DEROT

PARIS SARIS

⁵⁷ Sémantique des Langages de Programmation (SemLP) TD nº 6 : Simulation

Exercice 1 :

Prove the following properties :

- **1.** \leq_C is a pre-order (reflexive and transitive).
- **2.** If $M \leq_C N$ then for all contexts C (not necessarily closing) $C[M] \leq_C C[N]$.
- **3.** $\lambda x . \lambda y . x \not\leq_C \lambda x . \lambda y . y$.
- **4.** Find a pair of λ -terms M, N such that $M \approx_C N$ and $M \neq_{\beta} N$.

Exercice 2 :

Let \leq_{IO} be a relation on closed λ -terms defined by :

 $M \leq_{IO} N$ if $\forall P$ closed $MP \Downarrow$ implies $NP \Downarrow$

Show that \leq_{IO} is a pre-order and that it is *not* preserved by contexts.

Exercice 3 :

Show that :

- 1. The subsets of a set with the inclusion relation as partial order form a complete lattice.
- 2. Every subset of a complete lattice has an *inf*.
- **3.** Every *finite* subset of a lattice has an *inf*.
- 4. Every finite lattice is complete.

Exercice 4 :

Let $(\mathbb{N} \cup \{\infty\}, \leqslant)$ be the set of natural numbers with an added maximum element ∞ , $0 < 1 < 2 < \ldots < \infty$. Show that every monotonic function f on this order has a fixed point.

Exercice 5 :

Let (L, \leq) be a *finite* lattice and $f: L \to L$ be a monotonic function. Let $\bot (\top)$ be the *least (greatest)* element of L. If $x \in L$ then let $f^n(x)$ be the *n*-time iteration of f on x, where $f^0(x) = x$.

- **1.** Show that there is an $n \ge 0$ such that the *least fixed point* of f equals $f^n(\perp)$.
- 2. State and prove a dual property for the greatest fixed point.
- **3.** Show that these properties fail to hold if one removes the hypothesis that the lattice is *finite*.

Exercice 6:

A subset X of a partial order is *directed* if

 $\forall x, y \in X, \exists z \in X, (x \leq z) \text{ and } (y \leq z)$.

A function on a complete lattice is *continuous* if it preserves the *sup* of *directed sets* :

f(sup(X)) = sup(f(X)) (if X directed).

- **1.** Show that a *continuous* function is *monotonic*.
- 2. Give an example of a function on a complete lattice which is continuous but does *not* preserve the *sup* of a (non-directed) set.
- **3.** Show that the *least fixed point* of a continuous function f is expressed by :

$$\sup\{f^n(\perp) \mid n \ge 0\}$$
.

Exercice 7 :

Prove that :

- **1.** If $M \not\Downarrow$ and $N \not\Downarrow$ then $M =_S N$.
- **2.** Let $\Omega_n = \lambda x_1 \dots \lambda x_n \Omega$. Then $\Omega_n <_S \Omega_{n+1}$ (strictly) and, for all $M, \Omega_0 \leq_S M$.
- **3.** Let $K^{\infty} \equiv YK$. Then for all $M, M \leq_S K^{\infty}$.
- **4.** $\lambda x.x \not\leq_S \lambda x, y.xy$ (thus η -conversion is unsound).

Exercice 8 :

Let us revise the pre-order considered in exercise 2 by defining a relation \leq_{IO^*} on closed λ -terms as :

 $M \leq_{IO^*} N$ if for all $n \ge 0, P_1, \ldots, P_n$ closed, $MP_1 \cdots P_n \Downarrow$ implies $NP_1 \cdots P_n \Downarrow$.

Prove that \leq_{IO^*} coincides with \leq_S .