
BASEL (Buffer mAnagement SpEcification Language)

Kirill Kogan
IMDEA Networks Institute

kirill.kogan@imdea.org

Danushka Menikkumbura
Purdue University

dmenikku@purdue.edu

Gustavo Petri
Université Paris Diderot - Paris 7

gpetri@liafa.univ-paris-diderot.fr
Youngtae Noh
Inha University

ytnoh@inha.ac.kr

Sergey Nikolenko
Steklov Math. Institute at St. Petersburg

National Research University Higher School of Economics
sergey@logic.pdmi.ras.ru

Patrick Eugster
Purdue University

TU Darmstadt
p@cs.purdue.edu

Abstract
Buffering architectures and policies for their efficient management
constitute one of the core ingredients of a network architecture. In
this work we introduce a new specification language, BASEL, that
allows to express virtual buffering architectures and management
policies representing a variety of economic models. BASEL does
not require the user to implement policies in a high-level language;
rather, the entire buffering architecture and its policy are reduced
to several comparators and simple functions. We show examples of
buffer management policies in BASEL and demonstrate empirically
the impact of various settings on performance.

1. INTRODUCTION
Buffering architectures define how input and output ports of a

network element are connected [17, 36]. Their design and man-
agement must thus be done with care, as it directly impacts perfor-
mance and cost of each network element.

Traditional network management only allows to deploy a pre-
defined set of buffer management policies whose parameters can
be adapted to specific network conditions. The incorporation of
new management policies requires complex control/data plane code
changes and sometimes respin of implementing hardware. Ob-
jectives beyond fairness and the consideration of additional traffic
properties lead to new challenges in the implementation and per-
formance for traditional switching architectures [16, 18, 20]. Un-
fortunately, current developments in software-defined networking
mostly sidestep these challenges by concentrating on flexible and
efficient representations of packet classifiers (e.g., OpenFlow [32])
which do not really capture buffer management aspects. This calls
for novel abstractions that enable the definition of buffer manage-
ment policies that can be deployed on real network elements at run-
time (without respin of implementing hardware and complex code
changes). Designing such abstractions however is non-trivial, as
they must satisfy a number of possibly conflicting requirements: (1)
EXPRESSIVITY: expressible policies should cover various buffer-
ing architectures representing a large majority of existing and fu-
ture deployment scenarios; (2) SIMPLICITY: policies for different

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ANCS ’16, March 17-18, 2016, Santa Clara, CA, USA
c© 2016 ACM. ISBN 978-1-4503-4183-7/16/03. . . $15.00

DOI: http://dx.doi.org/10.1145/2881025.2881027

objectives should be expressible concisely with a limited set of ba-
sic primitives and should not impose specific hardware choices; (3)
PERFORMANCE: the implementations of policies should be effi-
cient on “virtual switches”, that is with various resolutions rang-
ing from a single network element to the whole network (e.g., an
interconnect for geographically distributed data centers [18, 20]).

We address these challenges with BASEL (Buffer mAnagement
SpEcification Language), a flexible way to define buffer manage-
ment policies.

2. BASEL SPECIFICATION LANGUAGE

2.1 Language Overview
BASEL’s design follows existing buffering architectures by con-

sidering only two types of objects: ports, and queues assigned to
ports; in the buffered crossbar architecture [22, 23], cross-points
can also be represented as ports. An admission control policy for
a queue determines which packets are admitted or dropped [12, 14,
35]. A scheduling policy for a port selects a queue whose head-
of-line (HOL) packet will be processed next [9, 31]; in each queue,
the HOL packet is defined by a processing policy. Shared memory
switches with several queues sharing the same buffer space [4, 10,
11] and architectures with synchronous management policies [24,
26] are out of scope of this paper.

In summary, to define a buffering architecture and its manage-
ment policy one needs to create instances of ports, queues, and
buffers, and specify relations among them; admission control, pro-
cessing, and scheduling policies attached to the corresponding in-
stances. These constructs suffice to achieve EXPRESSIVITY (cf.
Section 1).

