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1 Introduction

In sequential computing, every method of an object can be described in isolation via
preconditions and postconditions. However, reasoning in a concurrent setting requires
a characterization of all possible interactions across method invocations. Herlihy and
Wing [1990]’s notion of linearizability simplifies such reasoning by intuitively ensuring
that each method invocation “takes effect” between its invocation and response events.

This approach had two basic shortcomings. Firstly, in Herlihy and Wing’s defini-
tion of linearizability, the interfaces are not expressive enough to codify external calls
emanating from the component. Thus, objects are closed and passive.

Secondly, the definitions are for a memory model with a global total order on mem-
ory operations, thus satisfying sequential consistency (SC). SC is not realized by all ar-
chitectures or runtime systems [Adve and Gharachorloo 1996; Adve and Boehm 2010],
motivating models of relaxed memory in hardware, such as TSO [Sewell et al. 2010],
PSO [SPARC, Inc. 1994], Power [Sarkar et al. 2011], and runtime systems, such as Java
[Manson et al. 2005; Sevcík 2008] and C++ [Boehm and Adve 2008; Batty et al. 2011].
This has motivated recent definitions of linearizability specific to the TSO [Burckhardt
et al. 2012; Gotsman et al. 2012] and C11 [Batty et al. 2013] memory models.

We propose new definitions to address both of these limitations. Our methodology
aims to keep the interfaces free of the intricacies of particular relaxed memory models.
Our approach has the following characteristics.

(1) We model calls to component functions process-algebraically. This allows us
to treat callbacks and to give a symmetric definition of composition between clients
and libraries. Thus, our definitions encompass active components (that can evolve au-
tonomously even without input from the environment) and open components (that in-
voke methods on components provided by the environment) and environment assump-
tions (pre/postconditions and the permitted sequences of method calls to a component).

(2) Our definitions are not specific to a particular memory model. Rather, we iden-
tify the criteria that a relaxed memory model needs to satisfy in order to fit into our
framework: the examples that satisfy our criteria include SC, TSO, PSO and a variant
of the Java Memory Model (JMM).

We establish an abstraction theorem: a component can safely be substituted for its
interface in a non-interfering program. Moreover, for special classes of programs, we
simplify the reasoning further by quarantining the effects of relaxed memory, allowing
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programmers to program to sequential interfaces, even when the code has data races.
Recall the definition of data race free (DRF) models: Informally, a program is DRF if no
SC execution of the program leads to a state in which a write happens concurrently with
another operation on the same location. A DRF model requires that the programmer’s
view of relaxed computation coincides with SC computations for programs that are
DRF. TSO, PSO and the JMM are all DRF models. We establish the following.

(1) If a stateful component is DRF and the underlying memory model satisfies the
DRF requirement, our notion of linearizability usually coincides with that of Herlihy
and Wing, so classical techniques to verify linearizability can be used directly. Thus, in
many cases, our definitions permit the use of standard proof techniques.

(2) If a client is DRF, and the underlying memory model satisfies the DRF require-
ment, the client can ignore all memory model subtleties when using a library that is
linearizable as per our definitions, even if the library itself is racy. More precisely, it is
sound for the client to reason solely with the sequential interface of the component, as
in [Herlihy and Wing 1990].

Rest of the paper. In Section 2, we describe background material on linearizability in
order to clarify the difficulties caused by relaxed memory. We discuss related work in
Section 3 and develop our semantic framework in Sections 4–6. We define lineariz-
ability in Section 7 and provide several examples. In Section 8, we turn to techniques
for establishing linearizability under relaxed memory using techniques developed for
sequential consistency. In Section 9–10, we establish the basic properties of lineariz-
ability. Many definitions and all proofs are elided in this extended abstract.

2 Background: linearizability

To illustrate the issues that arise when reasoning compositionally, we describe the spec-
ification and implementation of a lock and a one-place buffer implemented using the
lock.
Specifying the lock. To begin, we give the specification of a lock using an regular ex-
pression. We use regular expressions informally; the actual specifications are sets of
traces. Let s and t be thread identifiers. Because we are interested in overlapping exe-
cutions, we separate call and return into separate actions: 〈s?call f u〉 represents a call
by s to function f with argument u, and 〈s!ret f v〉 represents the corresponding return
with result v. (The ? and ! indicate that these are calls in to the lock and returns out; we
shall see the symmetric case shortly.)

( ( 〈s?call rl〉〈s!ret rl〉 )+〈t?call aq〉〈t!ret aq〉 )∗

According to the specification, the lock is initially in its “acquired” state. Only after
one or more calls to the “release” method rl, can the lock be “reacquired” using aq.
This regular expression is not meant to refer to specific concrete thread names s and t.
Rather, it is meant to convey the idea that calls and returns have matching thread names.

Let Ψlock be the prefix-closed set of traces that satisfy this regular expression. This
is a “sequential” specification of the lock, in that no two function calls overlap.

We now turn to implementation of the lock. Here we use an atomic variable, which
we define to be similar to volatile variables in Java, with an additional compare-and-set
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(cas): w.cas(u,v) returns false if w 6= u, otherwise it returns true and sets w to v.

atomic w=1; fun rl() { w=0; }
fun aq() { do skip until w.cas(0,1); }

(Lock)

Initially, calls to aq will spin, only returning after another thread calls rl. In the vocab-
ulary of [Lamport 1979], a call to rl happens-before the return from aq. The happens-
before relation allows a partial order to be recovered from the total order prescribed
by a trace: actions of a single thread are ordered sequentially, but actions of different
threads are unordered. Inter-thread order requires synchronization, which is we imple-
ment using atomic variables, such as w.

Every write to an atomic variable happens-before every subsequent read of the same
atomic. An unsuccessful cas acts like a read, whereas a successful cas acts like both
a read and a write. In traces, atomics produce three types of action: writes produce
〈s rel w〉 actions, reads produce 〈s acq w〉 actions, and successful cas produce 〈s cas w〉
actions; unsuccessful cas produce nothing. The happens-before relation orders every
〈rel w〉 and 〈cas w〉 with every subsequent 〈acq w〉 and 〈cas w〉. These relations are
based on the identity, w, of the atomic.

Let Φlock be the set of implementation traces generated by the implementation code
above. These include traces of the form

( ( 〈s?call rl〉〈s rel w〉〈s!ret rl〉 )+〈t?call aq〉〈t cas w〉〈t!ret aq〉 )∗.

(This regular expression is not exhaustive, since the implementation also generates over-
lapping function calls; however, it is sufficient for the discussion at hand.)

Herlihy and Wing [1990] propose linearizability as a way to relate the implementa-
tion of a concurrent component to its specification. An implementation is linearizable
if for every trace of the implementation, there exists a trace in the specification such
that (1) each thread makes the same method invocations in the same order, and (2) the
order of non-overlapping invocations is preserved. We write Φlock �Ψlock to indicate
that Φlock is a valid implementation of Ψlock in this sense.
Specifying the buffer. We now give the specification and implementation of a one-place
buffer using Lock. The buffer’s sequential specification can be given as follows.

