DEROT

PARIS SARIS

Sémantique des Langages de Programmation (SemLP) TD n° 7 : Typed λ -calculus

Exercice 1 :

Show that if $x_1 : A_1, \ldots, x_n : A_n \vdash M : B$ is derivable then $(A_1 \to \cdots (A_n \to B) \cdots)$ is a *tautology* of propositional logic where we interpret \to as implication and atomic types as propositional variables. Conclude that there are types A which are *not inhabited*, *i.e.*, there is no (closed) λ -term M such that $\emptyset \vdash M : A$.

Exercice 2 :

Show that there is no λ -term M such that : $\emptyset \vdash M : (b \to b) \to b$. Write $A \to b$ as $\neg A$. Show that there are λ -terms N_1 and N_2 such that :

$$\emptyset \vdash N_1 : A \to (\neg \neg A)$$
, $\emptyset \vdash N_2 : (\neg \neg \neg A) \to (\neg A)$.

On the other hand, there are tautologies which are not inhabited ! For instance, consider : $A \equiv ((t \rightarrow s) \rightarrow t) \rightarrow t$. Show that there is no λ -term M in normal form such that $\emptyset \vdash M : A$ is derivable. This is enough because later we will show that all typable λ -terms normalize to a λ -term of the same type. For another example, show that there is no λ -term M in normal form such that $\emptyset \vdash M : \neg \neg t \rightarrow t$ is derivable (the intuitionistic/constructive negation is not involutive!).

Exercice 3:

Suppose we reconsider the *non-logical extension* of the simply typed λ -calculus with a *basic type nat, constants* Z, S, Y, and with the following fixed-point rule :

$$C[\mathsf{Y}M] \to C[M(\mathsf{Y}M)]$$
.

Let a program be a closed typable λ -term of type *nat* and let a value be a λ -term of the shape $(S \cdots (SZ) \cdots)$. Show that if P is a program in normal form (cannot reduce) then P is a value.

Exercice 4 :

Assume a recursively defined type t satisfying the equation $t = t \rightarrow b$ and suppose we add a rule for typing up to type equality :

$$\frac{\Gamma \vdash M : A \quad A = B}{\Gamma \vdash M : B}$$

Show that in this case the following λ -term (Curry's fixed point combinator) is typable (e.g., in Curry's style) :

$$Y \equiv \lambda f.(\lambda x.f(xx))(\lambda x.f(xx)) .$$

Are the λ -terms typable in this system terminating?