
Composing Middlebox and Traffic Engineering
Policies in SDNs

Yiyang Chang∗, Gustavo Petri†, Sanjay Rao∗, Tiark Rompf∗
∗Purdue University, †LIAFA – Université Paris Diderot

Abstract—Middleboxes present new requirements that need
to be integrated with traffic engineering applications that are
already complex and consider myriad factors (e.g., routing,
QoS, load-balancing). While it is possible to revisit traffic en-
gineering algorithms to explicitly integrate middleboxes, such an
approach is not compositional. Existing efforts at compositional
SDN application development do not apply since they support
application composition after static packet-forwarding policies
are generated by application modules. Consequently, routes
computed by a traffic engineering module cannot be influenced
by the constraints imposed by a module that specifies middlebox
traversal requirements. In this paper, we explore an alternate
approach where application composition is done prior to the
generation of packet-forwarding policies. Each application is
written as a logic program, and provides a set of requirements that
must be respected by a synthesized solution. A constraint solving
engine iterates over these requirements to search the solution
space and find a solution respecting all the requirements. We
illustrate our approach with a concrete case study, and implement
it using the Z3 SMT solver [1]. Our initial results point to the
promise of the approach.

I. INTRODUCTION

With the extensive deployment of middleboxes in enterprise
and ISP networks, there is much recent interest in revisiting
traffic engineering to take the presence of such middleboxes
into account [2], [3], [4]. For instance, operators may often
need to specify policies which require that traffic of a partic-
ular type traverse a given sequence of middleboxes.

One approach is to revisit existing traffic engineering al-
gorithms to explicitly account for new requirements posed
by middleboxes (e.g., [3]). This approach requires developing
custom algorithms for every combination of traffic engineering
and middlebox requirement. However, consider that middlebox
requirements must be considered as part of network design,
along with many other considerations such as routing, QoS,
and load-balancing. Further, large networks are often managed
by multiple teams of operators, and may need to support
applications developed by many different vendors [5], [6].
Developing custom algorithms to consider middlebox require-
ments may not be viable as the number of applications, and
potential combination of application requirements grow.

Our goal in this paper is to facilitate a compositional
approach to integrating middlebox requirements in traffic
engineering and SDN applications. Our work is motivated by
the following typical enterprise scenario. Consider two IT staff
members (say Alice and Bob), who belong to two different
IT teams that manage the network of an enterprise. Alice
is in charge of the routing module, and Bob is responsible

for network security. Working separately, Alice implements
a shortest-path algorithm, while Bob enforces a policy that
requires all network traffic to traverse an intrusion detection
system (IDS). Could these modules be easily composed with-
out Alice and Bob being explicitly aware of their respective
implementations?

There have been some initial efforts at tackling the problem
of compositionality in SDNs, notably the Frenetic project [7],
[8]. However, the scenario above cannot be supported with
the Frenetic family of languages, and its associated sequential
and parallel composition operators [7], [8]. This is because
path computations are first done in a general purpose language
such as Python (guided by traffic engineering goals), and
composition is done subsequently using computed paths. The
routing module would still produce packet-forwarding policies
corresponding to the shortest path, which may not traverse an
IDS. It is unclear how to then compose the outcome with the
security module to ensure that the path traverses an IDS. While
it is possible to modify the code in a general purpose language
(e.g., Python) to generate shortest paths that traverse an IDS
prior to the generation of the packet-forwarding policies, this
approach is not modular.

In this paper, we investigate an alternate approach where
compositionality is supported prior to the generation of packet
forwarding policies. In our approach, each application is
written as a logic program, and provides a set of requirements
that must be respected by a synthesized solution. A constraint
solving engine iterates over these requirements to search the
solution space and find a solution respecting all the require-
ments.

A key issue is generating the constraints associated with
each application such that they can be combined together
in a correct fashion. As a concrete case study, we consider
routing in the context of the IDS requirement. We show that
the traditional approach of expressing the shortest path require-
ment leads to a formulation that does not compose correctly
with the IDS requirement. We propose an alternate walk-based
formulation for the shortest path requirement which has the
attractive property that the formulation can be easily composed
with the IDS requirements.