( 〈s?call put v〉〈s!ret put〉 〈t?call get〉〈t!ret get v〉 )∗

As before, let Ψbuf be the prefix-closed set of traces that satisfy this regular expression.
The implementation of the one place buffer uses two locks. We use subscripts to

distinguish them. One of the locks has interface acqempty/relempty (initially “released”,
with w==0) and the other has interface acqfull/relfull (initially “acquired” with w==1).
Thus, the buffer is initially empty. (Note that two “instances of a class” are represented
here as two separate components.)

var x=0; fun put(z) { acqempty(); x=z; relfull(); }
fun get() { acqfull(); let z=x; relempty(); return z; }

(Buffer)

Let Φbuf be the set of traces derived from this implementation, including traces such as

( 〈s?call put v〉
〈s!call acqempty〉〈s?ret acqempty〉〈s wr x v〉〈s!call relfull〉〈s?ret relfull〉
〈s!ret put〉〈t?call get〉
〈t!call acqfull〉〈t?ret acqfull〉〈t rd x v〉〈t!call relempty〉〈t?ret relempty〉
〈t!ret put v〉 )∗.
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This trace contains actions of the form 〈s!call f u〉 which represent a call out to another
component; likewise, 〈s?ret f v〉 represents the corresponding return. In this case, the
implementation is using services provided by other components.

We would like to be able to verify the correctness of Buffer using the sequential
specification of Lock. That is, conclude Φbuf �Φlock �Ψbuf from Φbuf �Ψlock �Ψbuf ,
where � is a suitable notion of composition. Herlihy and Wing validate this approach
under SC semantics. Burckhardt, Gotsman, Musuvathi, and Yang [2012] show that Her-
lihy and Wing’s results fail for relaxed memory models and adapt them to TSO. Here
we provide a different solution to that problem.

Traditional linearizability fails here, because it is impossible to establish the premise
Φbuf �Ψlock �Ψbuf . To see why, observe that any reasonable definition Φbuf �Ψlock

admits the following trace under relaxed memory. (For brevity, the calls to the locks are
shown as elipses.)

〈s?call put 1〉· · ·〈s wr x 1〉· · ·〈s!ret put〉〈t?call get〉· · ·〈t rd x 1〉· · ·〈t!ret get 1〉
〈r?call put 2〉· · ·〈r wr x 2〉· · ·〈r!ret put〉〈t?call get〉· · ·〈t rd x 1〉· · ·〈t!ret get 1〉 (†)

The final call to get returns a stale value. The race on variable x is not resolved, and
thus the earlier write on x remains visible.

Of course, if one looks at the specification of Lock, the problem is immediately
apparent: it’s too weak! In relaxed models, data structures have memory effects which
are not captured by their functional interface. Indeed, the documentation in APIs such
as java.util.concurrent [Sun Microsystems 2004] pays significant attention to exactly
this fact. These APIs detail the happens-before behavior of the methods using happens-
before edges that go from the beginning of one method activation to the end of another
(or a set of others); that is, from call to return.

We allow happens-before to be captured in specifications by introducing names, a,
on actions. Each 〈?call〉 gets a unique name, and each 〈!ret〉 gets a set of names. The
interpretation is that 〈s?call f ~u a〉 happens-before 〈t!ret f ~v A〉 if a ∈ A.

With this addition, Lock can be specified as follows

( ( 〈r?call rl〉〈r!ret rl〉 )∗ 〈s?call rl a〉〈s!ret rl〉〈t?call aq〉〈t!ret aq {a}〉 )∗

This specification is now strong enough to deduce happens-before edges from each put
to get that it enables, and vice versa. Thus, in trace (†) above, the write to x in the
first put is no longer visible to the second get. More generally, we are able to establish
Φbuf �Ψlock �Ψbuf .

3 Related work

We discuss the most closely related papers here, referring to others in context. Her-
lihy and Wing [1990] defined linearizability. From a client perspective, the set of lin-
earizations of a linearizable object is an operational refinement of the object [Filipovic,
O’Hearn, Rinetzky, and Yang 2010], i.e. the client is unable to distinguish the imple-
mentation from the specification. Thus, a client of a linearizable object can take an
atomic view of method invocations. The verification method for object linearizability
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relies on finding linearization points for methods. For each function call, the lineariza-
tion point is the moment at which the function appears to execute atomically. Com-
position of non-interfering objects preserves linearizability. Gotsman and Yang [2012]
mitigate the stricture of interference-freedom in this framework using ownership ideas.

The papers cited above make a sharp distinction between clients and libraries;
clients are permitted to make method invocations and libraries accept method invo-
cations. Thus, they are unable to describe the interface of open components such as a
thread pool that relies on an external bounded buffer library. In contrast, our enhanced
notion of interfaces is able to describe such components. In terms of implementations,
our library can both make and receive method invocations in external interactions, in
addition to also being able to invoke internal library methods. Indeed, we stop short
of adding full objects, as suggested by Filipovic, O’Hearn, Rinetzky, and Yang [2010],
only to avoid cluttering the presentation with heavy syntactic machinery.

The definition of linearizability relies on an SC view of shared memory. Batty,
Dodds, and Gotsman [2013] address linearizability in the context of the C/C++ memory
models. When specialized to SC, their definition of linearizability is stricter than that of
Herlihy and Wing. In contrast, when specialized to SC, our definitions are not stricter.

In TSO, an update to a variable might be buffered and may not be seen by a reader
in a different thread until the update is committed to the main memory. Burckhardt
et al. [2012] address linearizability for the TSO memory model. In contrast both to
Herlihy and Wing and to our definitions, their paper incorporates two extra actions
for each method invocation in the sequential specification of an object: one to record
when buffer updates made by the client are seen by the library, and the other to record
when the updates made by library are committed to main memory. In our work we
maintain the atomicity of methods of Herlihy and Wing by only associating call and
return actions with each method invocation.

More generally, our methodology keeps the interface of a component free of the
intricacies of the particular relaxed memory model under consideration. In this paper,
we are thus able to address SC, TSO, PSO and a JMM variant. In particular, our analysis
of TSO is subtle enough to address all the examples of Burckhardt et al. [2012], even
though, from a purely formal TSO perspective, there is clearly greater expressiveness
in their definition. Consequently, any data race free client can work precisely against a
SC interface in our setting, whereas Gotsman, Musuvathi, and Yang [2012] explore the
conditions on compilation necessary to validate the use of SC interfaces under TSO.

4 Traces

The semantics of a component is given by a set of traces, defined below. We build the
syntax from the following disjoint sets. Let u, v ∈ Z range over values, a, b ∈ Act over
action names, A, B ⊆ Act over sets of action names, f , g ∈ Fun over function names,
F ⊆ Fun over sets of function names, s, t ∈ Thrd over thread names (including the
reserved thread names “tinit” and “tcom”) and S, T ⊆ Thrd over sets thread names. Let
η ∈ Fun]Thrd range over names, which include both function and thread names, and
H, G over sets of names.
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Traces are strings of actions. These are divided into communication actions, de-
scribed below, and memory actions, described in Section 5. For now, let Mem be the set
of all memory actions.

α, γ ::= 〈s!call f ~u a A〉 | 〈s?call f ~u a A〉 | 〈s.call f ~u a A〉
| 〈s?ret f ~u a A〉 | 〈s!ret f ~u a A〉 | 〈s.ret f ~u a A〉 | · · ·

Communication actions include seven components, discussed below: thread identifier
s, polarity in {!, ?, .}, action type in {call, ret}, function name f , vector of arguments
or return values~u, definition a, and use set A.