Fortunately, buffer management policies are generally concerned
with boundary conditions (e.g., for admission a packet with small-
est value can be dropped; to implement FIFO processing order, a
packet with smallest arrival time is chosen next). Hence, priority
queues arise as a natural choice for implementing actions related
to the user-defined priorities. The priority criteria does not change
at runtime (e.g., a queue’s order can not be changed from FIFO to
LIFO). We believe that this is a reasonable compromise to achieve
conciseness for the policies without compromising expressiveness
and performance. Each admission, processing, and scheduling pol-
icy in BASEL thus maintains its priority queue whose behavior is
defined by a comparator – a Boolean function comparing two ob-
jects of same type via arithmetic/Boolean operators and accessing
packet and object attributes.

2.2 BASEL API
In the following we present how BASEL’s abstractions achieve

SIMPLICITY (cf. Sec. 1) by means of simple declarations of data

http://dx.doi.org/10.1145/2881025.2881027


Queue {
// user-specified at declaration
size // size in bytes [r, cons]

// primitive properties
currSize // current size [r, dyn]
getHOL() // head-of-line pkt [packet fun]

// admission - user-specified at declaration
congestion() // congestion predicate [bool fun]
admPrio(p1,p2) // pushOut prio comp. [bool fun]
postAdmAct() // {MARK,NOTIFY,..} [action fun]
weightAdm // priority for adm. [rw, dyn]

// processing - user-specified at declaration
procPrio(p1,p2)// process. prio comp. [bool fun]

// scheduling - user-specified at declaration
weightSched // prio. for scheduling [rw, dyn]
}

Listing 1: BASEL’s queue primitive.

structures. For each entity, we define its properties, some of which
are primitives of the domain (e.g., packet size), and others which
have to be set by the programmer1. For functions we provide the
return type (e.g., bool fun).

2.2.1 Queues
List. 1 summarizes the API to declare queues. The standard

property size is defined by the user at declaration time. The
currSize property changes dynamically as the queue changes
its size. Abstractly, a queue contains packets ordered according
to user-defined priorities for admission control and processing. In
BASEL, we consider two user-defined priorities at the queue level:

(a) procPrio(p1,p2) is a packet comparator defined as a
function taking two abstract packets and returning true if p1
has a higher processing priority than p2. We are only con-
cerned with the highest processing priority packet at any point,
so the only way to access a queue ordered by procPrio
is through the getHOL() primitive which returns the HOL
(i.e., highest processing priority as defined by procPrio)
packet in the queue. E.g., the user can set

procPrio(p1,p2) = p1.arrival < p2.arrival

to encode FIFO processing. Hence, each call to getHOL()
returns the packet with the oldest arrival time.

(b) admPrio(p1,p2) is also a packet comparator used in case
of congestion to choose the packets that should be dropped
from the queue. We could have simply chosen to use the least
valuable packets according to procPrio for drops, but we
will see in Sec. 3 that separate priorities for admission and
processing gives more flexibility and improves performance.

The user-defined predicate congestion() indicates when a
queue is virtually congested. Usually, congestion() is a set of
different buffer occupancies and drop probabilities [14]. A capa-
bility to push out already admitted packets is supported in BASEL.
To avoid different implementations for the push-out and non-push-
out cases, an admission control policy always virtually admits an
incoming packet. In the event of a virtual congestion, admission
control drops the least valuable packets until congestion is lifted.

1For each property we indicate in comments whether it is r read-
only or rw writable, and cons if it’s value is fix at runtime, or dyn
if it’s value can change.

Port {
// primitive properties
getBestQueue() // on weightSched [queue fun]
getCurrQueue() // scheduled one [queue fun]

// scheduling user-specified at declaration
schedPrio(q1,q2)// compare q-s [bool fun]
postSchedAct() //{MARK,NOTIFY,..} [action fun]
}

Listing 2: BASEL’s port primitive.

Packet {
size // size in bytes [r, cons]
value // virtual value [r, cons]
processing // # of cycles [r, dyn]
arrival // arrival time [r, cons]
slack // offset in time [r, cons]
queue // target queue id [r, cons]
}

Listing 3: BASEL’s packet primitive.

The optional function postAdmAct() returns an action ap-
plied after admission and can update weightAdm (if necessary).
Function postAdmAct() can also be used to implement explicit
congestion notifications [6] or backpressure; postAdmAct() can
return actions such as MARK or NOTIFY. For cases when band-
width is allocated not only with respect to packet attributes, queues
maintain a weightSched variable that can be updated dynami-
cally after each scheduling operation. With weightSched one
can for example define static bandwidth allocation among queues
of the same port during scheduling decisions; weightSched can
be updated in the postSchedAct() function defined at the port
level.

