DEROT

PARIS FARIS

⁷ Sémantique des Langages de Programmation (SemLP) TD nº 8 : Type Inference – Program Transformations

Type Unification

Exercice 1 :

Compute, if possible, by the method of unification the most general types for the following $\lambda\text{-terms}$:

 $\lambda x.\lambda y.\lambda z.xz(yz)$ $\lambda x.\lambda y.x(yx)$ $\lambda k.(k(\lambda x.\lambda h.hx))$

Exercice 2:

Apply the reduction of unification to type inference to the types t_1 , t_2 and $(t_1 \rightarrow t_2)$ relatively to the set of (type) variables $\{t_1, t_2\}$.

Exercice 3 :

Find the $U_{A,B}$ λ -terms of Proposition 232 in the LN to the following types : **1.** $A = t_1$ and $B = t_2$, and

2. $A = t_1$ and $B = t_1 \rightarrow t_2$

Program transformations

Exercice 4 :

Write down a simplified CPS transformation for a monadic call-by-value λ -calculus without let-definitions and tuples. Then apply the CPS transformation to show that it is possible to simulate the call-by-value λ -calculus in the call-by-name λ -calculus.

Exercice 5 :

Define a closure conversion transformation that applies directly to the source language rather than to the CPS, value named form.

Exercice 6 :

Apply the hoisting transformation to the terms resulting from the closure conversion of exercise 5.