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Abstract. We study two operational semantics for relaxed memory
models. Our first formalization is based on the notion of write-buffers
which is pervasive in the memory models literature. We instantiate the
(Total Store Ordering) TSO and (Partial Store Ordering) PSO memory
models in this framework. Memory models that support more aggres-
sive relaxations (eg. read-to-read reordering) are not easily described
with write-buffers. Our second framework is based on a general notion of
speculative computation. In particular we allow the prediction of func-
tion arguments, and execution ahead of time (eg. by branch prediction).
While technically more involved than write-buffers, this model is more
expressive and can encode all the Sparc family of memory models: TSO,
PSO and (Relaxed Memory Ordering) RMO. We validate the adequacy
of our instantiations of TSO and PSO by formally comparing their write-
buffer and speculative formalizations. The use of operational semantics
techniques is paramount for the tractability of these proofs.

1 Introduction

Current trends in multi-core architectures have raised interest in the formaliza-
tion of relaxed memory models. While most works on the area concentrate on
axiomatic definitions of such models [1,18,13] in this work we concentrate on the
operational formalization of such models and the techniques that they enable.

Some recent works – including ours – have addressed the operational seman-
tics of relaxed memory models [7,8,10,19,4], to mention but a few. In [7] we
consider the operational semantics of write-buffering (see [1]). In these models
writes to the memory are delayed in buffers, and are later updated into the mem-
ory. When a write is buffered, the issuing process is able to continue executing
provided that its execution does not conflict with the suspended writes. Buffer-
ing a thread write has, from another thread perspective, the effect of delaying
its execution w.r.t. subsequent actions of that thread. Write buffering is only
one of the many memory order relaxations of common machine architectures
and programming languages [1]. In [8] we consider the semantics of speculative
computation, where actions in a thread can be performed in advance – or in par-
allel – without waiting for prior actions to be completed. Speculations are more
general than write buffering, since more behaviors are possible. This additional
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[
p := 1 ;
r0 := (!q)

]
‖
[
q := 1 ;
r1 := (!p)

]
(a) TSO & PSO: r0 = r1 = 0

[
p := 1 ;
q := 1

]
‖
[
r0 := (!q) ;
r1 := (!p)

]
(b) PSO: r0 = 1 & r1 = 0

Fig. 1: TSO and PSO examples

expressivity comes at the cost of a more elaborate formalism. Here we provide
a uniform presentation and a formal comparison of instances of the frameworks
justifying that claim. To do so, we present instances of both frameworks describ-
ing the TSO (Total Store Ordering) and PSO (Partial Store Ordering) memory
models of Sparc [20]. However, the RMO (Relaxed Memory Ordering) model
cannot be encoded with write-buffers.

Let us focus on TSO and PSO. Both models can reorder a read instruction
with respect to a previous write. Figure 1a illustrates this behavior, where we
assume that p and q are pointers in the memory initialized to 0, r0 and r1
refer to local “registers” (private to a thread), and we use the ML syntax (!p)
for dereferencing p. If we execute these threads according to their interleaving
semantics [11] the final result r0 = r1 = 0 is not possible. However, if any of the
reads is allowed to execute before its previous write (since they are on different
references), the result is possible. PSO additionally allows two subsequent writes
to be reordered. The result in Figure 1b can happen if the write of q takes place
before the one of p. Another relaxation of these models is the capability of a
thread to read its own writes early, according to [1]. Thus a thread can see its
own writes before any other thread in the system.

In this work we formalize TSO and PSO with write buffers and speculations.
For completeness we present a formalization of RMO with speculations. We then
prove the adequacy of our formalizations of TSO and PSO with write-buffers and
speculation. To that end we develop a third calculus, including both, write buffers
and speculations, and prove their equivalence. This proof is based on the same
basic concepts of true concurrency that we use to define the frameworks [7,8],
where we distinguish as particularly important, the equivalence by permutation
of independent steps, first introduced for the λ-calculus in [6].