2.2.2 Ports
The interface provided for ports is presented in List. 2. A port

manages a set of queues assigned at its declaration.2 A user-defined
scheduling property schedPrio(q1,q2) (queue comparator) de-
fines which HOL packet is scheduled next (this packet is accessed
through function getBestQueue()). For example, a priority
based on packet values which implements several levels of strict
priorities is declared simply as follows:

schedPrio(q1,q2) =
q1.getHOL().value > q2.getHOL().value

Finally, postSchedAct() is similar to the postAdmAct()
function of queues which can be used to define new services.

2.2.3 Packets
The notion of a packet is primitive, meaning that the user cannot

modify or extend packets; packet fields can be used to implement
policies. Every incoming packet is prepended with three manda-
tory parameters — an arrival time, a packet size in bytes, and a
destination queue — and three optional parameters — an intrinsic
value (whose meaning is application-specific), the processing re-
quirement in virtual cycles, and slack (maximal offset in time from
arrival to transmission). We assume that these properties are set
by an external classification unit (e.g., OpenFlow [32], if a virtual
switch is defined with the finest possible resolution), except for ar-
rival (set by BASEL when a packet is received) and size.
2We leave the new operator used to create network objects in
BASEL implicit; its usage will be clear from the examples in Sec. 3.



Figure 1: Left: single priority queue with buffer B = 6; right:
multi-queued switch with three queues (k = 3) and buffer B =
2 each. Dashed lines enclose queues.

List. 3 depicts the Packet data structure. Intrinsic value and
processing requirements can be useful to define prioritization lev-
els [8, 23]. Slack is a time bound which used in management de-
cisions of latency-sensitive applications; e.g., if buffer occupancy
already exceeds the slack value of an incoming packet, the packet
can be dropped during admission even if there is available buffer
space [25]. Sec. 3 shows specific examples exploiting some of these
characteristics.

We postulate that all decisions of buffer management policies
(during admission, processing, or scheduling) are based only on the
specified packet parameters and internal state variables of a buffer-
ing architecture (e.g., buffer occupancy).

3. BASEL AT WORK (EXAMPLES)

3.1 Performance Impact of Admission Control
Consider throughput maximization in a single queue buffering

architecture (buffer of size B), where each unit-sized and unit-
valued packet is assigned the number of required processing cy-
cles ranging from 1 to k (see Fig. 1(a)). Defining a new admis-
sion control policy in BASEL requires only one comparator (admis-
sion order upon congestion) and one congestion condition (when
an event of congestion occurs). The processing policy is defined
by one additional comparator (defining in which order packets are
processed). Note that admission and processing comparators actu-
ally can be different. List. 4 shows the comparators and congestion
conditions used in the following examples.

// priorities for admission and processing
fifo(p1,p2) = (p1.arrival < p2.arrival)
srpt(p1,p2) = (p1.processing < p2.processing)
rsrpt(p1,p2) = (p1.processing > p2.processing)

// congestion condition for all policies considered
// satisfied when occupancy exceeds queue size.
defCongestion() = lambda q, (q.currSize >= q.size)

Listing 4: Example priorities and congestion conditions

List. 5 shows the full specification of a single queue buffering
architecture and its optimal throughput policy.

Table 1 lists implementations for admPrio and procPrio in
this architecture and analytic competitiveness results for various on-
line policies versus the optimal offline OPT algorithm [21, 27, 29,
30]. Each row represents a buffer management policy for a single
queue; e.g., the first row shows a simple greedy algorithm that ad-
mits every incoming packet if possible (see congestion()), and

// Specification of the buffering architecture
q1=Queue(B); out=Port(q1);
// Admission control
q1.admPrio(p1,p2)=rsrpt(p1,p2);
q1.congestion=defCongestion(q1);
// Processing policy
q1.admPrio(p1,p2)=srpt(p1,p2);

Listing 5: Single queue: optimal buffer managment policy for
throughtput optimization.

admPrio procPrio OPT/ALG
fifo() fifo() O(k)
rsrpt() fifo() O(log k)
rsrpt() srpt() 1 (optimal)

