- M1 Informatique


## Sémantique des Langages de Programmation (SemLP)

 TD n ${ }^{\circ} 5$ : Reduction Strategies
## Exercice 1:

Recall the dynamic call-by-name $\lambda$-calculus with closures given in class.

$$
\overline{v \Downarrow v} \quad \frac{\eta(x) \Downarrow v}{x[\eta] \Downarrow v} \quad \frac{M[\eta] \Downarrow_{n} \lambda x . M_{1}\left[\eta^{\prime}\right] \quad M_{1}\left[\eta^{\prime}\left[M^{\prime}[\eta] / x\right]\right] \Downarrow_{n} v}{\left(M M^{\prime}\right)[\eta] \Downarrow_{n} v}
$$

Define a similar big-step semantics reduction rule for the call-by-value $\lambda$-calculus.

## Exercice 2:

Recall the abstract machine for the call-by-name $\lambda$-calculus using a stack. Here $s$ is a stack of closures.

$$
\begin{aligned}
(x[\eta], s) & \rightarrow(\eta(x), s) \\
\left(\left(M M^{\prime}\right)[\eta], s\right) & \rightarrow\left(M[\eta], M^{\prime}[\eta]: s\right) \\
((\lambda x . M)[\eta], c: s) & \rightarrow(M[\eta[c / x]], s)
\end{aligned}
$$

Define a similar stack-based strategy to evaluate the call-by-value $\lambda$-calculus. Importantly, since in call-by-name the argument is evaluated before the substitution, you will have to store the functional in the stack while evaluating the arguments.
Hint : use markers to indicate whether the element being added to the stack is the functional or an argument.

## Exercice 3:

Assume the abstract machine for the call-by-value $\lambda$-calculus of exercise 2 where we add a unary operator $f$ and a binary operator $g$.

1. What are the new evaluation contexts?
2. How is the abstract machine to be modified ?

## Exercice 4 :

Define (and implement) the abstract machine for call-by-value using De Brujin variables.

## Exercice 5 :

Suppose we add to the call-by-name $\lambda$-calculus two monadic operators : $C$ for control and $A$ for abort. If $M$ is a term then $C M$ and $A M$ are $\lambda$-terms. An evaluation context $E$ is always defined as $: E::=[] \mid E M$, and the reduction of the control and abort operators is governed by the following rules :

$$
E[C M] \rightarrow M(\lambda x . A E[x]), \quad E[A M] \rightarrow M
$$

Adapting the rules shown in exercice 1, design an abstract machine to execute the terms in this extended language (a similar exercise can be carried on for call-by-value).
Hint : assume an operator ret which takes a whole stack and retracts it into a closure; then, for instance, the rule for the control operator can be formulated as :

$$
((C M)[\eta], s) \rightarrow(M[\eta], \operatorname{ret}(s))
$$