We typically elide the uninteresting parts of an action; missing parts are existentially
quantified. For example, we write 〈!call f ~u a A〉 to abbreviate (∃s)〈s!call f ~u a A〉, and
similarly for other abbreviations such as 〈s!call〉, 〈call f 〉, 〈s! f 〉 and 〈!〉.

The thread identifier identifies the thread that performed the action.
As in Jeffrey and Rathke [2005], call and return actions include a polarity. Actions

containing a “?” are input; those containing “!” are output; actions containing “.” are
internal, as are memory actions. Input actions are offered by quiescent threads, whereas
all others are initiated by active threads. Two actions are complementary if one is an
input, the other an output and they are identical when action names and “?” and “!” are
ignored. If α ∈ {〈!〉, 〈?〉}, we say α is I/O.

Actions 〈!call f 〉 and 〈?ret f 〉 occur in the traces of components that do not define
f ; whereas 〈?call f 〉, 〈!ret f 〉, 〈.call f 〉 and 〈.ret f 〉 occur those that do. Action 〈?call〉
represents a call from outside the component, whereas 〈.call〉 represents a call from the
component to itself. Thus, input and output actions cause a shift across the boundary of
the component for that thread, whereas the internal actions do not.

Call actions include the vector of actual parameters. Return actions include a vector
of return values. Several examples require multiple return values. An obvious general-
ization would be to support first-class tuples, but this would complicate the presentation.

The action names decorating actions are used to specify ordering properties (Sec-
tion 5). Each action defines a unique action name a. For the purposes of defining traces
and trace composition, these names are mere decorations: we identify traces up to the
renaming of action names. In 〈? A〉, the set A contains names defined by “!” actions and
represents an order relied upon by the component. In 〈! A〉, the set A contains names
defined by “?” actions and represents an order guaranteed the component. In 〈. A〉, the
set A contains names defined by “.” actions and represent the interaction of two compo-
nents, one which relies upon A and one which guarantees it. In operationally generated
traces, A is empty for any 〈! A〉 or 〈. A〉; these sets or nonempty when working with
specification interfaces.

Definition 4.1 (Trace). For any given thread, define a single-threaded balanced trace to
be one generated by the following grammar.

B ::= A | Q (Single-threaded balanced trace)
A ::= 〈.call f 〉 A 〈.ret f 〉 | A A | ε (Active trace)

| 〈!call f 〉 Q 〈?ret f 〉 | M
Q ::= 〈?call f 〉 A 〈!ret f 〉 | Q Q | ε (Quiescent trace)
M ∈ Mem (Memory action)
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(We elide uninteresting metavariables within actions. Because they are single-threaded,
all actions have the same thread name.)

A balanced trace is any interleaving of single-threaded balanced traces with distinct
thread names. A trace is a trace of actions that is well-formed and is also a prefix of a
balanced trace. Let σ , ρ , π range over traces. 2

We give an inductive characterization of traces in the full version of this paper.
We expose, and nest, calls and returns as with VPLs [Alur and Madhusudan 2009].

As seen from the grammar, prefixes of single-threaded balanced trace are divided into
two polarities: quiescent and active. By convention, ε is quiescent. For all other traces,
the polarity is determined by the first action of the trace: if it is 〈?call〉, then the trace is
quiescent; otherwise the trace is active.

Traces have three forms of bracketing, indexed by thread: call/return, input/output
and output/input. (Internal actions provide no interesting bracketing other than call/
return.) In the trace 〈s?call f 〉〈s!call g〉〈s?ret g〉〈s!ret f 〉, the call/return matches are
〈s?call f 〉/〈s!ret f 〉 and 〈s!call g〉/〈s?ret g〉; the input/output matches are 〈s?call f 〉/
〈s!call g〉 and 〈s?ret g〉/〈s!ret f 〉; the output/input match is 〈s!call g〉/〈s?ret g〉.

Here are some further examples: 〈s!〉〈s?〉 is a trace, but 〈s!〉〈s!〉 is not. 〈s!〉〈t?〉〈s?〉
is a trace, but 〈s!〉〈s?〉〈s?〉 is not. 〈s?〉〈s.〉 is a trace, but 〈s!〉〈s.〉 is not.

Definition 4.2. Define the function thrd to return the thread name occurring inside an
action and thrds to return the set of threads in a sequence of actions. Similarly, define
the partial functions fun and funs to return the function name. For example, if α =
〈s!call f ~u a A〉, then thrd(α) = s and fun(α) = f .

Given a trace σ , define the thread projection σ |s of that trace, which includes only
the actions attributed to thread s; this is always a prefix of a single-threaded balanced
trace. Define the following functions over traces.

intern(α1 · · ·αn)
M
= { f | ∃i. αi = 〈?call f 〉 or αi = 〈.call f 〉}
∪{s | (σ |s) 6= ε is an active trace}\{tinit, tcom}

extern(α1 · · ·αn)
M
= { f | ∃i. αi = 〈!call f 〉}
∪{s | (σ |s) 6= ε is an quiescent trace}

These definitions lift to trace sets via set union. When interpreted over trace sets, intern
identifies the functions and threads defined by the component, whereas extern identifies
the functions and threads mentioned in a component, but not defined by it.

A trace σ is coherent if intern(σ)∩ extern(σ) = /0. We assume that all traces are
coherent. We also assume other well-formedness criteria, detailed in the full version of
this paper.

A set Σ of traces is coherent if intern(Σ)∩ extern(Σ) = /0. Note that this is stronger
than requiring only that each individual trace be coherent. Let Φ , Ψ range over coherent
sets of traces.

A trace is sequential if it can be extended in such a way that every 〈s?〉 is followed
by actions exclusively by s, up to a terminating 〈s!〉. A trace set is sequential if it
contains only sequential traces.

A trace set is an interface if it contains only I/O actions. 2
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5 Memory actions and memory orders

Our approach is parametric with respect to the specific memory model considered. For
concreteness, we will consider four models here: seq, hb, tso and pso. To keep the
formalism simple, we assume that (1) memory stores only integers, (2) atomics provide
the only form of synchronization and (3) components are specified as sets of functions,
variables and threads.

Let z∈ Reg range over registers (local variables), x, y∈DataVar over data variables
and w ∈ SyncVar over synchronization variables. We use the general term variable to
include data variables and synchronization variables, but not registers. Memory actions
are as follows.

α, γ ::= · · · | 〈s wr x u a〉 | 〈s rd x u a〉 | 〈com s x a〉
| 〈s rel w〉 | 〈s acq w〉 | 〈s cas w〉

For data variables, the actions record writes, reads and commits. For synchronization
variables, the actions record releases, acquires and compare-and-sets. Action names
(metavariable a, as before) are used to record relations between data actions. Commit
actions are used by buffering models, such as tso and pso, to indicate the point at which
a write is moved from the local buffer to main memory. Non-buffering models, such as
seq and hb, have no commit actions.

Neither initializations nor commits are performed by the program, but by the un-
derlying operational machinery. Initialization actions are normal writes attributed to
the reserved pseudo-thread “tinit”. Commit actions are only performed by the reserved
pseudo-thread “tcom”; thus we simply define thrd(〈com s x a〉) = tcom. In 〈com s x a〉,
the identifiers s and x are redundant with the corresponding 〈s wr x u a〉.