Table 1: Sample BASEL policies for single queue architec-
ture; k is the maximal processing requirement, OPT/ALG is
the competitive ratio between the throughput of optimal offline
OPT and online algorithm ALG.

processes them in fifo() order; it is O(k)-competitive for maxi-
mum processing requirement k. In BASEL, this algorithm looks as
follows:

q1.admPrio=fifo; q1.procPrio=fifo;

Changing fifo() admission order to rsrpt() significantly im-
proves performance and this version of the greedy policy is already
O(log (k))-competitive. With the third greedy algorithm process-
ing packets in srpt() order and admitting them in rsrpt() or-
der, we get an optimal algorithm for throughput maximization re-
gardless of traffic distribution [21]. Since here a port manages only
one queue, a scheduling policy is just an implicit call to getHOL().

3.2 Performance Impact of Scheduling
One alternative architecture for packets with heterogeneous pro-

cessing requirements is to allocate queues for packets with the same
processing requirements (see Figure 1(b)). The following code cre-
ates this buffering architecture in BASEL, where k queues share an
equal portion of memory B.

q1=Queue(B);...qk=Queue(B);
out=Port(q1,..,qk);

In this architecture, there is no need for advanced processing and
admission orders since only packets with the same processing re-
quirement are admitted in the same queue. The following BASEL
code instantiates admPrio,
procPrio, and congestion in the k created queues.

q1.admPrio=fifo; ...; qk.admPrio=fifo;
q1.procPrio=fifo; ...; qk.procPrio=fifo;
q1.congestion=defCongestion(q1); ...;
qk.congestion=defCongestion(qk);

This change of buffering architecture is not for free since the
buffer of these queues is not shareable. But even here, the deci-
sion of which packet to process in order to maximize throughput is
non-trivial since it is unclear which characteristic is most relevant
for throughput optimization: buffer occupancy, required process-
ing, or a combination. BASEL code in List. 6 presents six differ-
ent scheduling priorities and postSchedAct actions in the cases
when this action is used.

Table 2 summarizes various online scheduling policies as shown
in [28]. Observe that buffer occupancy is not a good character-
istic for throughput maximization: lqf() and sqf() have bad



// LQF: HOL packet from Longest-Queue-First
lqf(q1,q2) = (q1.currSize > q2.currSize);
// SQF: HOL packet from Shortest-Queue-First
sqf(q1,q2) = (q1.currSize < q2.currSize);
// MAXQF: HOL packet from queue that
// admits max processing
maxqf(q1,q2)= (q1.weightSched > q2.weightSched);
// MINQF: HOL packet from queue that admits
// min processing
minqf(q1,q2)= (q1.weightSched < q2.weightSched);
// CRR: Round-Robin with per cycle resolution
crr(q1,q2) = (q1.weightSched < q2.weightSched);
crrPostSchedAct() = lambda port,

(port.getCurrQueue().weightSched += k);
// PRR: Round-Robin with per packet resolution
prr(q1,q2) = (q1.weightSched < q2.weightSched);
prrPostSchedAct() = lambda port,

(let q = port.getCurrQueue() in
if (q.getHOL().processing == 0)

q.weightSched += k*k));

Listing 6: BASEL example of scheduling priorities and
postSchedAct actions for multiple separated queues.

init. weightSched postSchedAct schedPrio OPT/ALG
unused unused lqf() Ω(B

2
)

unused unused sqf() Ω(k)

unused unused maxqf() Ω(k)

qi.weightSched=i unused minqf() upper bound 2

qi.weightSched=i crrPostSchedAct() crr() Ω( k
ln k

)

qi.weightSched=i prrPostSchedAct() prr() Ω(
3k(k+2)
4k+16

)

Table 2: Examples of policies in BASEL for multiple queues
architecture. k is the maximal processing requirements, B is a
buffer size of a single queue. OPT/ALG is the throughtput of
an optimal offline OPT algorithm vs. online algorithm ALG.

competitive ratios, while a simple greedy scheduling policy Min-
Queue-First (MQF) that processes the HOL packet from the non-
empty queue with minimal required processing (minqf()) is 2-
competitive. This means that MQF will have optimal throughput
with a moderate speedup of 2 [28]. The other two policies that im-
plement fairness with per-cycle or per-packet resolution (CRR and
PRR respectively) have relatively weak performance; this demon-
strates the fundamental tradeoff between fairness and throughput.
The following code snippet in BASEL, for instance, corresponds to
the CRR policy:

// initializing schedWeight for CRR
q1.weightSched=1; ... qk.weightSched=k;
// initial. postSchedAct to update schedWeight
out.postSchedAct = crrPostSchedAct(out);

Currently, the best tools available to evaluate performance of
buffering architectures are discrete simulators such as NS-2 [3] or
OMNet++ [1] that can use traffic traces and/or various traffic distri-
butions to analyze performance of buffer management policies in a
high level language. Due to its simplicity, BASEL can be used as
a discrete simulator whose configuration is limited to several user-
defined expressions. For instance, Fig.s 2 and 3 show the impact
of admission, processing, and scheduling policies on throughput
optimization for a single queue and multiple queues buffering ar-
chitectures with packets of heterogeneous processing requirements;
in these examples, traffic was generated with an ON-OFF Markov
modulated Poisson process (MMPP) with Poisson arrival processes
with intensity λ, and required processing chosen uniformly at ran-

rsrpt-srpt rsrpt-fifo fifo-fifo

0 0.1 0.2
0.6

0.7

0.8

0.9

1

λon, k = 5,B = 10, C = 1

0 10 20 30 40

k,B = 10, λ = 0.2, C = 1

0 10 20 30
0.4

0.6

0.8

1

B, k = 3, λ = 0.2, C = 1

2 4 6 8 10

C, k = 10,B = 10, λ = 0.2

Figure 2: Optimal vs three online algorithms for a single queue
architecture with heterogeneous processing; y-axis, competitive
ratio; x-axis, top to bottom, left to right: λ; max required pro-
cessing k; buffer size B; speedup C.

OPT MQF SQF LQF

CRR PRR MaxQF

0 10 20 30 40
0.2

0.4

0.6

0.8

1.0

k, B = 5

0 10 20 30

B, k = 15

0 2 4 6 8 10
0.2

0.4

0.6

0.8

1.0

C, k = 25, B = 10

0 0.5 1 1.5 2

λ, k = 5, B = 5

Figure 3: Online vs optimal algorithms for multiple queues
with heterogeneous processing; y-axis, competitive ratios; x-
axis, top to bottom, left to right: max required processing k,
buffer size B, speedup C, intensity λ.

dom from 1..k. But even if we know how to represent arrivals and
analyze them, the applicability of these results will be limited to
specific settings. Hence, BASEL is being developed for deploy-
ment on real systems.

4. FEASIBILITY OF BASEL
A fundamental building block in BASEL is the priority queue

data structure where the order of elements is based on user-defined
priority. The implementation keeps a single copy of each packet
and uses pointers to encode priorities (see Fig. 4). So BASEL
implementation is reduced to efficient implementation of priority
queues [19, 34] (cf. PERFORMANCE, Sec. 1), making BASEL at-
tractive for hardware implementation.

4.1 BASEL Implementation in Open vSwitch
Open vSwitch (OVS) implements the control plane in user space

and the data plane in the kernel [2, 37]. Since OVS exploits Linux
TC (Traffic Control) kernel modules via the netdev-linux li-
brary to manipulate queuing and scheduling disciplines (qdisc),



Figure 4: Priority queue implementation.

Generator	
  1

Generator	
  N
ReceiverSwitch

Figure 5: Testbed: 3-node topology

1 2 4 8 16
0

200

400

600

UDP clients with default MTU size

A
vg

.q
ue

ue
le

ng
th

1
16

1
8

1
4

1
2

1

Fraction of default MTU size

Figure 6: Left: average queue length as a function of number
of clients generating UDP traffic with default MTU size. Right:
fraction of default MTU size; blue: FIFO with prioritization;
red: regular FIFO.
we have added configuration options to TC to express BASEL’s
admission, processing, and scheduling policies. Similar extensions
are being added on the data plane via Linux kernel TC loadable
kernel modules.