We discuss how our approach may be generalized to con-
sider a richer set of traffic engineering objectives such as
picking paths that minimize link utilizations, and routing using
multiple diverse paths.

We present preliminary performance results based on the
Microsoft Z3 SMT solver [1]. Our focus is on an offline phase



Source to SMT translation

SMT solution

Packet-Forwarding Policy 
Generation

Source Code

(a)

SMT Input

(b)

(c)

SMT Model Packet-Fwd 
Policy

(d)

Requirements

OpenFlow Rules

Fig. 1. Framework

for traffic engineering that involves a selection of paths that
correctly meet the middlebox requirements [4], [9]. Our results
are promising, while also pointing to important questions that
we hope to address as part of our ongoing research.

II. FROM REQUIREMENTS TO RULES

Figure 1 presents the overall framework that we envision for
composing application requirements. The framework consists
of the following components:
(a) Specifying requirements: Requirements are expressed in

a high-level Domain Specific Language (DSL). It frees
operators from directly expressing policy in a low-level
constraint solving engine, which is tedious and error-
prone, and also allows for modularity in that the un-
derlying solver could be modified without changing how
requirements are specified. The DSL includes primitives
for network objects such as switches, routers, packets
with their different fields, and the notions of links and
paths. While our DSL could be embedded in many host
languages, for concreteness, we consider a Prolog-like
syntax where constraints are expressed as rules deter-
mining the necessary conditions under which a certain
property should hold.

(b) Solver engine: To solve the aggregated constraints of
different policies, any constraint solving engine could
be used (not necessarily the constraint solving engine
associated with Prolog). We focus on Satisfiability Mod-
ulo Theory (SMT) solvers, which are efficient constraint
solving engines that are capable of finding a model for a
set of constraints, usually expressed as a first order log-
ical formula. More generally, other solver engines (e.g.,
based on Integer Linear Programming (ILP)), or other
traditional optimization techniques could be used. We
focus on SMT solvers since more complicated formulas
with arbitrary Boolean combinations of linear inequalities
are more naturally expressed with SMTs, but defer a
detailed investigation of the trade-offs between solvers
to future work. Hence, the first step of our tool is a
translation from our Prolog-like source language, to an

ha hb

s2

s3

s1 s4

enforces IDS

Fig. 2. IDS Example

axiomatic encoding of the network and the policies to be
implemented to the input language of the SMT solver,
which is first order logic, with the addition of decidable
theories such as arithmetic and uninterpreted functions.

(c) Model synthesis: Once the constraints are encoded into
the SMT solver, the solver is invoked. The resulting
model is regarded as defining the flow-level policies that
have to be implemented in the network. When a model
cannot be found, either because the set of constraints are
contradictory with each other, or because the SMT solver
cannot find a satisfiable solution within a reasonable
amount of time, an error is reported back to the user.
In Sec. V, we also discuss the support to specify soft
requirements and how conflicts could be handled by
relaxing such requirements.

(d) Generation of packet forwarding policies: The final
step of our toolchain is to translate the model into switch
rules. To simplify that task, we compile the model into a
language to express packet-forwarding policies. We use
Pyretic [7] for this purpose given its publicly available
code base, and extensive usage.

III. COMPOSING REQUIREMENTS

We illustrate our approach by expanding on the example
introduced in Sec. I. Consider a network with two hosts
({ha, hb}), and four switches ({s1, s2, s3, s4}) organized as
depicted in Figure 2. Consider the case where only s3 forces
traffic through an IDS.

The first operator of our network is required to define the
routing from host ha to hb. Unbeknownst to him/her, the
second operator is tasked with ensuring that all routes go
through a switch enforcing the passage through an IDS (s3).

A question that arises in this environment is: how can
the implementers of the two different procedures, the one
for computing optimized routes, and the other for enforcing
the IDS policy, write their procedures in a way that enables
composing each other (or with any other policy written in the
same framework) without knowing a priori that the operator
will choose to compose them? Our work is motivated by this
challenging question.

