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Imperative Sequential Programs

Let X be a set of typed variables declared in the program.

Values of variables range over a data domain D. Let Op be a set of
operations and let Rel be a set of relations over D.

The statements in a program are defined as follows:

S ::= skip

| x := E
| S ; S
| if C then S else S
| while C do S

where E is a term and C is a formula over X in FO(D,Op,Rel).

A. Bouajjani (Univ. Paris Diderot, UP7) L4&5: Partial Correctness – Hoare Logic January 2014 2 / 34



Example of a program

f : Nat ;

ifact (n : Nat) =
i : Nat ;
f := 1 ;
i := 0 ;
while i 6= n do

i := i + 1 ;
f := i ∗ f
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Another example of a program

r : Nat ;

isum (` : List[Nat]) =
`′ : List[Nat] ;
r := 0 ;
`′ := ` ;
while `′ 6= [] do

r := r + head(`′) ;
`′ := tail(`′)
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Program semantics

Imperative programs transform memory states.

A program is seen as a state machine.

A state corresponds to a valuation of the program variables:

µ : X→ D

Transitions between states correspond to the execution of statements:

µ S−→µ′
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Semantics: Transition rules

µ
skip−−−→µ

〈exp〉µ = d

µ
x:=exp−−−−−→µ[x← d]

µ S1−−→ ν ν S2−−→µ′

µ S1;S2−−−−→µ′

µ |= C µ S1−−→µ′

µ if C then S1 else S2−−−−−−−−−−−−−→µ′

µ |= ¬C µ S2−−→µ′

µ if C then S1 else S2−−−−−−−−−−−−−→µ′

µ |= ¬C

µ while C do S−−−−−−−−→µ

µ |= C µ S−→ ν ν while C do S−−−−−−−−→µ′

µ while C do S−−−−−−−−→µ′
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Assertions

Assertions about program states can be expressed in FO logic over X.

We consider two special statements: assume(φ) and assert(φ)
where φ is a FO formula over X.

f : Nat ;

ifact (n : Nat) =
assume(true);
i : Nat ;
f := 1 ;
i := 0 ;
while i 6= n do

i := i + 1 ;
f := i ∗ f ;

assert(f = fact(n))

A. Bouajjani (Univ. Paris Diderot, UP7) L4&5: Partial Correctness – Hoare Logic January 2014 7 / 34



Assertions

Assertions about program states can be expressed in FO logic over X.

We consider two special statements: assume(φ) and assert(φ)
where φ is a FO formula over X.

r : Nat ;
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Assertions

Assertions about program states can be expressed in FO logic over X.

We consider two special statements: assume(φ) and assert(φ)
where φ is a FO formula over X.

r : Nat ;

isum (` : List[Nat]) =
assume(∀e ∈ ?. In(e, `)⇒ (e = 1))
`′ : List[Nat] ;
x := 0 ;
`′ := ` ;
while `′ 6= [] do

r := r + head(`′) ;
`′ := tail(`′) ;
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Assume – Assert statements: Semantics

Let ⊥ be a special error state

Transition rules:

µ |= φ

µ
assume(φ)−−−−−−−→µ

µ |= φ

µ
assert(φ)−−−−−−−→µ

µ |= ¬φ

µ
assert(φ)−−−−−−−→⊥
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Loop Invariants
f : Nat ;

ifact (n : Nat) =
assume(true);
i : Nat ;
f := 1 ;
i := 0 ;
while i 6= n do

invariant(?);
i := i + 1 ;
f := i ∗ f ;

assert(f = fact(n))

A property that is true initially, and after each iteration.

But there are many invariants!!: true, i ≥ 0, f ≥ 1, ...

A “useful invariant”:
After the last iteration, it implies the desired post-condition.
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Loop Invariants
f : Nat ;

ifact (n : Nat) =
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Programming methodology

Define the states of the programs (variables and their types).

Define the (assumed) initial and the (ensured) last state.

Define iterative computations: Provide loop invariants.
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Example: Reversing a list

ρ : List[?] ;

irev (` : List[?]) =
assume(true);

`′ : List[?] ;
ρ := [] ; % ρ is the reverse of the treated prefix of `
`′ := ` ; % `′ is the non-treated suffix of `
while `′ 6= [] do

invariant(` = Rev(ρ)@`′)
ρ := head(`′) · ρ ;
`′ := tail(`′) ;

assert(ρ = Rev(`))
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Pre-post condition reasoning

Consider formulas of the form:

{φ} S {ψ}

where S is a statement, and φ and ψ are assertions.