In summary we make the following contributions: (1) We present in a uni-
form language two frameworks to describe relaxed memory models extending the
ideas of [7,8]. (2) We present a speculative semantics that allows for argument
speculation. While this is not our first attempt at speculative semantics [8], this
addition generalizes the calculus presented in that work. In particular, branch
prediction can be considered as a particular case of argument speculation where
the condition is the argument. (3) As an example of the frameworks we instanti-
ate the memory models of Sparc [20], which inspired some of the changes to [8].
(4) Using standard true concurrency techniques we prove the adequacy of the
instantiations with the two frameworks of PSO and TSO. (5) This equivalence
proof enables the reuse of the proof of the fundamental property of memory
models, which we proved in [8] for buffered models, in the context of the specu-
lative calculus. While the simulation argument of [8] is not surprising, a similar
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argument in the calculus of speculations would require nonstandard techniques
which is leveraged using our adequacy proof.

2 Two Frameworks of Relaxed Memory

To avoid clutter and focus on the memory model related aspects of programming
languages we consider the syntax of a simple imperative call-by-value λ-calculus,
extended with constructs for atomic operations and barriers to impose ordering
among actions as typically found in the instruction set of machine architectures.
We remark that the choice of a λ-like language constraints in no way the memory
model arguments that follow.

v ∈ Val ::= x | λxe | tt | ff | () values

e ∈ Expr ::= v | (ve) | (ref v) | (! v) | (v0 := v1) expressions
| (cas v) | 〈wr|rd〉 | 〈wr|wr〉

The memory model relevant instructions are writes to the memory, reads from
the memory, atomic actions that use the memory and ordering instructions, all
of them present in our language. Moreover we consider the language in quasi-
Administrative Normal Form (ANF) [9]1.

Let us briefly discuss the intuitive semantics of the language. Our values are:
λ-abstractions, booleans and the value () to represent termination. We adopt the
syntax e0 ; e1 to denote the expression (λxe1e0) where x is not free in e1. The
expression (ref v) allocates a new memory location with the value v returning the
reference where the value was allocated. The expression (!p) reads the memory
retrieving the value at the location p. The expression (p := v) updates the
memory at location p with v. We also have a simple compare-and-swap construct
(cas p) that atomically reads and modifies the reference p. In fact, this is a
very primitive version of a standard read-modify-write construct. It reads the
reference p and if the result of the read is ff it updates the location with value
tt atomically; if the result of the read is tt it leaves the location unmodified.
The returned value signals to the success or failure of the test. One could think
of (cas p) as executing the following code atomically: (if (!p) then ff else (p :=
tt) ; tt). To finish with the language we have the barrier constructs 〈wr|rd〉 and
〈wr|wr〉 which are used to impose ordering on the evaluation of instructions of
threads. These barrier instructions will not be of interest until the introduction
of the relaxed semantics. We anticipate that the barrier 〈wr|rd〉 prevents write
actions previous to the barrier (in the program syntax) from being delayed past
read actions following the barrier. And similarly, the 〈wr|wr〉 barrier imposes
constraints on two write instructions.

We present the technical tools that we will use throughout the paper along-
side the standard semantics of this programming language. The operational se-
mantics is given in two steps. First we provide rules that allow individual ex-
pressions to execute, where the values obtained from dereferencing a pointer are

1 A more complete language is considered in [15].
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E[(λxev)]
βv−−→ E[(λv?{x/v}e v)]

E[(λv?ev)]
β−→ E[e]

E[(ref v)]
νp,v−−−→ E[p]

E[(p := v)]
wrp,v−−−→ E[()]

E[(! p)]
rdp,v−−−→ E[v]

E[(cas p)]
casp,v−−−→ E[v]

E[(! p)]
rdop,v−−−→ E[v]

E[〈wr|rd〉] wr−→ E[()]

E[〈wr|wr〉] ww−→ E[()]

Fig. 2: Semantics of Single Expressions

predicted (i.e. unconstrained). In a second step, we compose all the expressions
(threads) into a single configuration that synchronizes them and interacts with
the memory.