In our approach, each application provides requirements,
i.e., a set of constraints that must be satisfied by any packet-
forwarding policy finally deployed in the network. A constraint



solving engine then attempts to obtain a network policy that
satisfies the requirements of each module. If a model satisfying
the requirements can be found, this model can be translated
into packet-forwarding policies to implement the solution.

To illustrate our proposed solution, let us consider a candi-
date implementation in our framework. Assume that the first
operator defines a route as a relation between a pair of hosts
and a path, in this case the list of switches. Consider a Prolog-
like constraint query (fed to an SMT solver) to find a route
X between hosts ha and hb defined by the clause

route(ha,hb,X)

A possible solution to the query would route traffic from ha to
hb through the switches s1, s2 and s4. Formally, the solution
results in

X = [s1, s2, s4]

While this path routes traffic correctly, it fails to enforce
the IDS policy tasked to the second operator. To remedy this
situation, the second operator could consider the following
strengthening to the routing policy:

hasIDS([s3|X]).
hasIDS([S|X]) :- hasIDS(X).
routeIDS(H1,H2,X) :- route(H1,H2,X),

hasIDS(X).

The definition hasIDS above tests whether a route contains
a switch enforcing an IDS or not (in our case must have s3)1.
Then, the clause routeIDS uses route to find a path X,
but we add the constraint that the path found must contain an
IDS. Thus, using routeIDS the operator is able to find a
correct path through an IDS if there is one. In our example
this is reflected in the query below:

routeIDS(ha, hb,X).
X = [s1, s3, s4]

We next discuss in Sec. IV how to translate route and
hasIDS into constraints in an SMT solver.

IV. COMPOSITIONAL REPRESENTATION

Ideally, a network operator could specify multiple goals for
the network independently, and rely on our runtime system
to compose and solve the combination of constraints. We
will use the case study of routing and IDS to show naively
composing constraints may not always work, and present a
more compositional formulation.
Naive composition may not work. Consider the following
shortest-path formulation on a graph G(V,E), with V the set
of vertices of the graph, and E the set of edges. Indicator

1We use the Prolog syntax [X|XS] to represent a list with head X and
tail XS. Upper case arguments (X) are variables, and lower case names are
constants.

variable xi,j is 1 if link (i, j) lies along the path, and 0
otherwise; s is the source node and d is the destination node.

∀i, ¬xi,i (1)
(∃i, xs,i) ∧ (∃i, xi,d) (2)

∀i, j, xi,j ∧ (j 6= d)⇒ ∃k, xj,k (3)
∀i, j, k, xi,j ∧ (i 6= k)⇒ ¬xk,j (4)
∀i, j, xi,j ∧ (i 6= s)⇒ ∃k, xk,i (5)

∀i, j, k, xi,j ∧ (j 6= k)⇒ ¬xi,k (6)

The first constraint requires there are no self-loop links
chosen.2 The second constraint requires a unit of flow to
leave the source, and a unit of flow to reach the destination.
Constraint 3 requires that for every node with an incoming
flow (other than the destination) there must be an exit flow, and
Constraint 4 states that at most one incoming flow is permitted
for each node. Symmetric constraints are added for exit flows
in Constraints 5 and 6.

The path length is the sum of all xi,j variables, minimizing
which leads to the shortest path. To do so, we use the theory of
arithmetic to constrain the number of xi,j variables with value
1 to a desired bound (M ). We iteratively increase M until a
solution is found (which corresponds to the shortest path) or
until the bound reaches the number of nodes in the graph
without finding a solution. In the latter case the constraints
cannot be solved.