φ is the pre-condition, and ψ is the post-condition.

Formal Semantics:

{φ} S {ψ} iff ∀µ, µ′. (µ |= φ ∧ µ S−→µ′)⇒ µ′ |= ψ

Intuitive meaning:

Starting from a state satisfying φ, if the execution of S
terminates, then the reached state must satisfy ψ.

Problem: How to prove the validity of such formulas ?
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A Formal System: Hoare Logic

A set of axioms and inference rules of the form:

Axiom

Premise1 · · · PremiseN

Conclusion

Compositional reasoning using the structure of the programs:

{φ1}S1 {ψ1} · · · {φN}SN {ψN}
{φ}Comp(S1, . . . ,SN) {ψ}
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Hoare Logic: Axioms for Basic Statements

{φ} skip {φ}

{φ[exp/x]} x := exp {φ}

?? x := x + 2 {x ≥ 5 ∧ x ≤ y + 1}

{x + 2 ≥ 5 ∧ x + 2 ≤ y + 1} x := x + 2 {x ≥ 5 ∧ x ≤ y + 1}
{x ≥ 3 ∧ x + 1 ≤ y} x := x + 2 {x ≥ 5 ∧ x ≤ y + 1}
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Forward version of the assignment axiom?

Let M be a set of program states (M ⊆ [X→ D]), and let S be a
program statement.

Sets of immediate successors and predecessors:

post(M, S) = {µ′ : ∃µ ∈ M. µ S−→µ′}
pre(M, S) = {µ : ∃µ′ ∈ M. µ S−→µ′}

Let φ(X) be an assertion over X such that [[φ]] = M. Assertions for
post(M, x := exp(X)) and pre(M, x := exp(X))?
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Forward version of the assignment axiom? (cont.)

Assertions defining post(M, x := exp(X)) and pre(M, x := exp(X)):

pre(φ, x := exp)(X) = ∃X′. (φ(X′) ∧ X′ = exp(X))

post(φ, x := exp)(X) = ∃X′. (φ(X′) ∧ X = exp(X′))

The pre formula can be simplified (quantification elimination):

φpre(X) = φ[exp(X)/X]

Can we do the same for the post formula?

post(2 ≤ x ∧ x ≤ y, x := y) = ∃x′. (2 ≤ x′ ∧ x′ ≤ y ∧ x = y)

= 2 ≤ y ∧ x = y

Quantification elimination depends on the data theory. Possible for,
e.g., FO(N, {0, 1,+}, {≤}). Not always possible / expensive.
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Hoare Logic: Sequential composition

{φ1} S1 {φ2} {φ2} S2 {φ3}
{φ1} S1; S2 {φ3}
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Example: Swap

{y = a ∧ b = x}

t := x ;

{y = a ∧ b = t}

x := y ;

{x = a ∧ b = t}

y := t

{x = a ∧ y = b}
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Hoare Logic: Implication rule

φ1 ⇒ φ′1 {φ′1} S {φ′2} φ′2 ⇒ φ2

{φ1} S {φ2}
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Hoare Logic: Conditional rule

{φ ∧ C} S1 {φ′} {φ ∧ ¬C} S2 {φ′}
{φ} if C then S1 else S2 {φ′}
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Example: Minimum of 2 different values

We want to establish:

{true}
if x < y then m := x else m := y

{m ≤ x ∧m ≤ y}

Premises that must be proved:
1 {x < y} m := x {m ≤ x ∧m ≤ y}
2 {y < x} m := y {m ≤ x ∧m ≤ y}

Proof of Premise 1: Assignment axiom + implication rule
I {x ≤ x ∧ x ≤ y} m := x {m ≤ x ∧m ≤ y}
I x < y ⇒ x ≤ y

Proof of Premise 2 is identical.
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Hoare Logic: Iteration rule

{φ ∧ C} S {φ}
{φ} while C do S {φ ∧ ¬C}
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Example: Iterative factorial

Assignment + Sequential composition rules:

{(i + 1) ∗ f = fact(i + 1)}
i := i + 1 ;

{i ∗ f = fact(i)}
f := i ∗ f ;

{f = fact(i)}

Definition of fact: fact(i + 1) = (i + 1) ∗ fact(i)

Theory of integers: f = fact(i)) =⇒ (i + 1) ∗ f = (i + 1) ∗ fact(i)

Implication rule:

{(f = fact(i))}
i := i + 1 ; f := i ∗ f

{(f = fact(i))}
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Example: Iterative factorial (cont.)