4.2 Performance Impact of Priority Queue
We have extended Linux’s default qdisc3 (i.e., pfifo_fast) to sup-

port packet prioritization based on arrival time. Instead of modify-
ing the underlying default packet queue (a doubly linked list), we
use an existing B-Tree implementation on top of a default FIFO
queue to manage packet prioritization while preserving backward
compatibility to existing qdisc solutions. As shown on Fig. 4, we
add a reference to the enqueuing packets to the B-Tree and the high-
est priority packet (i.e., the earliest arrival time) is dequeued first.
We remark that FIFO does not need to utilize a B-Tree in general;
we use it as a baseline to explore the performance overhead of a
generic implementation of prioritization.

In our testbed we set a 3-node line topology to measure the per-
formance overhead of our packet prioritization logic. Fig. 5 shows
that the middle node runs OVS with modified data plane (Linux ker-
nel) and acts as a pass-through switch. We vary the number of par-
allel traffic generators on the first node and measure average queue
length (i.e., number of packets in the default queue) in a receiver
node on the third for two qdiscs: default FIFO and extended FIFO
with prioritization, reporting the average value of 50 runs with 95%
confidence interval. Fig. 6(left) shows the average queue lengths
for the two qdiscs; in both cases, average queue length increases
with the number of UDP clients. In FIFO with 16 clients, the most
congested case, regular FIFO has average queue length 559.333 vs.
571 for FIFO with prioritization, only a 2% degradation. We also
varied MTU sizes in the same 3-node line topology testbed with 4
parallel UDP generators, which is a good enough case to observe
queue build-ups but not dropping packets in the pass-though switch.

3Queuing Discipline (qdisc) is a part of Linux Traffic Control (TC)
used to shape traffic of an interface; qdisc uses dequeue to handle
outgoing packets and an enqueue to fetch incoming ones.

We measured average queue lengths of the two qdiscs by varying
MTU sizes from 1

16
of the default MTU size to its default size (1500

bytes). Fig. 6(right) shows that for both qdiscs the average queue
length decreases as MTU size increases; FIFO with prioritization
incurs only 4% overhead: for MTU size of 1500

16
bytes the result is

584.3 vs. 610.7. Hence, we conclude that packet prioritization on
top of FIFO incurs negligible performance overhead.

5. RELATED WORK
The active networks [42] approach to programmable networks is

to execute code contained within packets on the switches. How-
ever, we argue that running arbitrary code can hamper switch per-
formance. Frenetic [15], Pyretic [33], among others, have proposed
abstractions to express management policies in packet networks.
These approaches focus on service abstractions based on flexible
classifiers, and do not try to manage buffering architectures. Other
systems [13,41] allow for setting a predefined set of parameters for
buffer management, which intrinsically limits expressivity. Another
line of research abstracts the representation of the southbound API
(e.g., OpenFlow) in the data plane [7, 40], while languages such as
P4 [7] are very successful in representing packet classifiers, they
are less suitable to express buffer management policies. The clos-
est work to BASEL is [39] which introduces a set of primitives to
specify only admission control policies for a single queue buffering
architecture. On the other hand BASEL considers a composition of
admission control, processing, and scheduling policies to optimize
desired objectives on user-defined buffering architectures. Various
frameworks have proposed mechanisms for specifying desired poli-
cies in packet networks such as bandwidth allocations [5, 38].

6. CONCLUSION
We propose a concise yet expressive language to define buffer

management policies at runtime. The proposed language can de-
fine buffering architectures and their management policies with any
resolution from a single network element to a virtual switch that can
represent a part of the network. We believe that BASEL can enable
and accelerate innovation in the domain of buffering architectures
and management, similar to programming abstractions that exploit
OpenFlow for services with sophisticated classification modules.
The conciseness of BASEL and ability to implement priority queue
data structures at line-rate, make BASEL attractive for hardware
implementations.

Acknowledgments
The work of S. Nikolenko was supported by by the Government of
the Russian Federation grant 14.Z50.31.0030 and by the President
Grant for Young Ph.D. Researchers MK-7287.2016.1. P. Eugster
was partly funded by ERC grant “Lightweight Verification of Dis-
tributed Software” and German Research Foundation grant “Multi-
Mechanism Adaptation for Future Internet”.