Now we would like to add a constraint imposing that
the path must have a waypoint w (e.g., IDS) by simply
adding the following constraint ∃j, xw,j . However, this is
incorrect because it could result in a solution that involves the
shortest path from the source s to destination d, along with a
disconnected loop that involves the waypoint w. Instead, we
need a solution where the waypoint is actually traversed in the
path.
Custom formulations may not always be viable. The issues
above can be addressed by generating a custom formulation
based on the observation that the optimal solution involves
a combination of (i) the shortest path from the source to the
IDS; and (ii) the shortest path from the IDS to the destination.
However, given that there could be several SDN applications
with a variety of requirements (e.g, QoS, robustness, security
etc.), the potential combinations of constraints is high and
writing custom formulations for every possible combination
may not be viable. For instance, a completely different custom
formulation may be required to capture requirements that
multiple IDS’s must be traversed where the order of traversal is
unimportant, compared to one where the ordering is important.
Thus, we are interested in a more generic formulation for the
shortest path requirement which can easily support additional
requirements added in a compositional fashion.
Compositional formulation. Here we give a logic-based for-
mulation of route and hasIDS which is compositional and
easy to reason about. Consider a graph G(V,E), with V the

2We use quantifiers that are restricted to the finite domain of the given
graph.



set of vertices of the graph, ranged over by the metavariables
i ∈ V , and E the set of edges encoded as a set of binary
variables ei,j indicating whether there is an edge between
the vertices i and j (i.e., ei,j ∈ E ⇐⇒ ei,j = 1). The
constraint imposed by route seeks to find a valid walk from
a source node s ∈ V to a destination node d ∈ V . Let M be
the maximum permissible length of walk, counting the source
and destination nodes. We add a set of M binary variables tk
where k ≤M which allow us to encode the length of the walk.
Then, a walk of size K will satisfy tk = 1 for k ∈ [1,K] and
tk = 0 otherwise. Finally, consider a set of binary variables
xi,k representing the fact that the node i should be visited in
the k-th step of the walk found if xi,k = 1, and the node
should not be visited otherwise.

Then, we can solve the route queries by solving the
following set of constraints:

xs,1 ∧ t1 (7)
∀i, k, xi,k ∧ xj,k+1 ⇒ ei,j (8)
∀k, tk ∧ ¬tk+1 ⇒ xd,k (9)
∀i, j, k, i 6= j ⇒ ¬xi,k ∨ ¬xj,k (10)
∀i, k, xi,k ⇒ tk (11)
∀k, ¬tk ⇒ ¬tk+1 (12)
∃k, xd,k ∧ ¬tk+1 (13)

Finding the minimum M which makes the query above
satisfiable guarantees that the found path is minimal.

Constraint 7 states that the source node s is scheduled first.
Constraint 8 requires that if node i is visited in step k and j is
visited in step k+1 an edge must exist between nodes i and j
in G. Constraint 9 ensures that the last node of the walk is the
destination d. The requirement that tk∧¬tk+1 encodes the fact
that the walk has exactly k steps. Constraints 12 and 13 ensure
that the destination node d exists in the path and eliminates
trivial solutions. Constraint 10 requires that at most one node is
visited in step k. Finally Constraint 11 establishes the relation
between variable xi,k and tk.
Composing middlebox requirements. Consider adding the
requirement enforced by hasIDS that node w must be tra-
versed. It suffices to add the constraint below:

∃k, xw,k (14)

To ensure one of multiple IDS nodes in set W is traversed,
we could instead add the following constraint:

∃k,w ∈W,xw,k (15)

To support the requirement that a set of IDS nodes must
be traversed but the order of traversal is unimportant, we
simply replicate Constraint 14 for each IDS node. Finally, the
requirement IDS node w1 must be traversed prior to w2 could
be expressed as:

∃k1, k2, xw1,k1
∧ xw2,k2

∧ (k1 < k2) (16)

Overall, this encoding exposes how composition through
solving constraints can simplify the task of writing both
modular and compositional applications.

