
M1 Informatique Année 2016-2017

Sémantique des Langages de Programmation (SemLP)
DM : Region Types

I) Submission

Submission Date : 21/05/2017
Submission Format : Submit a virtual machine (.ova) 1 with

1. an executable of the interpreter,
2. the source code of the interpreter,
3. a REAMDE file explaining :

– the command line options,
– the different components,
– how to write examples

4. a suite of examples with which you tested the implementation.

II) The language
We consider a simple extension to the monadic call-by-value λ-calculus of the lecture notes
with :

1. Natural values,
2. Boolean values and
3. if-then-else conditional expressions, and
4. Recursion.

The syntax of this extended language is given in Figure 1. The symbol ⊕ represents a
binary natural operator, 4 represents a natural binary comparator, and ? represents a
boolean binary operator. The special value () is named unit, and it is the only value of
type Unit.
We omit the semantics of this language, since we will not implement it directly. Instead,
we concentrate now on a language that adds the notion of memory regions, that is, dyna-
mically allocated portions of the memory, that can be manipulated in a stack-like form.
These regions were first introduced by [3]. They were later improved in [1], and a usage
of this concept for a language similar to that of the lecture notes can be found in [2].
The syntax of this language is given in Figure 2. As one can see from this syntax, we add
the syntactic categories of region names ranged with r, and region variables, ranged with
the meta-variable ρ. Notice that the values of Figure 1 are now terms annotated with a
region using the syntax @. This indicates at runtime the region in which the value has
to be stored. Consequently, we need syntax to create regions. This is achieved with the

1. Put it in a shared repository (eg. Dropbox or Google Drive). In the case where your implementation
compiles and runs without problem in UNIX you can just submit the sources with an appropriate Makefile.

1

M1 Informatique Année 2016-2017

x ∈ Var (var. names)
f ∈ LV ar (letrec var. names)
n ∈ N (naturals)
b ∈ {true, false} (booleans)

v ::= x | f | λx. M | n | b | () (values)

M ::= v | (MM) (terms)
| M ⊕M | −M | M 4M | M ?M | ¬M
| if M then M else M
| let x = M in M
| letrec f(x) = M in M

E ::= (EM) | (vE) (ev. contexts)
| E ⊕M | v ⊕ E | −E | ...
| if E then M else M
| let x = E in M
| letrec f(x) = E in M

Figure 1 – Monadic Region-free calculus

command letregion ρ inM which allocates a new region bound to the region variable ρ for
the duration of the expression M . When M produces a value this region can be diposed
of. Finally, as it can be see from the syntax of letrec expressions, these are polymorphic
on the regions they operate on.
We can now present the semantics of our language with regions in Figure 3. At runtime
we consider that configurations of our language are triples of the form :

〈s, δ,M〉

where s is a store mapping region names to regions. Regions in turn ar mappings from
offsets (denoted by o) to values of the language. We shall denote by a an address in the
store, that is a pair (r, o) consisting of a region mane and an offset. We notice that values
are either variables, or addresses. That is, all values in this language are boxed – i.e. stored
in the heap. The δ component of the configuration is a variable environment, mapping
variables to values. Finally, we find the term being evaluated M .
The semantic judgment has the form :

〈s, δ,M〉 → (v, s′)

representing the call-by-value big-step reduction of a configuration as described above, to
a pair containing the final value v and the modified store s′.
Finally, functions are stored as closures. A closure is a tripe of the form :

L x,M, δ M

where x is the formal variable of the function, M is its body, and δ is the environment of
the function. Since functions are region polymorphic in λ-regions, we have another type
of closures that includes the names of the region formal parameters of the function :

L ~ρ, x,M, δ M

The semantic rules of Figure 3 show how closures are to be used.
Finally we remark that we use the plus symbol (+) to denote functional extension.