As it is common practice, we decompose expressions into a redex (reducible
expression) and an evaluation context, that is an expression where a subexpres-
sion has been replaced with a hole denoted here by []. To describe the dynamics
of our language we need to include pointers p, q ∈ Ref which are runtime values,
and the runtime expression (λv?e0e1) which we use to decompose the β-reduction

rule of the λ-calculus in two steps: (λxe0v)
βv−→ (λv?{x/v}e0v)

β−→ {x/v}e0, where
we include labels that will shortly be explained. The extended language is as fol-
lows:

e ::= . . . | (λv?e0 e1) expressions

v ::= . . . | p | (λv?e0) values

r ::= (λxev) | (λv?ev) | (ref v) | (! p) | (p := v) redexes
| (cas p) | 〈wr|rd〉 | 〈wr|wr〉

E ::= [] | (vE) evaluation contexts

To describe the interaction of several threads and the memory, we label the
transitions with the actions being taken at each step. Actions are sampled from
the syntax:

a ∈ Act ::= βv | β | νp,v | wrp,v | rdp,v | rdop,v | casp,v | b
b ∈ Bar ::= wr | ww

The meaning of these symbols is better understood by looking at the semantics
of single expressions in Figure 2. As we anticipated, βv and β are the actions
that result from a function application. Notice how the standard β-reduction
rule is split into two steps. The actions concerning the memory are: νp,v, which
results from creating a new pointer p with value v, wrp,v for writing on p, and
similarly for rdp,v where the value v is unconstrained. The action casp,v results
from a compare-and-swap and wr and ww result from write-read barriers and a
write-write barriers respectively. The special action rdop,v notifies, in the relaxed
semantics that follows, that the value v has been obtained from a buffer, or
speculated.

The semantics of thread systems is given by means of transitions between
configurations C = (S, T ) containing a store S, which represents the memory,
and is formally a mapping from the set dom(S) ⊆ Ref into values, and a thread
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e
a−→ e′

(S, et‖T )
a−→ (S′, e′t‖T )

(∗)



a = νp,v ⇒ p /∈ dom(S) & S′ = S ∪ {p 7→ v}
a ∈ {rdp,v, rdop,v} ⇒ S(p) = v

a = wrp,v ⇒ S′ = S[p← v]

a ∈ {casp,tt} ⇒ S(p) = ff & S′ = S[p← tt ]

a ∈ {casp,ff } ⇒ S(p) = tt

Fig. 3: Multithreaded Semantics (Interleaving, or Strong)

system T which is a set of elements et where t ∈ T id is a thread identifier and
e ∈ Expr is the actual code of the thread. Of course, a thread identifier occurs
at most once in T . We denote by (et‖T ) the thread system that contains all the
threads in T as well as the thread et.

The semantics of the full thread system is given in Figure 3, where we only
make explicit in the constraint (∗) the cases where store changes (i.e. S′ 6= S),
or where the action depends on S. We will consider this to be the standard
semantics of our language. We will call this semantics the strong semantics, as
opposed to the ones of the following sections, which we shall call relaxed, or weak.

Write Buffering Models. To formalize the semantics of TSO and PSO we add
write buffers to the strong semantics. Buffers are FIFO queues of pending mem-
ory updates and barriers, defined by the syntax:

B ::= ε | B / [p 7→ v] | B / [b]

The empty buffer is denoted by ε, and nonempty buffers contain pending memory
updates [p← v], or pending barriers [b]. We will use the notation B(p) to denote
the (ordered) sequence of values pending in the buffer B for the reference p,
as well as any pending barriers on that buffer. The auxiliary function B ↓ p
represents the buffer B where the first (in FIFO order) update to the reference
p has been popped. We will also use the notation a . B to represent the buffer
whose first element is a and then continues like B.

We augment the thread systems of the previous section with buffers. In par-
ticular, since we are only concerned with the PSO and TSO memory models
of Sparc there is no need to consider thread creation. The buffers are local to
a thread, meaning that pending updates on buffers cannot be shared among
different threads. Thus, configurations have now the form C = (S, (Bt, et)‖T )
where Bt is the buffer associated to the thread t. We will use new actions that
result from updates pertaining buffers.

a ∈ Act ::= . . . | bup,v | b̄

The action bup,v corresponds to an update of the memory by a write that was
pending in a buffer, and the action b̄ corresponds to the removal of a barrier
b ∈ Bar from a buffer. We refer to these actions as the commit of a previous
write or barrier that originated the buffer item. We can now present the semantics
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e
a−→ e′

(S, (B, et)‖T )
a−→
t

(S′, (B′, e′t)‖T )
(∗)