V. RICHER COMPOSITION SCENARIOS

In this section, we consider how middlebox requirements
may be composed with more sophisticated traffic engineering
goals than shortest path routing.
Bounding link utilization. A common goal in enterprise
networks is to ensure no link is too heavily utilized. To limit
the maximum traffic on a certain link li,j , we add a primitive
predicate util(i,j) representing the link utilization of
li,j , and a predicate demand(ha,hb) representing the traffic
demand from host ha to host hb (dab). U is a bound on link
utilization, ranging from 0 and 1. Then, the routing predicate
may be combined with the constraints on utilization as follows:

demand(ha,hb) :- dab.
demand(ha,hc) :- dac. ...
routes_util([X,Y,...]) :-

route(ha,hb,X), route(ha,hc,Y), ...
util(s1,s2) < U, util(s1,s3) < U, ... .

To deploy middleboxes (e.g., IDS) in such a network, we
simply change the predicate route to routeIDS (Sec. III).
To implement this, we add the following constraints for the
route predicate discussed in Sec. IV:

∃k, xi,k ∧ xj,k+1 ⇒ ui,j = d (17)
∀k, ¬xi,k ∨ ¬xj,k+1 ⇒ ui,j = 0

Here, variable ui,j denotes the total traffic carried by link
li,j , and d is given by the demand predicate described above.
To support multiple pairs of sources and destinations, we use
xa→b
i,k and da→b to respectively denote the route and traffic

demand from host a to host b in Equation 17 above. We then
add the following constraint to capture that the utilization of
link li,j (with capacity ci,j) is bounded by constant U :3∑

a,b

ua→b
i,j /ci,j < U

Multiple paths. It may be desirable to compute multiple paths
between each source and destination that meet the middlebox
requirement. This could help both to (i) deal with failures
by picking a backup path that was precomputed offline; and
(ii) allow for traffic to be split across multiple paths. Given
a user defined predicate distinct_path(X,Y) that indi-
cates when two paths are sufficiently different (e.g., whenever
X and Y share less than n switches), we can construct a query
to obtain two different paths from host ha to hb that both
satisfy the middlebox requirement as follows:

two_routes(ha,hb,X,Y) :- routeIDS(ha,hb,X),
routeIDS(ha,hb,Y),
distinct_path(X,Y).

The strategy can be extended to more routes given a suffi-
ciently sophisticated distinct_path predicate.
Soft requirements to aid conflict resolution. An operator
may wish to specify soft requirements when all requirements

3The quantifier ranges over a finite enumeration.



TABLE I
RUNTIME FINDING THE SHORTEST PATH AND THE SHORTEST PATH

TRAVERSING ONE GIVEN CORE SWITCH AS A WAYPOINT ON DIFFERENT
K-ARY FAT-TREES

K No. of nodes Shortest-path (s) 1-waypoint (s)

4 20 0.08526 0.3298
8 80 2.226 11.94
12 180 40.67 262.6
16 320 285.3 725.2
20 500 2037 3978
24 720 2452 2241

are not simultaneously satisfiable. To that end we add program-
ming annotations in query definitions, whereby a constraint
is made soft. In this case, a less constrained requirement is
fed iteratively until a path is found. For example consider a
request to find routes which have an IDS, while ensuring the
utilization of a certain link does not exceed a bound U.

routeIDS_U(ha,hb,X,Y) :- routeIDS(ha,hb,X),
@soft util(s1,s2) < U.

Upon inability to solve the two constraints above, a second
query would be made to the solver by dropping the util
constraint which is @soft. This approach may be extended
to define priorities among the constraints, and to relax (e.g.,
provide a higher utilization bound) rather than completely
eliminate a constraint.

VI. PRELIMINARY RESULTS

We have conducted initial experiments with our framework
to assess its suitability for the offline phase of traffic engi-
neering. It is typical in traffic engineering for an operator to
pre-compute an initial set of candidate paths (or tunnels) in the
offline phase. An online phase simply selects the appropriate
path(s) from the pre-selected subset and determines how traffic
must be split across the selected paths [9], [4], [10]. We
envison that the offline phase may be augmented to select
paths that meet the middlebox requirements.

We implemented the compositional walk-based formulation
described in Sec. III using the Microsoft Z3 SMT solver [1].
Our evaluation is based on the Z3 Python API (version 4.4.0),
and using different K-ary fat-tree topologies [11]. Table I
presents the runtime when finding the shortest path from the
left-most node to the right-most node in a fat-tree, with the
constraints that the path must traverse given waypoints.