Synchronization variables carry memory effects whereas data variables do not. Reg-
isters are used to write programs, but are not shared between threads; thus, we do not
require actions relating to registers.

The name a is defined in 〈wr a〉 and used in 〈rd a〉 and 〈com a〉. We expect that
every write action is committed at most once and that the redundant information in read
and commit actions should match the corresponding write. In addition, initialization
writes by thread “tinit” must appear at the beginning of a trace. These bookkeeping
requirements are included in the notion of well-formed trace, formalized in the full
version of this paper. Most of the requirements are unsurprising. We note only that
well-formedness does not require that a read be proceeded by the matching write, since
this is not true under all of the models we consider.

Example 5.1. Consider the following traces, each containing actions from three differ-
ent threads (eliding initialization and commit actions).

〈s wr x a〉〈t wr x b〉〈r rd x b〉 (a)
〈t wr x b〉〈s wr x a〉〈r rd x b〉 (b)
〈s wr x a〉〈r rd x b〉〈t wr x b〉 (c)

〈s wr x a〉〈s wr y b〉〈t wr x c〉〈t wr y d〉〈r rd y d〉〈r rd x a〉 (d)

– Under seq, reads and writes are atomic; thus, a read must be fulfilled by the previous
write. Only trace (a) is allowable; the others require that a read see a stale write.
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– Under tso, writes are placed in a buffer which is not visible to other threads; for any
given thread, the buffered writes are committed to main memory in FIFO order, but
the order between threads is nondeterministic. Thus, traces (a) and (b) are allowable.

– pso is similar to tso, except that each thread has a separate buffer for each variable.
Thus, traces (a), (b) and (d) are allowable.

– Under hb, a write may be seen by a reader even before it is generated by the writer.
Thus, all four executions are allowable. 2

Example 5.2. Consider the following unsynchronized implementation of a one place
buffer (on the left) and client (on the right).

var y=0
fun put (z){y=z}
fun wait (z){do skip until y==z}

var x=0
thrd s {x=1;put(3);wait(4);let z′ =x}
thrd t {wait(3);x=2;put(4)}

Ignoring initialization and commits, here is a single trace of the library and of the client,
each in isolation. (The label sets decorating return actions are specification elements.
Those on the library output actions are guarantees, whereas those on client input actions
are relies.)

〈s?call put 3 a〉〈s wr y 3〉〈s!ret /0〉
〈t?call wait 3 b〉〈t rd y 3〉〈t!ret {a}〉
〈t?call put 4 c〉〈t wr y 4〉〈t!ret /0〉
〈s?call wait 4 d〉〈s rd y 4〉〈s!ret {c}〉

〈s wr x 1〉〈s!call put 3 a〉〈s?ret /0〉
〈t!call wait 3 b〉〈t?ret {a}〉〈t wr x 2〉
〈t!call put 4 c〉〈t?ret /0〉
〈s!call wait 4 d〉〈s?ret {c}〉〈s rd x 1〉

Composing the traces, we have the following trace (on the left), which, if we elide “.”
actions, is equivalent to the trace on the right.

〈s wr x 1〉〈s.call put 3 a〉〈s wr y 3〉〈s.ret /0〉
〈t.call wait 3 b〉〈t rd y 3〉〈t.ret {a}〉〈t wr x 2〉
〈t.call put 4 c〉〈t wr y 4〉〈t.ret /0〉
〈s.call wait 4 d〉〈s rd y 4〉〈s.ret {c}〉〈s rd x 1〉

〈s wr x 1〉〈s wr y 3〉
〈t rd y 3〉〈t wr x 2〉
〈t wr y 4〉〈s rd y 4〉
〈s rd x 1〉

Ignoring calls and returns, under what circumstances should such a trace be allowed?
On the one hand, it is clearly not allowed under sequential semantics, since 〈s rd x 1〉

does not see the most recent write. On the other hand, it is clearly allowed under a
happens-before semantics, since there is no synchronization between thread s and t.

For tso and pso, the situation is less obvious. In fact, pso will allow the trace, but
tso will not. The difference is that tso enforces an ordering between 〈t wr x 2〉 and
〈t wr y 4〉, whereas pso does not.

Moving from the combined trace back to the trace of the library in isolation, for each
memory model, we may ask “does the library implementation meets its specification?”
In this case, the answer is positive for seq and tso, and negative for pso and hb.

Similarly, moving from the combined trace back to the trace of the client in iso-
lation, for each memory model, we may ask “is the final client read valid?” For this
question, the answers are reversed: valid for pso and hb, and invalid for seq and tso. 2

To formalize these properties, we introduce a notion of memory ordering, which is
derivable from a trace. Recall that tinit is a reserved name.



10 Jagadeesan, Petri, Pitcher and Riely

Definition 5.3. The partial function var is undefined for commit and nonmemory ac-
tions and otherwise returns the variable mentioned: var(α)

M
= x if α ∈ {〈wr x〉, 〈rd x〉};

var(α)
M
= w if α ∈ {〈rel w〉, 〈acq w〉, 〈cas w〉}; and var(α) is undefined otherwise.

From a trace σ = α1 · · ·αn, we derive several relations.

– i <σ
rf j if αi = 〈wr a〉, α j = 〈rd a〉 (reads-from relation)

– i <σ
cb j if αi = 〈wr a〉, ∃` < j. α` = 〈com a〉 (committed-before relation)

– i <σ
rely j if αi = 〈! a〉, α j = 〈? A∪{a}〉 or αi = 〈. a〉, α j = 〈. A∪{a}〉 (rely order)

– i <σ
guar j if αi = 〈? a〉, α j = 〈! A∪{a}〉 or αi = 〈. a〉, α j = 〈. A∪{a}〉 (guarantee)

– i <σ
init j if i < j, thrd(αi) = tinit 6= thrd(α j) (init order)

– i <σ
thrd j if i < j, thrd(αi) = thrd(α j) 6∈ {tinit, tcom} (thread order)

– i <σ
var j if i < j, var(αi) = var(α j) (variable order)

– i <σ
sync j if i < j, αi ∈ {〈rel w〉,〈cas w〉}, α j ∈ {〈acq w〉,〈cas w〉}

– i <σ
wr j if i′ < j′, αi′ = 〈com a〉, α j′ = 〈com b〉, αi = 〈wr x a〉, α j = 〈wr x b〉

Here, <sync is synchronization order and <wr is (unbuffered) write order.
Using these relations, we define four memory orders and two commit orders.

– Define <σ
seq to be the transitive closure of (<σ

thrd∪<σ
rely∪<σ

init∪<σ
var).

– Define <σ
hb to be the transitive closure of (<σ

thrd∪<σ
rely∪<σ

init∪<σ
sync).