So far:

+ Implication rule

{f = fact(i)

∧ i 6= n

}
i := i + 1 ; f := i ∗ f

{f = fact(i)}

Iteration rule:

+ Implication rule

{f = fact(i)}
while (i 6= n) do {i := i + 1 ; f := i ∗ f }

{f = fact(i) ∧ i = n}

=⇒
{f = fact(n)}
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So far: + Implication rule

{f = fact(i) ∧ i 6= n}
i := i + 1 ; f := i ∗ f

{f = fact(i)}
Iteration rule: + Implication rule

{f = fact(i)}
while (i 6= n) do {i := i + 1 ; f := i ∗ f }

{f = fact(i) ∧ i = n}
=⇒

{f = fact(n)}

A. Bouajjani (Univ. Paris Diderot, UP7) L4&5: Partial Correctness – Hoare Logic January 2014 27 / 34



Example: Iterative factorial (cont.)

ifact (n : Nat) =
assume(true);

{1 = 1} ⇐⇒ {true}

f := 1 ;

{f = fact(0)} ⇐⇒ {f = 1}

i := 0 ;

{f = fact(i)}

while i 6= n do

{f = fact(i) ∧ i 6= n} =⇒
{(i + 1) ∗ f = fact(i + 1)} ⇐⇒ (i + 1) ∗ f = (i + 1) ∗ fact(i)

i := i + 1 ;

{i ∗ f = fact(i)}

f := i ∗ f ;

{f = fact(i)}
{f = fact(n)}

assert(f = fact(n))

A. Bouajjani (Univ. Paris Diderot, UP7) L4&5: Partial Correctness – Hoare Logic January 2014 28 / 34



Example: Iterative factorial (cont.)

ifact (n : Nat) =
assume(true);

{1 = 1} ⇐⇒ {true}

f := 1 ;

{f = fact(0)} ⇐⇒ {f = 1}

i := 0 ;

{f = fact(i)}

while i 6= n do

{f = fact(i) ∧ i 6= n} =⇒
{(i + 1) ∗ f = fact(i + 1)} ⇐⇒ (i + 1) ∗ f = (i + 1) ∗ fact(i)

i := i + 1 ;

{i ∗ f = fact(i)}

f := i ∗ f ;

{f = fact(i)}
{f = fact(n)}
assert(f = fact(n))

A. Bouajjani (Univ. Paris Diderot, UP7) L4&5: Partial Correctness – Hoare Logic January 2014 28 / 34



Example: Iterative factorial (cont.)

ifact (n : Nat) =
assume(true);

{1 = 1} ⇐⇒ {true}

f := 1 ;

{f = fact(0)} ⇐⇒ {f = 1}

i := 0 ;

{f = fact(i)}

while i 6= n do

{f = fact(i) ∧ i 6= n} =⇒

{(i + 1) ∗ f = fact(i + 1)} ⇐⇒ (i + 1) ∗ f = (i + 1) ∗ fact(i)

i := i + 1 ;

{i ∗ f = fact(i)}
f := i ∗ f ;

{f = fact(i)}
{f = fact(n)}
assert(f = fact(n))

A. Bouajjani (Univ. Paris Diderot, UP7) L4&5: Partial Correctness – Hoare Logic January 2014 28 / 34



Example: Iterative factorial (cont.)

ifact (n : Nat) =
assume(true);

{1 = 1} ⇐⇒ {true}

f := 1 ;

{f = fact(0)} ⇐⇒ {f = 1}

i := 0 ;

{f = fact(i)}

while i 6= n do

{f = fact(i) ∧ i 6= n} =⇒
{(i + 1) ∗ f = fact(i + 1)} ⇐⇒ (i + 1) ∗ f = (i + 1) ∗ fact(i)

i := i + 1 ;