B = b . B′ b ∈ Bar

(S, (B, et)‖T )
b−→
t

(S, (B′, et)‖T )

B = [p 7→ v] . B′ S′ = S[p← v]

(S, (B, et)‖T )
bup,v−−−→
t

(S′, (B′, et)‖T )
TSO

B(p) = wr
n · v · s S′ = S[p← v]

(S, (B, et)‖T )
bup,v−−−→
t

(S′, (B↓p, et)‖T )
PSO

(∗)



a = νp,v ⇒ p /∈dom(S) &

S′ =S∪{p 7→ v}
a = wrp,v ⇒ B′ = B / [p 7→ v]

a = rdp,v ⇒ S(p) = v & pB(p)q = ε

a = rdop,v ⇒ pB(p)q=v

a ∈ Bar ⇒ B′ = B / [a]

a = casp,ff ⇒ S(p) = tt & B=ε

a = casp,tt ⇒ S(p) = ff & B=ε
& S′ = S[p← v]

Fig. 4: PSO & TSO with Write Buffers

of PSO and TSO in Figure 4. For convenience, we use the following notation on
sequences2 of pending writes and barriers: psq = ε if s = wwn; and psq = v if
s = s′ · v · wwn; and wr does not occur in s′, being undefined otherwise.

There are many rules that change from the strong semantics presented previ-
ously. Importantly, write and barrier actions have as their only effect appending
the update or barrier to the end of the buffer. Notice as well that the rules for
actions rdp,v and rdop,v are now different from each other. On the one hand, the ac-
tion rdp,v reads the contents from the memory, requiring that the buffer be empty
for the reference p, and moreover, that there are no pending wr barriers. In fact,
it is in this way that barrier symbols constrain the execution of some actions,
disallowing particular reorderings. On the other hand, the action rdop,v retrieves
its value from the buffer, or reads its own write. The three new rules (i.e. the new
actions) update the contents of the memory by emptying the buffers. These rules
are nondeterministically triggered and model the asynchronous working of the
memory architecture. In the rule for b̄, the barrier symbol is removed from the
buffer only when it reaches its top, that is, when all actions that were buffered
previous to the barrier have been committed. Similarly, for TSO, a buffered write
is updated into the memory upon reaching the top of the buffer. The only mod-
ification necessary to obtain PSO is the rule that updates the memory (that is
the action bup,v), where a buffered write can be committed into the store even if
there are previously buffered writes on different references. These are the final
two rules in Figure 4.

Let us reconsider the example program of Figure 1a. The following is a pos-
sible computation that justifies the result r0 = r1 = 0, where we demark the
buffers with 〈〉, and implicitly name the thread to the left t0 and the one to the

2 Throughout the paper we use the notations a · b for the concatenation of sequences
a and b, and ≤ for the prefix ordering.
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right t1 (we leave the PSO example Figure 1b to the reader):

〈ε〉(p := 1 ; (!q))‖〈ε〉(q := 1 ; (!p))
wrp,1−−−→
t0
〈ε / [p 7→ 1]〉(!q)‖〈ε〉(q := 1 ; (!p))

wrq,1−−−→
t1

〈ε / [p 7→ 1]〉(!q)‖〈ε / [q 7→ 1]〉(!p) rdq,0−−−→
t0
〈ε / [p 7→ 1]〉(0)‖〈ε / [q 7→ 1]〉(!p)

rdp,0−−−→
t1

bup,1−−−→
t0
〈ε〉0 ‖ 〈ε / [q 7→ 1]〉0 buq,1−−−→

t1
〈ε〉0 ‖ 〈ε〉0

Importantly, both these memory models satisfy the fundamental property of
relaxed memory models [2,17]. This property states that programs that are free
of data races in their interleaving semantics only exhibit sequentially consistent
behaviors in their relaxed semantics. We now make these claims precise.

Definition 1 (Data-Race). A configuration C is said to contain a data race
if C =

(
S, (E[(p := v)]t ‖ E′[r]t′ ‖ T ′)

)
and r ∈ {(!p), (p := w) | w ∈ Val}.

The definition of data-race can be easily lifted to programs.