– Define <σ
tso to be the least transitive relation that includes (<σ

rely ∪<σ
init∪<σ

sync) and
satisfies the following, where σ = α1 · · ·αn.
(1) If thrd(αi) 6= thrd(α j) then i <σ

tso j whenever i <σ
rf j or i <σ

wr j.
(2) If thrd(αi) = thrd(α j) then i <σ

tso j whenever i < j, αi 6= 〈com〉, α j 6= 〈com〉, and
either (a) αi 6= 〈wr〉, (b) α j 6= 〈rd〉, or (c) αi = 〈wr a〉, α j = 〈rd a〉 and i <σ

cb j.
– Define <σ

pso similarly to <σ
tso, replacing clause (b) with (b′) and adding (d):

(b′) α j /∈ {〈rd〉,〈wr〉}, (d) α j = 〈wr x〉 and αi ∈ {〈rd〉,〈wr x〉}.
– Define i <σ

compso j whenever i < j and one of the following holds.
(1) ∃a. αi = 〈wr a〉 and α j = 〈com a〉. (2) ∃a,s, t. s 6= t, αi = 〈com s a〉 and α j =
〈t rd a〉. (3) ∃s. αi = 〈com s〉 and α j ∈ {〈s rel〉,〈s cas〉}. (4) ∃i′ < j′ < i. ∃a,b. αi′ =
〈wr a〉, α j′ = 〈s!call b〉, αi = 〈com a〉, α j = 〈?ret B〉 and b ∈ B. (5) ∃x. αi = 〈com x〉
and α j = 〈com x〉.

– Define <σ
comtso similarly to <σ

compso, adding (6) ∃s. αi = 〈com s〉 and α j = 〈com s〉.

Let W range over the memory orders in {seq, hb, tso, pso}.
For each W, define Cσ

W similarly to <σ

W , simply replacing <σ
rely with <σ

guar . 2

The memory orders relate actions that affect the visibility of values. The (nontransitive)
commit orders, <σ

comtso and <σ
compso, relate commit actions to conflicting actions.

All four memory orders include <rely, which specifies orderings guaranteed by the
environment, and <init, which specifies initialization. Initial writes are performed by
the reserved thread “tinit”. For traces of interfaces (which include only I/O actions), the
four memory orders coincide.

The definitions of <seq and <hb are standard. Relative to hb, clause (1) of the defi-
nition of <tso captures tso’s stronger inter-thread dependencies, and clause (2) captures
tso’s weaker intra-thread dependencies. Two actions of the same thread are ordered un-
less the first is a write and the second is a read; in this case, they are ordered if the write
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is committed before the read. With respect to tso, the definition of <pso removes the
ordering between writes of different variables by the same thread.

For each W, we define an operational semantics. The order-theoretic properties that
require are W-consistency (no stale reads) and W-closure (no stalled threads).

A trace is W-consistent if none of its read actions are matched with stale writes.

Definition 5.4. Trace σ = α1 · · ·αn is W-consistent if <σ

W is antisymmetric and ∀i, j ∈
[1, n]. α j = 〈rd x〉 and i <σ

rf j imply j 6<σ

W i and (6 ∃k. αk = 〈wr x〉 and i <σ

W k <σ

W j). A
semantic function is W-consistent if every trace it produces is W-consistent. 2

A trace set is W-closed if, whenever σ is an allowed trace, then any interleaving
consistent with <σ

W is also allowed. For example, the following trace is seq-closed, but
not tso-, pso- or hb-closed: 〈tinit wr x〉〈s wr y〉〈t wr y〉.

Definition 5.5. Trace ρ = γ1 · · ·γn is a W-permutation of σ = α1 · · ·αn via δ , if δ is an
injective total function in [1, n]→ [1, n] such that ∀i, j ∈ [1, n]. we have that (1) αi 6= 〈?〉
implies γδ (i) = αi, (2) αi = 〈? A〉 implies γδ (i) = αi{[B/A]} and B⊆ A, (3) thrd(αi) = tinit

implies δ (i)= i, (4) i<σ
thrd j iff δ (i)<ρ

thrd δ ( j), (5) i<σ

W j iff δ (i)<ρ

W δ ( j), and (6) i< j
iff δ (i)< δ ( j) whenever ∃w. w = var(αi) = var(α j). When W = tso, we additionally
require (7) i <σ

comtso j iff δ (i)<ρ

comtso δ ( j), and similarly for pso. 2

Definition 5.6. Trace set Φ is W-closed if whenever σ ∈Φ and ρ is an W-permutation
of σ , then ρ ∈Φ . A semantic function is W-closed if every set it produces is W-closed.2

6 Components

Components, M, N, are built using abstractions, Λ , and expressions, C, D. A compo-
nent declares variables (with an initial value), threads (with an initial expression) and
functions (with an abstraction). In addition to base components, there are component
constructors for composition and restriction.

Λ ::= (~z){C}
C, D ::= u | z | x | w | x=C | w=C | w.cas(C,D) | let~z=C;D | · · ·
M, N ::= M ||N | M \ f | var x1=u1; · · · var x`=u`; atomic w1=v1; · · · atomic wm=vm;

thrd s1 C1; · · · thrd sn Cn; fun f1 Λ1 · · · fun f j Λ j

Data variables are introduced by the keyword var; synchronization variables are
introduced by the keyword atomic; registers are introduced by abstractions and let;-
expressions. When unspecified, variables initially hold 0. It is important to note that
the formal parameters to a function are registers, not shared variables. We require that
each component uniquely declare every function and thread name that occurs within
it. Variables that are declared in more than one subcomponent are shared, allowing the
possibility of interference.

Definition 6.1. A component is well formed if (1) it contains at most one declaration
for each thread and function name, and (2) all declarations of a variable agree on the
initial value. Two components are compatible if their composition is well formed. 2
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Henceforth we consider only well formed components.
For a base component M = “var ~x=~u;atomic ~w=~v;thrd~s ~C;fun ~f ~Λ”, define funs

(M)
M
= ~f and thrds(M)

M
= ~s. For aggregate components, define funs(M || N) = funs

(M)∪ funs(N) and funs(M\ f )= funs(M), and similarly for thrds. Note that funs returns
the set of functions defined by a component, regardless of whether those functions are
restricted. For a well formed component M ||N, we have that funs(M)∩ funs(N) = /0.

Definition 6.2. For each memory order <W , the full version of this paper provides a
corresponding operational semantics, defined as a partial function OW . If thrds(M)∩S
= /0 then OWJMK(S) returns a set traces that is coherent, W-consistent and W-closed. 2

In OWJMK(S), the threads of thrds(M) are initially active in the component (and quies-
cent in the environment) whereas the threads of S are initially active in the environment
(and quiescent in the component). The operational semantics are unsurprising. We com-
ment only on the role of commit actions. These have a clear operational interpretation
under tso and pso; however, both seq- and hb-consistency ignore commit actions. Both
Oseq and Ohb generate a commit action immediately after each write. This ensures that
Oseq traces are tso-consistent; we do not attempt to interpret Ohb traces under tso.

To understand the examples, it is important to understand how the operational se-
mantics generates actions from expressions involving memory. (1) Register writes do
not create actions; neither do reads. (2) Data variable writes create 〈wr〉 actions; reads
create 〈rd〉 actions. 〈com〉 actions are generated immediately after a write in seq and
hb; they are generated nondeterministically by tso and pso. (3) Synchronization vari-
able writes create 〈rel〉 actions; reads create 〈acq〉 actions. Successful cas operations
create 〈cas〉 actions; unsuccessful cas operations do not create actions.

7 Linearizability

Linearizability is defined in terms of I/O permutations.

