$$
\text { Insert }: \star \times \operatorname{List}[\star] \rightarrow \operatorname{List}[\star]
$$

- Input-Output specification:

$$
\begin{aligned}
& \text { Spec_Insert }\left(a, \ell, \ell^{\prime}\right)= \\
& \quad \operatorname{Ordered}(\ell) \Rightarrow\left(\operatorname{Ordered}\left(\ell^{\prime}\right) \wedge\left(M s\left(\ell^{\prime}\right)=\operatorname{Sg}(a) \uplus M s(\ell)\right)\right)
\end{aligned}
$$

- Recursive implementation:

$$
\begin{aligned}
\operatorname{Insert}(a,[]) & =a \cdot[] \\
\operatorname{Insert}(a, b \cdot \ell) & =\text { if } a \leq b \text { then } a \cdot(b \cdot \ell) \\
& \quad \text { else } b \cdot(\operatorname{Insert}(a, \ell))
\end{aligned}
$$

Recursive Insertion: Correctness proof

```
left as an exercise ...
```


Correctness of the Quick sort

- Consider the sorting function:

$$
\begin{aligned}
\operatorname{qsort}([])= & {[] } \\
\operatorname{qsort}(a \cdot \ell)= & \operatorname{let}\left(\ell_{1}, \ell_{2}\right)=\operatorname{split}(a, \ell) \operatorname{in} \\
& \quad q \operatorname{sort}\left(\ell_{1}\right) @\left(a \cdot q \operatorname{sort}\left(\ell_{2}\right)\right)
\end{aligned}
$$

- Prove that:

$$
\forall \ell, \ell^{\prime} .\left(q \operatorname{sort}(\ell)=\ell^{\prime}\right) \Longrightarrow \operatorname{Spec} _\operatorname{Sort}\left(\ell, \ell^{\prime}\right)
$$

Correctness of the Quick sort

- Consider the sorting function:

$$
\begin{aligned}
\operatorname{qsort}([])= & {[] } \\
q \operatorname{sort}(a \cdot \ell)= & \operatorname{let}\left(\ell_{1}, \ell_{2}\right)=\operatorname{split}(a, \ell) \operatorname{in} \\
& q \operatorname{qsort}\left(\ell_{1}\right) @\left(a \cdot q \operatorname{sort}\left(\ell_{2}\right)\right)
\end{aligned}
$$

- Prove that:

$$
\forall \ell, \ell^{\prime} .\left(q \operatorname{sort}(\ell)=\ell^{\prime}\right) \Longrightarrow \operatorname{Spec} _\operatorname{Sort}\left(\ell, \ell^{\prime}\right)
$$

- We need to assume that the two recursive calls are correct.

Correctness of the Quick sort

- Consider the sorting function:

$$
\begin{aligned}
\operatorname{qsort}([])= & {[] } \\
\operatorname{qsort}(a \cdot \ell)= & \operatorname{let}\left(\ell_{1}, \ell_{2}\right)=\operatorname{split}(a, \ell) \operatorname{in} \\
& \quad q \operatorname{sort}\left(\ell_{1}\right) @\left(a \cdot q \operatorname{sort}\left(\ell_{2}\right)\right)
\end{aligned}
$$

- Prove that:

$$
\forall \ell, \ell^{\prime} .\left(q \operatorname{sort}(\ell)=\ell^{\prime}\right) \Longrightarrow \operatorname{Spec} _\operatorname{Sort}\left(\ell, \ell^{\prime}\right)
$$

- We need to assume that the two recursive calls are correct.
- What is the proof principle which allows that?

Well founded relations

- Let E be a set, and let $\prec \subseteq E \times E$ a binary relation over E.
- The relation \prec is well founded if it has no infinite descending chains, i.e., no sequences of the form

$$
e_{0} \succ e_{1} \succ \cdots \succ e_{i} \succ \cdots
$$

- (E, \prec) is said to be a well founded set (WFS for short).
- Thm: \prec is well founded iff

$$
\forall F \subseteq E . F \neq \emptyset \Rightarrow\left(\exists e \in F . \forall e^{\prime} \in F . e^{\prime} \nprec e\right)
$$

Well founded relations: Examples

- $(\mathbb{N},<)$ is a WFS.
- $(\mathbb{Z},<)$ is not a WFS.
- $\left(\mathbb{R}_{\geq 0},<\right)$ is not a WFS.

Noetherian Induction

- Let (E, \prec) be a WFS, and let $\rho: D \rightarrow E$.
- Let $\prec_{\rho} \subseteq D \times D$ be the relation such that:

$$
x \prec_{\rho} y \Longleftrightarrow \rho(x) \prec \rho(y)
$$

- Induction rule:

$$
\frac{\forall x \in D \cdot\left(\left(\forall y \cdot y \prec_{\rho} x \Rightarrow P(y)\right) \Rightarrow P(x)\right)}{\forall x \in D \cdot P(x)}
$$

Correctness of the Quick sort (cont.)

- Consider the WFS $(\mathbb{N},<)$ and the function $\rho: \operatorname{List}[\star] \rightarrow \mathbb{N}$ such that

$$
\forall \ell \in \operatorname{List}[\star] \cdot \rho(\ell)=|\ell|
$$

- The rest of the proof is left as an exercise ...

Conclusion

- Specifications are abstract definitions of the effect of functions.
- No implementation details are imposed. Several implementations can be provided and proved correct w.r.t. an abstract specification.
- Logic is a natural for abstract description of input-output relations
- Abstraction allows modular design:
- The user of a function needs only to know its specification. This allows to separate issues.
- The implementor must ensure the satisfaction of the specification: He /she must prove that its implementation satisfies the required satisfaction.
- It is possible to implement a function and prove its correctness w.r.t. to its specification, assuming that the functions it uses (in external modules) are correct w.r.t. their own specifications.