Definition 2 (DRF Program). We say a configuration C is data-race free
(DRF for short) if every configuration C ′ reachable from C by the interleaving

semantics (i.e. C
∗−→ C ′) contains no data-race. A parallel program e0‖ . . . ‖en

is data-race free if the configuration (∅, e0‖ . . . ‖en) is data-race free.

We can now prove the fundamental property for the models with write
buffers.

Theorem 3 (Fundamental Property). The weak memory models TSO and
PSO implement the interleaving semantics for data-race free programs. More
precisely, the configurations where all buffers are empty (c.f. Figure 4) reach-
able from a DRF regular configuration C in the semantics with write buffers
coincide with the configurations reachable from the same configuration C in the
interleaving semantics (c.f. Figure 3).

We eschew the proof since it very closely follows the one in [7] with the
simplification that here we do not consider thread creation. Moreover, since we
do not consider locks (we are concerned with architectural models), the only
means to establish ordering between concurrent conflicting accesses is through
the use of cas instructions. Although the DRF result of TSO and PSO is well
known, we emphasize here that our proof is a mostly standard bisimulation,
which we can do due to the operational semantics. Most other proofs of this
result are non-constructive (e.g. [13]).

As we anticipated, write buffers alone are not sufficient to model the read-
read reorderings exhibited by RMO. This is typically illustrated by the IRIW
(Independent Reads Independent Writes) example that follows, where we assume
that p and q are initially 0:[

r0 := (!p) ;
r1 := (!q)

]
‖
[
r2 := (!q) ;
r3 := (!p)

]
‖ p := 1 ‖ q := 1

RMO: r0 = r2 = 1 & r1 = r3 = 0
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It is clear that no write buffer behavior can produce this result since the writing
threads have just one write each, and the reading threads do not use their write
buffers in any way. It is therefore necessary to consider another kind of relaxation
to capture RMO behaviors. If we allow any of the reading threads to speculate
their second read before the first one, the behavior becomes possible (without
recourse to any buffering argument). To see this, imagine that the second reads
of the reading threads are executed first, then the writes of the writing threads,
and finally the first reads of the reading threads. This kind of behavior is typical
of speculative execution models which motivates our next semantics.

Speculative Models. We now consider the specification of relaxed memory models
by means of speculations. We previously addressed the speculative semantics of
programming languages in [8,15] where we generally discussed about the mod-
eling of relaxed memory models. Let us briefly introduce a modified framework
from [8] and show how TSO, PSO and RMO3 can be modeled with it.

The two ingredients introduced for the speculative framework are speculation
contexts and the prediction of arguments in applications. Speculation contexts
generalize the evaluation contexts previously defined, by allowing the reduction
of expressions that are otherwise not enabled in the strong semantics of Section 2,
and have the following syntax:

Σ ::= [] | (vΣ) | (λxΣe) | (λv?Σe) speculation contexts

Notice that in an expression like (λx(!p)e) one can reduce the redex (!p), by
choosing the speculative context (λx[]e). In particular, this means that one can
execute e1 before e0 in (e0 ; e1). The second ingredient, the prediction of argu-
ments, not present in [8], requires to extend the syntax for redexes with the new
redex (λxe0e1) ∈ r, where the expression e1 is not required to be a value. The
speculative semantics for this redex is then:

Σ[(λxe0e1)]
βv−→ Σ[(λv? {x/v}e0 e1)] (1)

The reason why we need this type of speculation can be seen with the expression
(λy p := y (q := 1 ; 0)). If we consider this example under the semantics of PSO
with write buffers (cf. the previous section), it is clear that the write of p can
be updated into the memory before the one of q, since they are on different
references. However, if we are not able to predict that the expression (q := 1 ; 0)
invariably returns 0, the write of p cannot proceed until the one of q has been
performed with speculations. To solve this issue we add the possibility to predict
the arguments (the reduction labeled βv), which are later validated in the actual
application (the reduction labeled β). Then, in the example above we can have:

(λy p := y (q := 1 ; 0))
β0−→ (λ0? p := 0 (q := 1 ; 0))
wrp,0−−−→ (λ0?()(q := 1 ; 0))

∗−→ (λ0?()0)
β−→ ()

3 Since most proofs in this paper are not concerned with RMO we will just present its
formalization for completeness, but we will otherwise ignore it.
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e
a−→
o
e′

(S, et‖T )
a−−→
t,o

(S′, e′t‖T )
(∗)

{
a ∈ {βv, rdop,v} ⇒ FRef(v) ⊆ dom(S)

· · ·

Fig. 5: Speculative semantics

modeling the reordering of write buffers. Notice that if an argument is mispre-
dicted, the speculation gets stuck, and therefore the computation is disregarded.