{i ∗ f = fact(i)}
f := i ∗ f ;

{f = fact(i)}
{f = fact(n)}
assert(f = fact(n))

A. Bouajjani (Univ. Paris Diderot, UP7) L4&5: Partial Correctness – Hoare Logic January 2014 28 / 34



Example: Iterative factorial (cont.)

ifact (n : Nat) =
assume(true);

{1 = 1} ⇐⇒ {true}

f := 1 ;

{f = fact(0)} ⇐⇒ {f = 1}

i := 0 ;
{f = fact(i)}
while i 6= n do

{f = fact(i) ∧ i 6= n} =⇒
{(i + 1) ∗ f = fact(i + 1)} ⇐⇒ (i + 1) ∗ f = (i + 1) ∗ fact(i)

i := i + 1 ;

{i ∗ f = fact(i)}
f := i ∗ f ;

{f = fact(i)}
{f = fact(n)}
assert(f = fact(n))

A. Bouajjani (Univ. Paris Diderot, UP7) L4&5: Partial Correctness – Hoare Logic January 2014 28 / 34



Example: Iterative factorial (cont.)

ifact (n : Nat) =
assume(true);

{1 = 1} ⇐⇒ {true}

f := 1 ;

{f = fact(0)} ⇐⇒ {f = 1}
i := 0 ;
{f = fact(i)}
while i 6= n do

{f = fact(i) ∧ i 6= n} =⇒
{(i + 1) ∗ f = fact(i + 1)} ⇐⇒ (i + 1) ∗ f = (i + 1) ∗ fact(i)

i := i + 1 ;

{i ∗ f = fact(i)}
f := i ∗ f ;

{f = fact(i)}
{f = fact(n)}
assert(f = fact(n))

A. Bouajjani (Univ. Paris Diderot, UP7) L4&5: Partial Correctness – Hoare Logic January 2014 28 / 34



Example: Iterative factorial (cont.)

ifact (n : Nat) =
assume(true);

{1 = 1} ⇐⇒ {true}
f := 1 ;

{f = fact(0)} ⇐⇒ {f = 1}
i := 0 ;
{f = fact(i)}
while i 6= n do

{f = fact(i) ∧ i 6= n} =⇒
{(i + 1) ∗ f = fact(i + 1)} ⇐⇒ (i + 1) ∗ f = (i + 1) ∗ fact(i)

i := i + 1 ;

{i ∗ f = fact(i)}
f := i ∗ f ;

{f = fact(i)}
{f = fact(n)}
assert(f = fact(n))

A. Bouajjani (Univ. Paris Diderot, UP7) L4&5: Partial Correctness – Hoare Logic January 2014 28 / 34



Partial correctness of the Iterative Reverse

left as an exercise ...
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Partial correctness of the Iterative Sum

r : Nat ;

isum (` : List[Nat]) =
assume(true);
`′ : List[Nat] ;
r := 0 ;
`′ := ` ;
while `′ 6= [] do

invariant(?);
r := r + head(`′) ;
`′ := tail(`′) ;

assert(r = Σ(`))
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Partial correctness of the Iterative Sum
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isum (` : List[Nat]) =
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Use of ghost (auxilliary) variables

r : Nat ;

isum (` : List[Nat]) =
assume(true);
σ : List[Nat] ;
`′ : List[Nat] ;
r := 0 ;
σ := [] ;
`′ := ` ;
while `′ 6= [] do

invariant((r = Σ(σ)) ∧ (` = σ@`′))
r := r + head(`′) ;
σ := σ ◦ head(`′) ;
`′ := tail(`′) ;

assert(r = Σ(`))
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Proving partial correctness of isum

left as an exercise ...
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Summary

Imperative programs transform memory states. Programs can be seen
as state machines.

Assertions about states can be written in logic-based specification
languages.

A program must be annotated with assertions specifying the
assumptions on the initial state, the guarantees on the final state, as
well as loop invariants.

Pre-post condition reasoning allow to check that the guaranteed are
indeed satisfied under the considered assumptions. This reasoning can
be carried out formally in Hoare logic.

Proving the validity of Hoare triples must be done in the considered
theory of data.

Such proofs can be done either manually, or semi-manually using
theorem provers, or automatically in some cases using decision
procedures, e.g., those implemented in SMT solvers.
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