7. REFERENCES
[1] OMNeT++. http://www.omnetpp.org/.
[2] Open vSwitch. http://www.openvswitch.org.
[3] This is the ns-2 wiki.

http://nsnam.isi.edu/nsnam/index.php/Main_Page.
[4] W. Aiello, A. Kesselman, and Y. Mansour. Competitive

buffer management for shared-memory switches. ACM
Trans. on Algorithms, 5(1), 2008.

http://www.omnetpp.org/
http://nsnam.isi.edu/nsnam/index.php/Main_Page


[5] H. Ballani, P. Costa, T. Karagiannis, and A. I. T. Rowstron.
Towards predictable datacenter networks. In SIGCOMM,
pages 242–253, 2011.

[6] S. Bauer, R. Beverly, and A. Berger. Measuring the state of
ECN readiness in servers, clients, and routers. In IMC, pages
171–180, 2011.

[7] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown,
J. Rexford, C. Schlesinger, D. Talayco, A. Vahdat,
G. Varghese, and D. Walker. P4: programming
protocol-independent packet processors. CCR, 44(3):87–95,
2014.

[8] P. Chuprikov, S. Nikolenko, and K. Kogan. Priority queueing
with multiple packet characteristics. In INFOCOM, pages
1418–1426, 2015.

[9] A. Demers, S. Keshav, and S. Shenker. Analysis and
simulation of a fair queueing algorithm. In SIGCOMM, pages
1–12, 1989.

[10] P. Eugster, A. Kesselman, K. Kogan, S. Nikolenko, and
A. Sirotkin. Essential traffic parameters for shared memory
switch performance. In SIROCCO, pages 61–75, 2015.

[11] P. Eugster, K. Kogan, S. Nikolenko, and A. Sirotkin. Shared
memory buffer management for heterogeneous packet
processing. In ICDCS, pages 471–480, 2014.

[12] W. Feng, K. G. Shin, D. D. Kandlur, and D. Saha. The BLUE
active queue management algorithms. IEEE/ACM Trans.
Netw., 10(4):513–528, 2002.

[13] A. D. Ferguson, A. Guha, C. Liang, R. Fonseca, and
S. Krishnamurthi. Participatory networking: an API for
application control of sdns. In SIGCOMM, pages 327–338,
2013.

[14] S. Floyd and V. Jacobson. Random early detection gateways
for congestion avoidance. IEEE/ACM Trans. Netw.,
1(4):397–413, 1993.

[15] N. Foster, R. Harrison, M. J. Freedman, C. Monsanto,
J. Rexford, A. Story, and D. Walker. Frenetic: a network
programming language. In ICFP, pages 279–291, 2011.

[16] J. Gettys. Low latency requires smart queuing:traditional
AQM is not enough!, 2013.
http://www.internetsociety.org/sites/default/files/pdf/
accepted/29_bis_ISOC_Workshop_2.pdf.

[17] M. Goldwasser. A survey of buffer management policies for
packet switches. SIGACT News, 41(1):100–128, 2010.

[18] C. Hong, S. Kandula, R. Mahajan, M. Zhang, V. Gill,
M. Nanduri, and R. Wattenhofer. Achieving high utilization
with software-driven WAN. In SIGCOMM, pages 15–26,
2013.

[19] A. Ioannou and M. Katevenis. Pipelined heap (priority
queue) management for advanced scheduling in high-speed
networks. IEEE/ACM Trans. Netw., 15(2):450–461, 2007.

[20] S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski,
A. Singh, S. Venkata, J. Wanderer, J. Zhou, M. Zhu, J. Zolla,
U. Hölzle, S. Stuart, and A. Vahdat. B4: experience with a
globally-deployed software defined wan. In SIGCOMM,
pages 3–14, 2013.

[21] I. Keslassy, K. Kogan, G. Scalosub, and M. Segal. Providing
performance guarantees in multipass network processors.
IEEE/ACM Trans. Netw., 20(6):1895–1909, 2012.

[22] A. Kesselman, K. Kogan, and M. Segal. Packet mode and
QoS algorithms for buffered crossbar switches with FIFO
queuing. Distributed Computing, 23(3):163–175, 2010.

[23] A. Kesselman, K. Kogan, and M. Segal. Best effort and

priority queuing policies for buffered crossbar switches.
Chicago J. Theor. Comput. Sci., 2012, 2012.

[24] A. Kesselman, K. Kogan, and M. Segal. Improved
competitive performance bounds for cioq switches.
Algorithmica, 63(1-2):411–424, 2012.