2

M1 Informatique Année 2016-2017

x ∈ Var (var. names)
n ∈ N (naturals)
b ∈ {true, false} (booleans)
r ∈ Reg (region names)
ρ ∈ RegV ar (region var)
p ::= r | ρ (regions)

v ::= x | a (values)

M ::= v | f [~p] @ p | λx. M @ p | n @ p | b @ p | () @ p | (MM) (terms)
| M ⊕M @ p | −M @ p | M 4M @ p | M ?M @ p | ¬M @ p
| if M then M else M
| let x = M in M
| letrec f [~ρ](x) @ p = M in M
| letregion ρ in M

E ::= (EM) | (vE) (ev. contexts)
| E ⊕M | v ⊕ E | −E | ...
| if E then M else M
| let x = E in M

Figure 2 – Monadic Region calculus

Exercice 1 : Implementing λ-regions

1. In the semantics above there are constructs of the language that are omitted such as
the evaluation of arithmetic and boolean expressions, and conditionals. Complete the
semantics of Figure 3 to include these constructs.

2. Implement in your favourite programming language an interpreter for the semantics of
λ-regions. You can start from the AST of the language. A parser is not required. 2

III) Types and transformations
Indeed, we are interested in executing programs written with the syntax of Figure 1, but
making use of the semantics of Figure 3. To that end we will implement a compiler guided
by a type and effect system.
The syntax of types is given by the following grammar :

ϕ ∈ P(
⋃
p{get(p) | put(p)} ∪ EffVar) effect

ε ∈ EffVar effect variable
τ ::= int | bool | unit | τ ε.ϕ−→ τ | α basic type
µ ::= (τ, p) decorated type
σ ::= τ | ∀α . σ type scheme
π ::= τ | ∀α . π | ∀ϕ . π | ∀ρ . π region type scheme

Importantly, expressions do not only produce a type, but also an effect. Effects ϕ are
sets of atomic effects of the form get(p) meaning that the expression might read a value

2. However, a file containing examples using all of the constructs of the language is required. Providing
a parser will be considered for extra credit.

3

M1 Informatique Année 2016-2017

δ(x) = v

〈s, δ, x〉 → (v, s)

δ(f) = a s(a) = L ~ρ, x,M, δ0 M |~ρ| = |~r|
o /∈ dom(s(r′)) sv = L x,M [~r/~ρ], δ0 M

〈s, δ, f [~r]@r′〉 → ((r′, o), s+ {r′ → r′ + {o 7→ sv}})

o /∈ dom(s(r)) a = (r, o)

〈s, δ, (λx.M) @ r〉 → (a, s+ {a → L x,M, δ M})

〈s, δ,M〉 → (a1, s1) s1(a1) = L x,N ′, δ′ M
〈s1, δ,N〉 → (v2, s2) 〈s2, δ′ + {x→ v2}, N ′〉 → (v, s′)

〈s, δ,MN〉 → (v, s′)

〈s, δ,M〉 → (v1, s1) 〈s1, δ + {x→ v1}, N〉 → (v, s′)

〈s, δ, let x = M in N〉 → (v, s′)

o /∈ dom(s) δ′ = δ + {f → (r, o)} 〈s+ {(p, o)→ L ~ρ, x,N, δ′ M}, δ′, N〉 → (v, s′)

〈s, δ, letrec f [~r](x) @ p = M in N〉 → (v, s′)

r /∈ dom(s) 〈s+ {r → ∅}, δ,M [r/ρ]→ (v, s′)〉
〈s, δ, letregion ρ in M〉 → (v, s′\{r})

Figure 3 – Semantics for λ-regions

stored in region p, or put(p) meaning that the expression might write a value in region p.
Furthermore, for unification of effects in the type system, we add effect variables ε.
As expected, we have the usual types int, bool, and type variables α for polymorphism.
Moreover, arrow types are now decorated with a pair (ε, ϕ) representing an effect variable
ε used for effect unification, and the expected effect (i.e. set of regions read and written)
by an application of the function. The productions σ and π distinguish plain from region
polymorphic functions – which have to be applied to regions to produce a plain function
–.
This type system serves both to type expressions, and to guide compilation from the
source language of Figure 1 to the language of Figure 3. To that end, the judgments are
of the form

Γ `M ⇒M ′ : σ, ϕ

where : – Γ is a typing context, that is a mapping from program variabels to types, – M
is a term in the source language, – M ′ is its corresponding term in the target language,
– σ is the type of the expression, and – ϕ, is the effect resulting from the evaluation of
this expression.
The function Observe(A)(ϕ) represents the observable effect of A and is defined as :

Observe(A)(ϕ) = {put(p), get(p) | p ∈ fv(A)} ∪ {ε | ε ∈ ϕ ∪ fev(A)}

where fev(A) are the free effect variables of A.
For explanations about the individual rules refer to [3].