Definition 7.1. Write α ≈ γ if either α = γ or α = 〈! A〉 and γ = α{[B/A]}.
Trace σ = α1 · · ·αn has I/O-permutation ρ = γ1 · · ·γm via δ , if δ is an injective

partial function over [1, n]→ [1, m] such that
– ∀i ∈ [1, n]. if αi is I/O then ∃k ∈ [1, m].αi ≈ γk and δ (i) = k, and
– ∀k ∈ [1, m]. if γk is I/O then ∃i ∈ [1, n]. αi ≈ γk and δ (i) = k. 2

Definition 7.2 (Linearizability). Define Φ �W Ψ if every σ = α1 · · ·αn ∈ Φ has an I/O
permutation ρ = γ1 · · ·γm ∈Ψ via δ , such that
– ∀i, j ∈ [1, n]. if αi, α j are I/O and δ (i)Cρ

W δ ( j) then either i <σ

W j or iCσ

W j, and
– ∀i, j ∈ [1, n]. if αi, α j are I/O and i <σ

W j then δ (i)< δ ( j). 2

The first condition ensures that the orderings required by the specification are pre-
served in the implementation. The last condition ensures that the ordering on I/O actions
in the implementation is reflected in the specification. As the next example illustrates,
this is different from the traditional requirement that the ordering on non-overlapping
I/O actions be reflected in the specification.
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Example 7.3. As a simple example, consider the following unsynchronized counter.

var x;
fun inc() { let tmp=x; tmp=tmp+1; x=tmp; return tmp }

(Inc)

At first glance, we might expect this implementation to satisfy a specification which
requires that the return values be non-decreasing; that is, we expect traces of form

〈s?call inc〉〈s!ret u0〉 〈t?call inc〉〈t!ret u1〉 〈r?call inc〉〈r!ret u2〉 · · ·

where ui ≥ ui−1. Although this specification contains no ordering on actions, the imple-
mentation does not satisfy it, for seq, tso or pso, due to the lack of synchronization. To
see this, consider a call by one thread with overlapping and following calls by another.

Our results allow us to consider whether the implementation satisfies the specifica-
tion if clients are constrained so that each thread may call inc() at most once. In this
case, we can answer affirmatively for all four models.

To illuminate the definition of linearizability, consider the following traces. (We
elide the commit actions that immediately follow each write.) Inc generates the first
trace under all memory models, but the second, only under hb.

〈t?call inc〉〈s?call inc〉〈s rd x 0 init〉〈s wr x 1 a〉〈s!ret 1〉〈t rd x 1 a〉〈t wr x 2 b〉〈t!ret 2〉
〈t?call inc〉〈t rd x 1 a〉〈t wr x 2 b〉〈t!ret 2〉 〈s?call inc〉〈s rd x 0 init〉〈s wr x 1 a〉〈s!ret 1〉

For each W ∈ {seq, tso,pso}, the first trace is linearizable under �W , whereas the second
trace is not. The write and subsequent read of the shared variable creates order between
threads (condition (2c) and (2d) for tso and pso) and thus we have 〈t?call inc〉 <W
〈s!ret 1〉 in the second trace. This causes the last clause of Definition 7.2 to fail.

Touching a shared data variable creates no ordering under hb, and therefore both
traces are linearizable under �hb. This would not be the case if we were to adopt the
traditional requirement for linearizability: that the order of non-overlapping method
calls be respected. This would also not be the case if the last clause of Definition 7.2
required δ (i) <ρ

W δ ( j) rather than δ (i) < δ ( j), since (<
ρ

W) is the empty relation for
every specification trace ρ . 2

Example 7.4. Suppose we have an implementation trace of the form

〈s?call inc〉〈s!ret u0 a /0〉 〈t?call inc {a}〉〈t!ret u1 b〉 〈r?call inc {b}〉〈r!ret u2〉 · · ·

where the client has imposed ordering between each method return and the subsequent
call. The definition of linearizability requires that the specification have exactly the
same use sets, and thus the same client ordering. In this case, the specification may be
more constrained. For example, it might require that ui > ui−1. 2

Example 7.5. The following example is drawn from java.lang.String.hashCode. The
specification requires that every call to hashCode return the same value. The imple-
mentation has a benign write-write data race.

var hash;
fun hashCode() { let h=hash;

if h!=0 then { return h } else { let h=42; hash=h; return h } }
(Hash)
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Here, we set hash to 42; in a real implementation, the value is derived from immutable
fields of the object. hash is always set to the same value, regardless of the number of
threads that call hashCode simultaneously. The intended sequential interface specifica-
tion for Hash is:

(〈s?call hashCode〉〈s!ret hashCode 42〉 )∗

Hash satisfies its sequential specification under all memory models. 2

We consider two implementations of an atomic pair, inspired by an example in
[Burckhardt et al. 2012]. The specification requires that the get return the pair of values
specified by the preceding set:

(〈s?call set (u, v) a〉〈s!ret〉 ( 〈t?call get〉〈t!ret (u, v) {a}〉 )∗)∗

Example 7.6. The first implementation is fully synchronized using locks.

var x1; var x2; atomic lock;
fun set(z1,z2) { do skip until lock.cas(0,1); x1=z1; x2=z2; lock=0 }
fun get() { do skip until lock.cas(0,1); let z1=x1; let z2=x2; lock=0; return z1,z2 }

(Pair1)

Pair1 is linearizable under all memory models. The cas on the atomic variable provides
the required order relation. The linearization point can be chosen to be the successful
cas operation in both the methods. The specification also requires an order relationship
from the call of set to the return of get as seen in the subsequence 〈s?call set (v1,v2) a〉
· · · 〈t!ret get (v1,v2) {a}〉. The order from the write of the atomic variable lock in set to
the successful cas on lock in get establishes this relationship in the implementation. 2

Example 7.7. The second implementation uses locking for set, but not get. The version
variable i is odd if and only if there is a write in progress.

var x1; var x2; var i; atomic lock;
fun set(z1,z2) { do skip until lock.cas(0,1); i++; x1=z1; x2=z2; i++; lock=0 }
fun get() { while (1){ let j=i; if even(j) then let z1=x1; let z2=x2;

if j==i then return z1,z2 } }

(Pair2)

Pair2 exemplifies a publication idiom characteristic of tso, allowing data races between
writes and reads. Pair2 is also not linearizable under pso or hb.

Pair2 is linearizable under tso. A candidate linearization point for set is the first
increment of i. The linearization point for get is the successful check of the counter
i. Pair1 and Pair2 share the same specification, so the specification requires the same
order relationship from the call of set to the return from get. The second condition of
the definition of <tso on the counter i, from the write in set to the read in get, yields the
required order. Neither pso nor hb provide this ordering. 2

Example 7.8. The next example is an “active” component, which implements an asyn-
chronous function handler. This can be seen as a simplified thread pool, with a single,
one-shot thread. Let v′ be the result of performing the operation op on v.