In fact, not all speculations will be considered legitimate. To define which
ones we will regard as valid, we need to identify in the transitions where in the
expression the reduction is taking place. To that end, we shall use occurrences,
defined as sequences of symbols sampled from the set SOcc = Occ ∪ {(λ [] )}
where Occ = {( [])}. An occurrence o ∈ Occ∗ is called normal in contrast with
occurrences in the set SOcc∗/Occ∗ which we shall name speculative. Normal
computations – that is computations that do not speculate – involve only normal
occurrences. We can recover the occurrence @Σ of the hole in a speculation
context Σ by means of the following inductive definition, where z in the last
case can be a variable in Var or a tagged value v?:

@[] = ε @(vΣ) = ( []) · @Σ @(λzΣe) = (λ [] ) · @Σ

We will denote by e@o the subexpression of e whose occurrence is o in case that
is defined. The inductive definition is obvious.

The semantics of expressions is similar to the one given in Figure 2 with the
evaluation contexts E replaced by a speculation contexts Σ and the occurrence
label (@Σ) in the transitions. For example, the rule for β-reduction becomes:

Σ[(λv?ev)]
β−−→

@Σ
Σ[e]. Only one rule is added, the one we presented in (1) for the

redex (λxe0e1) where e1 is potentially not a proper value. In the example below
one can see that these rules effectively achieve computing in advance w.r.t. the
strong semantics of Section 2.

(!q) ; p := tt
wrp,tt−−−→ (!q) ;()

rdq,tt−−−→ tt ;()
∗−→ ()

We can see that the write of p is performed before the read of q although the
program text has them in the reverse order.

The semantics of thread systems is almost identical to the strong semantics
presented in Figure 3. In fact the configurations are exactly the same, and the
only rule that changes is the one for rdop,v, where the value is speculated at this
stage of the semantics. The intention is that these values will be served by own
writes of the same thread (cf. write buffers). The necessary conditions on this
action will be imposed in the definition of valid computation. The semantics of
thread systems, given in Figure 5, is almost identical to that of Figure 3 with the
exception of the rules explicitly mentioned, where FRef(e) is the set of references
occurring in e. The transitions are labeled with the thread identifier, which will
be used in the sequel.

9



We revisit the example program of Figure 1a, with a possible speculative
computation justifying r0 = r1 = 0 (omitting the occurrences):

(p := 1 ; (!q))‖(q := 1 ; (!p))
rdq,0−−−→
t0

(p := 1 ; 0)‖(q := 1 ; (!p))
rdp,0−−−→
t1

(p := 1 ; 0)‖(q := 1 ; 0)
wrq,1−−−→
t1

wrp,1−−−→
t0

∗−→ 0‖0

Validity Condition. The speculative computations presented so far are too per-
missive for our purposes, since the rules do not take into account possible data
dependencies present in the program. The following speculation is an example:

r := (!p) ; p := tt
wrp,tt−−−→ r := (!p) ;()

rdp,tt−−−→ r := tt ;()
∗−→ ()

where we can see that the reordering of the write on p and the read on p causes the
read to see a value that has been put in the memory by a write that should follow
the read in normal (sequential) computations. It is clear that this speculation
violates the programmers intention, and therefore, this speculation should not
be permitted. Intuitively, speculations will be considered valid if they do not
violate the sequential semantics of expressions, and all read own actions have
a preceding write with the same value. To express that a speculation does not
violate the sequential semantics of the original expression we will strongly rely on
the notion of speculations that are similar up to the reordering of independent
steps, a concept borrowed from the early work by Berry and Lévy in the λ-
calculus [6].