[25] A. Kesselman, Z. Lotker, Y. Mansour, B. Patt-Shamir,
B. Schieber, and M. Sviridenko. Buffer overflow
management in QoS switches. In STOC, pages 520–529,
2001.

[26] A. Kesselman and A. Rosén. Scheduling policies for CIOQ
switches. J. Algorithms, 60(1):60–83, 2006.

[27] K. Kogan, A. López-Ortiz, S. Nikolenko, G. Scalosub, and
M. Segal. Balancing work and size with bounded buffers. In
COMSNETS, pages 1–8, 2014.

[28] K. Kogan, A. López-Ortiz, S. Nikolenko, and A. Sirotkin.
Multi-queued network processors for packets with
heterogeneous processing requirements. In COMSNETS,
pages 1–10, 2013.

[29] K. Kogan, A. López-Ortiz, S. Nikolenko, A. Sirotkin, and
D. Tugaryov. FIFO queueing policies for packets with
heterogeneous processing. In MedAlg, pages 248–260, 2012.

[30] K. Kogan, A. López-Ortiz, S. I. Nikolenko, and A. Sirotkin.
A taxonomy of semi-fifo policies. In IPCCC, pages 295–304,
2012.

[31] P. McKenney. Stochastic fairness queueing. In INFOCOM,
pages 733–740, 1990.

[32] N. McKeown, G. Parulkar, S. Shenker, T. Anderson,
L. Peterson, J. Turner, H. Balakrishnan, and J. Rexford.
OpenFlow switch specification, 2011. http:
//www.openflow.org/documents/openflow-spec-v1.1.0.pdf.

[33] C. Monsanto, J. Reich, N. Foster, J. Rexford, and D. Walker.
Composing software defined networks. In NSDI, pages 1–13,
2013.

[34] A. Morton, J. Liu, and I. Song. Efficient priority-queue data
structure for hardware implementation. In FPL, pages
476–479, 2007.

[35] K. M. Nichols and V. Jacobson. Controlling queue delay.
Commun. ACM, 55(7):42–50, 2012.

[36] S. I. Nikolenko and K. Kogan. Single and multiple buffer
processing. In Encyclopedia of Algorithms. Springer, 2015.

[37] B. Pfaff, J. Pettit, T. Koponen, E. J. Jackson, A. Zhou,
J. Rajahalme, J. Gross, A. Wang, J. Stringer, P. Shelar,
K. Amidon, and M. Casado. The design and implementation
of open vswitch. In USENIX NSDI, pages 117–130, 2015.

[38] L. Popa, G. Kumar, M. Chowdhury, A. Krishnamurthy,
S. Ratnasamy, and I. Stoica. Faircloud: sharing the network
in cloud computing. In SIGCOMM, pages 187–198, 2012.

[39] A. Sivaraman, K. Winstein, S. Subramanian, and
H. Balakrishnan. No silver bullet: extending SDN to the data
plane. In HotNets, pages 19:1–19:7, 2013.

[40] H. Song. Protocol-oblivious forwarding: unleash the power
of SDN through a future-proof forwarding plane. In HotSDN,
pages 127–132, 2013.

[41] R. Soulé, S. Basu, P. J. Marandi, F. Pedone, R. D. Kleinberg,
E. G. Sirer, and N. Foster. Merlin: A language for
provisioning network resources. In CoNEXT, pages 213–226,
2014.

[42] D. L. Tennenhouse and D. Wetherall. Towards an active
network architecture. Computer Communication Review,
26(2):5–17, 1996.

http://www.internetsociety.org/sites/default/files/pdf/accepted/29_bis_ISOC_Workshop_2.pdf
http://www.internetsociety.org/sites/default/files/pdf/accepted/29_bis_ISOC_Workshop_2.pdf
http://www.openflow.org/documents/openflow-spec-v1.1.0.pdf
http://www.openflow.org/documents/openflow-spec-v1.1.0.pdf

	Introduction
	BASEL Specification Language
	Language Overview
	BASEL API
	Queues
	Ports
	Packets


	BASEL at Work (examples)
	Performance Impact of Admission Control
	Performance Impact of Scheduling

	Feasibility of BASEL
	BASEL Implementation in Open vSwitch
	Performance Impact of Priority Queue

	Related Work
	Conclusion
	References

