Exercice 1: (Ex. 55 in the course notes)

Show that if S is a substitution unifying the system $\left\{s_{1}=s_{2}, x=t\right\}$ then S unifies $\left\{s_{1}[t / x]=s_{2}[t / x]\right\}$ as well.

Exercice 2 : (Ex. 57 in the course notes)

Apply the unification algorithm viewed in the course to the following systems of equations :

1. $\{f(x, f(x, y))=f(g(y), f(g(a), z))\}$
2. $\{f(x, g(y))=f(y, g(g(x)))\}$

Exercice 3:*** (Ex. 61 in the course notes)

1. Propose a method to transform a unification problem of the shape :

$$
E=\left\{t_{1}=s_{1}, \ldots, t_{n}=s_{n}\right\}
$$

over the signature $\Sigma=\left\{g_{1}, \ldots, g_{m}\right\}$ with $n, m \geqslant 1$ into a unification problem E^{\prime} with the following properties :

1. E^{\prime} contains exactly one equation,
2. the terms in E^{\prime} range over the signature $\Sigma^{\prime}=\{f\}$, where f is binary,
3. E has a solution if and only if E^{\prime} has a solution, and
4. Apply the method to the system below, where x, y and z are variables.

$$
E=\{x=h(y), g(c, x, y)=g(y, z, z)\}
$$

Exercice 4: (Ex. 62 in the course notes)
Let t, s, \ldots be terms over the signature Σ. We say that t is a filter for s if there exists a substitution S with $S t=s$. We denote this fact as $t \leqslant s{ }^{1}$. Prove or disprove the following assertions:

1. If $t \leqslant s$, then t and s are unifiable.
2. If t and s are unifiable, then $t \leqslant s$ and $s \leqslant t$.
3. it $t \leqslant s$ and $s \leqslant t$, then s and t are unifiable.
4. For all t, s there exists an r with $r \leqslant t$, and $r \leqslant s$.
5. For all t, s, there exists an r with $t \leqslant r$ and $s \leqslant r$.
[^0]
[^0]: 1. Not to be confused with the notation $S \leqslant S^{\prime}$ over substitutions.