To define the permutation of steps formally, which is central to our result,
we need to introduce some technical machinery, which might be familiar from
a “true concurrency” perspective. Let us define the residual of an occurrence o′

after a step with action a at occurrence o in the expression e, which indicates
where a subexpression at o′ in e remains (if any) after a step a at o:

o′/e(a, o) ,


o′ if o � o′, or o′ = o · ( []) · o′′ & a = βv

or o′ = o · (λ [] ) · o′′ & a = βv & e@o′ is a redex

o · o′′ if o′ = o · (λ [] ) · o′′ & a = β

undef otherwise

In the following we write o′/e(a, o) ≡ o′′ to mean that the residual of o′ after
(a, o) is defined, and it is o′′. Notice that if o′/e(a, o) ≡ o′′ with o′ ∈ Occ∗ then
o′′ = o′ and o 6≤ o′.

We now prove that if two consecutive actions are not related by redex creation
(i.e. they have residuals after each other), then reordering their steps in the
speculation leads to the same result. This property is key to the definition of
valid speculations4:

Lemma 4 (Reordering Lemma). If e0
a0−→
o0

e
a1−→
o1

e1 with o1 ≡ o′1/e0(a0, o0)

and o′0 ≡ o0/e0(a1, o
′
1), then there exists e′ (unique up to α-conversion) such that

e0
a1−→
o′1

e′
a0−→
o′0

e1.

4 The proof of this and subsequent results are to be found in the appendices.
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To take into account the dependencies in the program we need a notion of
conflict. We introduce the notations MRdp , {rdp,v, casp,v|v ∈ Val} for the

read actions on reference p that effectively use the memory, and MWrp ,
{wrp,v, casp,tt |v ∈ Val} for write actions that modify the memory and define
then the conflict relation.

Definition 5 (Conflicting Actions). We denote by # the following relation
on actions:

# ,
⋃

p∈Ref

(MWrp ×MWrp) ∪ (MWrp ×MRdp) ∪ (MRdp ×MWrp)

Notice that we explicitly have that speculative read actions are not conflicting
with write actions on the same thread. Formally: (wrp,v, rd

o
p,w) /∈ #.

We now define a reordering relation establishing when two speculations cor-
respond to each other up to the reordering of intermediate steps. This definition
is parametric on a dependency relation D. We only require that # ⊆ D.

Definition 6 (Reordering Relation). Given a dependency relation D we de-
fine a reordering relation between speculations, called D-reordering, to be the least
preorder ∝D such that if e0

a0−→
o0

e
a1−→
o1

e1 with o′0 ≡ o0/e(a1, o′1) and o′1/e(a0, o0) ≡

o1, and ¬(a0Da1), then σ0 · e0
a1−→
o′1

e′
a0−→
o′0

e1 · σ1 ∝D σ0 · e0
a0−→
o0

e
a1−→
o1

e1 · σ1
where e′ is determined by Reordering Lemma.

A speculation will be considered valid if it is a reordering of a normal spec-
ulation. In other words, if it can be reordered to a speculation where all actions
take place in program order. In addition, we will check that the actions rdop,v
return the last value written to p in the normal speculation, conforming the
semantics of write buffering. To do so, we need to identify steps that represent
the same transition in reordering related speculations. We use the notions of a
step and step family, originally introduced as “redex-with-history” in [6,12].

Definition 7 (Step and Step Family). A step is a pair [σ, (a, o)] of a spec-

ulation σ : e
∗−→ e′ and an action a at occurrence o such that e′

a−→
o
e′′ for some

expression e′′. The binary relation ∼D on steps, meaning that two steps are in
the same family, is the equivalence relation generated by the rule

∃σ′′. σ′ ∝D σ · σ′′ or σ · σ′′ ∝D σ′ & o′ ≡ o/σ′′

[σ, (a, o)] ∼D [σ′, (a, o′)]

We now define the validity of speculations, where we see that rdop,v actions
take their value from the last write on p in the corresponding normal speculation.

Definition 8 (Speculation Validity). A speculation σ is D-valid if there is a

normal speculation σ′ such that σ ∝D σ′, and if σ′ = σ′0 ·
rdop,v−−−→
o
· σ′1 then there

exists σ′′0 , σ′′′0 and o′ such that σ′0 = σ′′0 ·
wrp,v−−−→
o′
· σ′′′0 where σ′′′0 contains no wrp,

11



actions. We call the step [σ′′0 , (wrp,v, o
′)] the matching write of [σ′0, (rd

o
p,v, o)], and

we denote it match
(
[σ′0, (rd

o
p,v, o)]

)
.