The performance is acceptable for moderate-sized topolo-
gies. While the runtime is higher for larger topologies, our
implementation is a proof of concept, and there is a lot of room
for performance improvement. In particular, to minimize the
length of walk we use binary search to determine the smallest
M (bound on walk length) for which Equations 7–13 are
satisfiable. The running time could benefit with tighter bounds
on M , and by exploiting Z3Opt [12], a newly added feature
that equips Z3 with optimization primitives (e.g., minimize
or maximize). We also discuss other avenues for performance
enhancements in Sec. VIII.

VII. RELATED WORK

Merlin [3] presents a language for controlling forwarding
packets, including flow bandwidth requirements and middle-
box traversal constraints. Policies specified in this language
are then mapped by a compiler into specific optimization
problems. DEFO [13] translates high-level goals for traffic
engineering and service chaining into forwarding decisions
in the context of segment routing. These works are not
compositional in that the compiler designer must associate
every combination of constraints in the original problem with
a specific pre-determined optimization formulation. SOL [4]
focuses on providing an interface to help users easily capture
optimization formulations when developing SDN applications.
In contrast to all these works, our focus is on mapping appli-
cation requirements to solver constraints in a compositional
manner.

There has been much interest in better programming models
for networks, many based on logic programming (e.g., [14],
[15], [16], [17], [18], [19]. The emphasis of our work is not
on proposing a new DSL, but rather to show the viability
of composing middlebox and routing policies by means of a
solver.

Several works [20], [5], [21], [22] have considered different
resolution of conflicts between multiple application modules
competing for limited shared resources, where concurrent
actions taken independently by these modules can violate a
global safety invariant though individual application require-
ments are met. We focus on an orthogonal problem where the
goal is to express application requirements as constraints that
may be composed together, with infeasible solutions indicating
the constraints cannot be simultaneously satisfied.

VIII. CONCLUSION AND OPEN ISSUES

In this paper, we have explored how middlebox require-
ments may be incorporated in traffic engineering and SDN
applications in a compositional manner. We have argued that
doing so requires composition prior to the generation of
packet-forwarding policies, in contrast to current approaches
that perform composition after packet-forwarding policies are
generated.

We have presented an initial approach for such composition.
While we believe our framework is important and viable, our
work is preliminary, and we expect several decisions to evolve.
Some specific areas that we hope to investigate in the future
include:
Generality. While we have shown the viability of our com-
positional approach in various common traffic engineering
scenarios, considering a wider range of applications and re-
quirements can guide the design of more network primitives.
For instance, a tree-based primitive may be added for multicast
applications.
Performance. While we believe a compositional approach is
viable for offline traffic engineering tasks, more experience is
needed with the performance of the approach. Although we
have used SMT solvers for concreteness, our framework is
more general, and it may be interesting to explore performance



trade-offs with alternative solving engines such as ILP solvers.
Use of ILP solvers may also help support a richer set of
optimization objectives. If the runtimes of off-the-shelf solvers
are found to be unsatisfactory for complex scenarios, we
will consider optimized decision procedures to aid the solver,
especially for frequently occurring constraint combinations.
Source Language. Our source language is based on first
order logic equipped with networking primitives, lists, and
inductive relations and definitions. Our current choice for the
input language has a Prolog-like syntax, but in the future we
may consider a source level syntax more amenable to network
operators such as a user defined syntax for relational operators.
Further, we currently have included a limited number of do-
main specific primitives. As more applications are considered
in our language we believe this set need to be expanded.

ACKNOWLEDGMENT

We thank the reviewers for their insightful feedback. This
work was supported by Google Research Award.

REFERENCES

[1] “Microsoft Z3,” https://github.com/Z3Prover/z3.
[2] B. Anwer, T. Benson, N. Feamster, and D. Levin, “Programming slick

network functions,” in Proc. of SOSR, 2015.
[3] R. Soulé, S. Basu, P. J. Marandi, F. Pedone, R. Kleinberg, E. G. Sirer,

and N. Foster, “Merlin: A language for provisioning network resources,”
in Proc. of CoNEXT, 2014.