〈s?call send v a〉〈s!ret true〉 ( ( 〈t?call get〉〈t!ret v′ {a}〉 ) | 〈r?call send u〉〈r?ret false〉 )∗
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The first call to send succeeds, and calls to get return a value derived from its parameter.
Subsequent calls to send return false.

var x; var y; atomic lock; atomic start; atomic stop;
fun send(z){ do { if (start==1) then return false } until lock.cas(0,1);

x=z; start=1; return true }
fun get() { do skip until stop==1; return y }
thread wrk { do skip until start==1; y=op(x); stop=1 }

(Async)

Async satisfies its sequential specification for all four memory models.
A candidate linearization point for send is the successful cas or reading start==1,

depending on which path is taken. The linearization point for the worker thread wrk and
get is the point of exit from the loops, via the variables start and stop, respectively. The
specification requires an order relationship as seen in the subsequence 〈s?call send v a〉
· · · 〈t!ret v′ {a}〉. The implementation establishes this by combining two order relations
yielded by atomic variables: start links send to wrk and stop links wrk to get. 2

Example 7.9. Async can be generalized to a thread pool which satisfies interface traces
such as the following, where let v′ be the result of performing some computation on v
and j is a job identifier.

〈s?call send v a〉〈s!ret j〉〈r?call get j〉〈r!ret v′ {a}〉

If the thread pool generates unique job identifiers, then it should be able to guarantee
the happens-before relation given in the specification.

We describe an implementation parameterized on a bounded buffer and map. The
bounded buffer holds waiting jobs and the map holds waiting results. Due to the com-
plexity of the possible interleavings, we give exemplary traces rather than complete
specifications. The implementation is straightforward.

The bounded buffer is an adaption of Buffer given in the introduction. To acco-
modate the example, the buffer holds pairs of values. If the buffer is FILO, then the
sequential interface will include traces such as the following.

〈s?call bput (1, 10) a〉〈s!ret〉 〈t?call bput (1, 10) b〉〈t!ret〉
〈r?call bget〉〈r!ret (1, 10) {b}〉 〈q?call bget〉〈q!ret (1, 10) {a}〉

Note that the same value is put twice, by different threads. The use sets in the get
actions indicate the FILO order, even though the values do not.

The map is similar. Here is an example showing a value that is retrieved twice.

〈s?call mput (1, 10) a〉〈s!ret〉 〈t?call mput (1, 10) b〉〈t!ret〉
〈r?call mget 1〉〈r!ret 10 {b}〉 〈q?call mget 1〉〈q!ret 10 {b}〉

Assuming a bounded buffer and map, the general thread pool has traces such as the
following. For clarity, we show the function name on return actions.

〈s?call send v a〉 〈s!call bput (v, j) b〉〈s?ret bput〉 〈s!ret send j〉
〈wrk!call bget〉〈wrk?ret bget (v, j) {b}〉〈wrk!call mput (j, v′) c〉〈wrk?ret mput〉

〈r?call get j〉 〈r!call mget j〉〈r?ret mget v′ {c}〉 〈r!ret get v′ {a}〉

The first line shows a client calling send with argument v. The thread pool creates a new
job id j, stores the job in the buffer and returns j. Subsequently, the second line show a
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worker thread retrieving the job from the buffer, computing v′, and storing the result in
the map. Finally, the third line shows a client thread retrieving the result using a call to
get j; in response, the thread pool retrieves j from the map and returns the corresponding
value. In 〈!ret {a}〉, the decoration is a guarantee, similar to the decorations in previous
examples: the thread pool guarantees that there will be memory effects between the call
and corresponding return.

Consider the projection of this trace of the thread pool on the methods of the
bounded buffer. We get:

〈s!call bput (v, j) b〉〈s?ret bput〉 〈wrk!call bget〉〈wrk?ret bget (v, j) {b}〉

The sequence of calls to the buffer methods, and the values returned by them, line
up with the trace of the buffer presented above. Furthermore, so do the label sets. In
〈s!call bput (v, j) b〉 and 〈wrk?ret bget (v, j) {b}〉, the label b indicates an assumption
made by the thread pool on the bounded buffer. In the matching actions, 〈s?call bput
(v, j) b〉 and 〈wrk!ret bget (v, j) {b}〉), the label b indicates a guarantee provided by
the bounded buffer interface to the thread pool. Here one can recognize the semantic
ingredients necessary for a full higher-order multiplicative linear logic of interfaces,
perhaps in the style of Interaction Categories [Abramsky et al. 1996]. In this paper,
however, we do not pursue this further. 2

8 Proving Linearizability

We explore methods to quarantine data race free programs from the subtleties of relaxed
memory models. First, we define a component to be locally sequential consistent when
its SC traces provide a complete description of all its traces—or in the terminology of
[Filipovic et al. 2010], when the set of its SC traces is an operational refinement of all
of its traces.

Definition 8.1. Define σ ∼W ρ when (1) σ = σ0γ1σ1 · · ·γnσn and ρ = ρ 0γ1ρ 1 · · ·γnρ n
for some ~σ , ~ρ , ~γ such that each ~σ and ~ρ contains only write and commit actions, and
(2) for every read action α , σα is W -consistent if and only if ρα is W -consistent.

A set of traces Φ is locally sequentially consistent (LSC) for W if

∀σ ∈Φ . ∃σ ′ ∈Φ . σ ∼W σ
′ and σ

′ is seq-consistent. 2

Intuitively, a set is LSC if every trace can be matched by a seq-consistent trace in the
set, where all non-write/non-commit actions must match exactly and in the same order
(condition 1), and the reads available at the end are the same (condition 2).

Example 8.2. Inc is not LSC for any of the weak models. Hash is LSC for all four
memory models. This demonstrates that LSC does not require the absence of data races.

Pair1 and Async are LSC for all four memory models; however, Pair2 is not LSC
under any of the relaxed models. To see this, consider traces in which there is a com-
pleted call to set with parameters (1,1) and a subsequent call to get returning (1,1).
In every such trace, the write actions must occur before the call to get. Of these traces,
choose one in which the loop in get initially fails because i 6= j. This trace will not be
equivalent to any SC trace, since it must see a stale value. 2
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We describe a sufficient condition to establish that a set is LSC.

Definition 8.3. Actions conflict if one is a write to a data variable and the other is a read
or write to the same variable. Trace σ = α1α1 · · ·αn is locally data race free (LDRF) if
whenever αi and α j conflict then either i <σ

hb j or j <σ
hb i. A set of traces is LDRF if

every member is LDRF. 2

Example 8.4. All of the examples from Section 7 are LDRF for all four memory mod-
els, with the exception of Inc, Hash and Pair2, which are not LDRF for any model. 2

Proposition 8.5. Any trace that is LDRF and W-consistent is also seq-consistent. 2

Proposition 8.5 demonstrates that to establish that a component is LSC, it suffices to
show that all of its traces are LDRF. This, in turn, can be established by various standard
techniques for detecting data races. For tso, there is a weaker condition, “triangular race
freedom”, that suffices to establish that a component is LSC [Owens 2010].

In order to reason about a program using the SC semantics, we must ensure that
the weak semantics is consistent with Oseq, in the sense that any seq-consistent trace
generated by the weak semantics can also be generated by Oseq. All of the semantic
functions we consider have this property.

Definition 8.6. A semantic function S is consistent with Oseq if whenever σ ∈S JMK
(S) and σ is seq-consistent then σ ∈ OseqJMK(S). 2

LSC components can be quarantined. For LSC programs, it is sometimes possible to
use traditional SC techniques to reason about linearizability, even in a relaxed setting.
The restrictions should be unsurprising to readers familiar with [Filipovic et al. 2010],
which states that “OSC observationally refines OSA iff OSC is linearizable with respect
to OSA, assuming that client operations may use at least one shared global variable.”
For such programs, our results allow proof techniques developed in the SC setting to
apply to relaxed models.

