DEROJ

ARIS

$lacksing \ { m S}$ émantique des Langages de Programmation (SemLP) ${ m TD} \ { m n}^{ m o} \ 2 : { m WP} + { m Rewriting}$

Exercice 1 : Weakest Precondition for Imp (Ex. 12 in the course notes)

Let S be a statement and B an assertion. The weakest precondition of S with respect to B is a predicate that we denote with wp(S, B) such that :

- (i) $\{wp(S, B)\} S \{B\}$ is valid, and
- (ii) if $\{A\} \in \{B\}$ is valid then $A \supset wp(S, B)$ is valid.

Assuming that the statement S does not contain while loops. Propose a strategy to compute wp(S, B) and derive a method to reduce the validity of the pca triple $\{A\} S \{B\}$ to the validity of a logical assertion.

Exercice 2 :

Provide *simple* examples of rewriting systems satisfying, if possible, the following properties. Justify you answer in the case that no such system exists.

- 1. Terminating and not normalizing,
- 2. Normalizing and non-terminating,
- 3. Terminating and normalizing,
- 4. Confluent and non-terminating,
- 5. Church-Rosser and terminating.

Exercice 3 : (Ex. 27 in the course notes)

Let (A, \to_1) and (A, \to_2) be two rewriting systems. We say that they *commute* if $a \xrightarrow{*}_1 b$ and $a \xrightarrow{*}_2 c$ implies $\exists d, (b \xrightarrow{*}_2 d \text{ and } c \xrightarrow{*}_1 d)$ as shown below.

Show that if \rightarrow_1 and \rightarrow_2 are *confluent* and *commute* then $\rightarrow_1 \cup \rightarrow_2$ is confluent too.

Exercice 4 :

Consider the following Imp command (extended with integer addition and division) where b is an arbitrary boolean condition :

while (u > l + 1) do (r := (u + l)/2; if b then u := r else l := r)

Show that the evaluation of the command starting from any state where $u, l \in \mathbb{N}$ terminates.

Exercice 5 :

Does the evaluation of the following Imp commands terminate assuming that initially $m, n \in \mathbb{N}$?

1. while $(m \neq n)$ do (if (m > n) then m := m - n else n := n - m)

2. while $(m \neq n)$ do (if (m > n) then m := m - n else (h := m; m := n; n := h))

Exercice 6:

Let Σ^* denote the set of finite words over the alphabet $\Sigma = \{f, g_1, g_2\}$ with generic elements w, w', \dots As usual, ϵ denotes the empty word. Let \rightarrow denote the smallest binary relation on Σ^* such that for all $w \in \Sigma^*$:

(1)
$$fg_1w \to g_1g_1ffw$$
, (2) $fg_2w \to g_2fw$, (3) $f \to \epsilon$

and such that if $w \to w'$ and $a \in \Sigma$ then $aw \to aw'$. Prove or give a counter-example to the following assertions :

- 1. If $w \xrightarrow{*} w_1$ and $w \xrightarrow{*} w_2$ then there exists w' such that $w_1 \xrightarrow{*} w'$ and $w_2 \xrightarrow{*} w'$.
- **2.** The rewriting system (Σ^*, \rightarrow) is terminating.
- **3.** Replacing rule (1) with the rule $fg_1w \to g_1g_1fw$, the answers to the previous questions are unchanged.