[4] V. Heorhiadi, M. K. Reiter, and V. Sekar, “Simplifying software-defined
network optimization using sol,” in Proc. of NSDI, 2016.

[5] J. C. Mogul, A. AuYoung, S. Banerjee, L. Popa, J. Lee, J. Mudigonda,
P. Sharma, and Y. Turner, “Corybantic: Towards the modular composi-
tion of sdn control programs,” in Proc. of HotNets, 2013.

[6] X. Jin, J. Gossels, J. Rexford, and D. Walker, “Covisor: A compositional
hypervisor for software-defined networks,” in Proc. of NSDI, 2015.

[7] C. Monsanto, J. Reich, N. Foster, J. Rexford, and D. Walker, “Compos-
ing software defined networks,” in Proc. of NSDI, 2013.

[8] N. Foster, R. Harrison, M. J. Freedman, C. Monsanto, J. Rexford,
A. Story, and D. Walker, “Frenetic: A network programming language,”
in Proc. of ICFP, 2011.

[9] C.-Y. Hong, S. Kandula, R. Mahajan, M. Zhang, V. Gill, M. Nanduri,
and R. Wattenhofer, “Achieving high utilization with software-driven
wan,” in Proc. of ACM SIGCOMM, 2013.

[10] Y. Wang, H. Wang, A. Mahimkar, R. Alimi, Y. Zhang, L. Qiu, and Y. R.
Yang, “R3: Resilient routing reconfiguration,” in Proc. of SIGCOMM,
2010.

[11] M. Al-Fares, A. Loukissas, and A. Vahdat, “A scalable, commodity data
center network architecture,” in Proc. of ACM SIGCOMM, 2008.

[12] “Microsoft Z3Opt,” http://rise4fun.com/z3opt/tutorial/.
[13] R. Hartert, S. Vissicchio, P. Schaus, O. Bonaventure, C. Filsfils,

T. Telkamp, and P. Francois, “A declarative and expressive approach
to control forwarding paths in carrier-grade networks,” in Proc. of ACM
SIGCOMM, 2015.

[14] S. Narain, “Network configuration management via model finding.” in
Proc. of LISA, 2005.

[15] S. Shin, P. A. Porras, V. Yegneswaran, M. W. Fong, G. Gu, and
M. Tyson, “FRESCO: Modular composable security services for
software-defined networks,” in Proc. of NDSS, 2013.

[16] M. Reitblatt, M. Canini, A. Guha, and N. Foster, “Fattire: Declarative
fault tolerance for software-defined networks,” in Proc. of HotSDN,
2013.

[17] T. L. Hinrichs, N. S. Gude, M. Casado, J. C. Mitchell, and S. Shenker,
“Practical declarative network management,” in Proc. of WREN, 2009.

[18] T. Nelson, A. D. Ferguson, M. J. Scheer, and S. Krishnamurthi, “Tierless
programming and reasoning for software-defined networks,” in Proc. of
NSDI, 2014.

[19] N. P. Katta, J. Rexford, and D. Walker, “Logic programming for
software-defined networks,” in Workshop on Cross-Model Design and
Validation, 2012.

[20] P. Sun, R. Mahajan, J. Rexford, L. Yuan, M. Zhang, and A. Arefin, “A
network-state management service,” in Proc. of ACM SIGCOMM, 2014.

[21] A. AuYoung, Y. Ma, S. Banerjee, J. Lee, P. Sharma, Y. Turner, C. Liang,
and J. C. Mogul, “Democratic resolution of resource conflicts between
SDN control programs,” in Proc. of CoNEXT, 2014.

[22] A. D. Ferguson, A. Guha, C. Liang, R. Fonseca, and S. Krishnamurthi,
“Participatory networking: An API for application control of sdns,” in
Proc. of ACM SIGCOMM, 2013.