A trace is I/O-ordered for W if there is a <W order between every input and output.
Formally, σ = α1 · · ·αn is I/O-ordered for W if whenever αi and α j are input/output
bracketed (Section 4) then i <σ

W j. Let erase(σ) be the trace derived from σ by replac-
ing every name set occurring in return actions by the empty set; this has the effect of
removing all of the happens-before relations from an interface.

Proposition 8.7. Let S be a semantic function that is W-consistent and consistent
with Oseq. Let Ψ be a sequential interface. Let S JMK(S) be I/O-ordered and LSC for
W. Then OseqJMK(S) �seq erase(Ψ) implies S JMK(S) �W Ψ . 2

Here OseqJMK(S) �seq erase(Ψ) is similar to traditional linearizability. The use of erase
(Ψ) ensures that the proof obligation is indeed the traditional one: ordering require-
ments are removed. Touchiness of the implementation and sequentiality of the specifi-
cation are required to ensure that the order can be recovered.

In Corollary 10.4, we show that LSC clients can be isolated from the subtleties of
relaxed memory used in the implementations of (even racy) libraries.
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9 Composition

In order to state properties of linearizability, we must first define semantic versions of
restriction and composition. Restriction is straightforward.

Definition 9.1. Let incalls(α1 · · ·αn)
M
= { f | ∃i. α = 〈?call f 〉}.

Then Φ \F M
= {σ ∈Φ | incalls(σ)∩F = /0}. 2

Definition 9.2. An action sequence π is a collapsed interleaving of σ and ρ if there
exists a π ′ such that (1) all actions of tinit occur at the beginning of π ′, (2) π ′ is an
interleaving of σ and ρ , and (3) π is derived from π ′ by (3a) replacing every subse-
quence 〈s!call f ~u a A〉〈s?call f ~u a A〉 by 〈s.call f ~u a A〉, and (3b) replacing every
subsequence 〈s!ret~u a A〉〈s?ret~u a A〉 by 〈s.ret~u a A〉. 2

Definition 9.3 (Composition). Let intern(Φ) = H and intern(Ψ) = G. If H ∩G = /0,
then define Φ �Ψ to be the set of traces, π , such that extern(π )∩ (H ∪G) = /0, and π

is a collapsed interleaving of some σ ∈Φ and ρ ∈Ψ . 2

In the full version of this paper, we provide an inductive characterization of composition
and discuss its properties.

Example 9.4. Here are some single threaded examples to illustrate the definition. We
elide the thread identifier. {〈?call f 〉}�{〈?call f 〉} and {〈wr〉}�{〈wr〉} are undefined
because their intern overlap; the first pair on f, the second, on the thread identifier.

Composition forces complete synchronization on invocations of functions that are
defined in either component, but permits interleaving of invocations of functions that
are undefined in both components. Let C perform prefix closure.

C {〈?call f 0〉〈!ret〉}�C {〈wr〉} = C {〈wr〉}
C {〈?call f 0〉〈!ret〉}�C {〈!call f 1〉} = C {ε }
C {〈?call f 0〉〈!ret〉}�C {〈!call f 0〉〈?ret〉}= C {〈.call f 0〉〈.ret〉}
C {〈?call f 0〉〈!ret〉}�C {〈?call g 0〉〈!ret〉}= C {〈?call g〉〈!ret 0〉〈?call f 〉〈!ret 0〉,

〈?call f 〉〈!ret 0〉〈?call g〉〈!ret 0〉}

Consider the following traces, where α11–α32 are arbitrary memory actions. Both
the first and second traces include calls to f, which is defined by third trace. The first
trace also includes a call to g, which is defined by the second trace.

α11〈!call g〉〈?ret〉α12〈!call f〉〈?ret〉
〈?call g〉α21〈!call f〉〈?ret〉α22〈!ret〉
〈?call f〉α31〈!ret〉〈?call f〉α32〈!ret〉

The first two compose to α11〈.call g〉α21〈!call f〉〈?ret〉α22〈.ret〉α12〈!call f〉〈?ret〉.
Composing the second and third gives 〈?call f〉α31〈!ret〉〈?call g〉α21〈.call f〉α32〈.ret〉
α22〈!ret〉 and 〈?call g〉α21〈.call f〉α31〈.ret〉α22〈!ret〉〈?call f〉α32〈!ret〉.
Composing the first and third gives α11〈!call g〉〈?call f〉α31〈!ret〉〈?ret〉α12〈.call f〉α32

〈.ret〉. Composing all three gives

α11〈.call g〉α21〈.call f〉α31〈.ret〉α22〈.ret〉α12〈.call f〉α32〈.ret〉. 2

Example 9.5. For any single trace, the order of cross-thread actions is fixed. Thus, com-
posing 〈s?call f〉〈t wr〉 and 〈s!call f〉 produces only 〈s.call f〉〈t wr〉. 2
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10 Properties of linearizability

We present the results using the most general client. More general results can be found
in the appendix.

Definition 10.1 (Interference freedom). Two components are interference free if they
are compatible (Definition 6.1) and declare disjoint variables. 2

Definition 10.2 (Compositionality). A semantic function S is compositional if
(1) S JM \FK(S) = S JMK(S)\F and,
(2) S JM ||NK(S)⊆S JMK(S)�S JNK(S), whenever M and N are interference free.2

Proposition 10.3 (Abstraction). Let S be coherent, compositional and W-closed. Let
ML and MC be interference free. If S JMLK(S) �W ΨL and S JMCK(S)�ΨL �W ΨC then
S JMC ||MLK(S) �W ΨC. 2

Consider the Lock discussed in the introduction. If we are given that (1) the lock im-
plements its specification (that is, S JLockK(S) �W Ψlock) and (2) the one place buffers
implements its specification when it uses the lock specification (that is, S JBufferK
(S)�Ψlock �W Ψbuf ), then the theorem allows us to deduce that the implementation
of the buffer realizes its specification (S JBuffer||LockK(S) �W Ψbuf ).

Corollary 10.4 (Quarantining weakness). Let S be coherent, compositional and W-
closed. Let ML and MC be interference free. Let ΨL and ΨC be sequential interfaces.
Suppose ΨL = erase(ΨL), S JMCK(S) is LSC and either (1) erase(ΨC) =ΨC or (2) S
JMCK(S) is I/O-ordered. If S JMLK(S) �W ΨL and S JMCK(S)�ΨL �seq ΨC then S
JMC ||MLK(S) �W ΨC. 2

Corollary 10.4 demonstrates that well-synchronized clients (that do not depend on
the library for synchronization), are not affected by data races in the library. Consider
the unsynchronized counter Inc from Examples 7.3-7.4. A fully-synchronized client can
safely use the library without regard to its data races; for example, a fully-synchronized
counter can be built using the unsynchronized one.

11 Conclusion

This paper investigates reasoning about concurrent data structures, with a special focus
on isolating the complexity wrought by relaxed memory models. We have presented
an adaptation of linearizability that accounts for relaxed memory and provided ways to
reason compositionally. Our treatment is parametric with respect to the memory model,
with the required properties of the memory model confined to a couple of key properties.
We have been able to address SC, TSO, PSO and (a variant of) the JMM in this style.
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