Exercice 2 : Compiling to λ-regions
Implement the type system of Figure 4. As a first step, you can consider the implemen-
tation that does not provide recursive functions.

4

M1 Informatique Année 2016-2017

Γ(x) = (σ, p) σ > τ

Γ ` x⇒ x : (τ, p), ∅
Γ + {x 7→ µ1} `M ⇒M ′ : µ2, ϕ ϕ ⊆ ϕ′

Γ ` (λx.M)⇒ (λx.M ′) @ p : ((µ1
ε.ϕ′

−−→ µ2), p), {put(p)}

Γ `M ⇒M ′ : (µ′ ε.ϕ0−−−→ µ, p), ϕ1 Γ ` N ⇒ N ′ : µ′, ϕ2

Γ `MN ⇒M ′N ′ : µ, ϕ0 ∪ ϕ1 ∪ ϕ2 ∪ {ε} ∪ {get(p)}

Γ `M ⇒M ′ : (τ1, p1), ϕ1 σ1 = ∀~α ∀~ε . τ1
fv(~α,~ε) ∩ fv(Γ, ϕ1) = ∅ Γ + {x 7→ (σ1, p1)} ` N ⇒ N ′ : µ, ϕ2

Γ ` let x = M in N ⇒ let x = M ′ in N ′ : µ, ϕ1 ∪ ϕ2

π = ∀~ρ ∀~ε . τ fv(~ρ,~ε) ∩ fv(Γ, ϕ1) = ∅ Γ + {f 7→ (π, p)} ` (λx. M)⇒ (λx. M ′) @ p : (τ, p), ϕ1

π′ = ∀~α . π fv(~α) ∩ fv(Γ, ϕ1) = ∅ Γ + {f 7→ (π′, p)} ` N ⇒ N ′ : µ, ϕ2

Γ ` letrec f(x) = M in N ⇒ letrec f [~ρ](x) @ p = M ′ in N ′ : µ, ϕ1 ∪ ϕ2

Γ(f) = (π, p′) π = ∀ρ0 · · · ρk ∀~α ∀~ε . τ ′ π > τ via S ϕ = {get(p′), put(p)}
Γ ` f ⇒ f [S(ρ1), . . . , S(ρk)] @ p : (τ, p), ϕ

Γ `M ⇒M ′ : µ, ϕ ϕ′ = Observe(Γ, µ)(ϕ) {ρ1 · · · ρk} = frv(ϕ\ϕ′)

Γ `M ⇒ letregion ρ1 · · · ρk in M ′ : µ, (ϕ/{put(ρi), get(ρi) | 1 6 i 6 k})

Figure 4 – λ-region compilation

Exercice 3 :
Provide sufficient examples to cover all of the constructs of the language. Implement a
logging mechanism that shows the life span of the different regions used. 3

IV) Optimizations
While the language of Figure 3 allows to allocate and deallocate memory on demand, the
stack-based principle it uses requires that the certain regions be allocated before or after
the places where they are strictly utilized. To overcome this problem, an alternative to
the letregion construct is to have allocate and deallocate constructs that allow for a much
finer control of region lifespans. This approach was presented in [1].

Exercice 4 :

1. Implement an interpreter for the modified language of [1].
2. Implement the type and effect system of [1].
3. Compare the life span of memory regions as produced by the system of [3] and this

one.

3. As an optional parameter to the interpreter of the preceding question.

5

M1 Informatique Année 2016-2017

Références
[1] Aiken, A., Fähndrich, M., and Levien, R. Better static memory management :

Improving region-based analysis of higher-order languages. In Proceedings of the
ACM SIGPLAN’95 Conference on Programming Language Design and Implementa-
tion (PLDI), La Jolla, California, USA, June 18-21, 1995 (1995), pp. 174–185.

[2] Amadio, R. M., and Régis-Gianas, Y. Certifying and reasoning on cost anno-
tations of functional programs. In Foundational and Practical Aspects of Resource
Analysis - Second International Workshop, FOPARA 2011, Madrid, Spain, May 19,
2011, Revised Selected Papers (2011), pp. 72–89.

[3] Tofte, M., and Talpin, J. Region-based memory management. Inf. Comput. 132,
2 (1997), 109–176.

6

	Submission
	The language
	Types and transformations
	Optimizations

