
M1 Informatique Année 2017-2018

Sémantique des Langages de Programmation (SemLP)
TD no 7 : Typed λ-calculus

Exercice 1 :
Show that if x1 : A1, . . . , xn : An ` M : B is derivable then (A1 → · · · (An → B) · · · ) is
a tautology of propositional logic where we interpret → as implication and atomic types
as propositional variables. Conclude that there are types A which are not inhabited, i.e.,
there is no (closed) λ-term M such that ∅ `M : A.

Exercice 2 :
Show that there is no λ-term M such that : ∅ ` M : (b → b) → b. Write A → b as ¬A.
Show that there are λ-terms N1 and N2 such that :

∅ ` N1 : A→ (¬¬A) , ∅ ` N2 : (¬¬¬A)→ (¬A) .

On the other hand, there are tautologies which are not inhabited ! For instance, consider :
A ≡ ((t → s) → t) → t. Show that there is no λ-term M in normal form such that
∅ `M : A is derivable. This is enough because later we will show that all typable λ-terms
normalize to a λ-term of the same type. For another example, show that there is no λ-term
M in normal form such that ∅ `M : ¬¬t→ t is derivable (the intuitionistic/constructive
negation is not involutive !).

Exercice 3 :
Suppose we reconsider the non-logical extension of the simply typed λ-calculus with a
basic type nat , constants Z, S, Y, and with the following fixed-point rule :

C[YM ]→ C[M(YM)] .

Let a program be a closed typable λ-term of type nat and let a value be a λ-term of the
shape (S · · · (SZ) · · · ). Show that if P is a program in normal form (cannot reduce) then
P is a value.

Exercice 4 :
Assume a recursively defined type t satisfying the equation t = t→ b and suppose we add
a rule for typing up to type equality :

Γ `M : A A = B

Γ `M : B
.

Show that in this case the following λ-term (Curry’s fixed point combinator) is typable
(e.g., in Curry’s style) :

Y ≡ λf.(λx.f(xx))(λx.f(xx)) .

Are the λ-terms typable in this system terminating ?

1