We now specialize the speculative semantics to TSO and PSO, by partic-
ularizing the dependency relations that characterize them. We introduce the
notations Rdp , MRdp ∪ {rdop,v | v ∈ Val} and Wrp , MWrp ∪ {casp,ff } of
read and write actions on location p (not necessarily accessing the memory as
opposed to MRdp and MWrp), and Rd ,

⋃
p∈Ref Rdp and Wr ,

⋃
p∈Ref Wrp.

As a step towards the dependencies of TSO, PSO and RMO we define the depen-
dencies induced by barrier actions denoted by nTSO, nPSO and nRMO where
we assume the barrier actions rr and rw generated by the barriers 〈rd|rd〉 and
〈rd|wr〉 respectively which prevent the reordering of reads with subsequent reads
and writes respectively, wich are allowed by RMO.

nTSO , (Wr×{wr})∪({wr}×Rd)

nPSO , nTSO∪(Wr×{ww})∪({ww}×Wr)

nRMO , nPSO∪(Rd×{rr, rw})∪({rw}×Wr)∪({rr}×Rd)

Definition 9 (TSO, PSO and RMO). The TSO, PSO and RMO memory
models are characterized by the following dependency relations:

DRMO , # ∪ nRMO

DPSO , # ∪ nPSO ∪ (Rd ×Rd) ∪ (Rd ×Wr)

DTSO , # ∪ nTSO ∪ (Rd ×Rd) ∪ (Rd ×Wr) ∪ (Wr ×Wr)

The semantic definition of RMO is here only given for completeness, we shall
not refer to it in the rest of the paper.

Finally, we need a notion of when a write should, or should not, be considered
committed (cf. write buffers). To do that we need to know when two steps in
a speculation are inherently ordered; that is, they are ordered similarly for all
possible valid reorderings of the speculation.

Definition 10 (Step Ordering). Given a speculation σ = σ0·
a0−→
o0
·σ1·

a1−→
o1
·σ2,

we have [σ0, (a0, o0)]≺σ [σ0·
a0−→
o0
·σ1, (a1, o1)], iff for all σ′ with σ′∝Dσ then σ′ =

σ′0·
a0−→
o′0

·σ′1·
a1−→
o′1

·σ′2 with [σ0, (a0, o0)] ∼ [σ′0, (a0, o
′
0)] and [σ0·

a0−→
o0
·σ1, (a1, o1)] ∼

[σ′0·
a0−→
o′0

·σ′1, (a1, o′1)].

Now we can define when, in a speculative computation, a write has to be
considered committed. We denote by γ|t the projection of thread t over γ.

Definition 11. Given γ = γ0·
wrp,v−−−→
t,o

·γ1, the step [γ0|t, (wrp,v, o)] is commit-

ted in γ if there are γ′1, γ′′1 , t′, o′,w such that γ1 = γ′1·
rdp,w−−−→
t′,o′

·γ′′1 , or γ1 =

γ′1·
wrq,w−−−→
t,o′

·γ′′1 with [γ0|t, (wrp,v, o)]≺γ|t [γ0·
wrp,v−−−→
t,o

·γ′1|t, (wrq,w, o′)] and [γ0·
wrp,v−−−→
t,o

·γ′1, (wrp,q, o′)] is committed in γ.

12



To see why we require this condition for validity, consider the following thread
system in PSO where we depict only threads:

p := tt ;
〈wr|wr〉 ;
q := tt ;
(!p)

 ‖ [(!q)] wrp,tt−−−→
t0

 〈wr|wr〉 ;q := tt ;
(!p)

 ‖ [(!q)] ww−→
t0

[
q := tt ;
(!p)

]
‖
[
(!q)

]
wrq,tt−−−→
t0

[
(!p)

]
‖
[
(!q)

]
rdq,tt−−−→
t1

[
(!p)

]
‖
[

tt
]

It is clear that the final read of p by t0 cannot be a rdop,v (that is a read of an
uncommitted write), since the write of q has already been made globally visible,
and there is a 〈wr|wr〉 between the write of p and the one of q. This is obvious
in the semantic with write-buffers but has to be required for speculations.

We can now give the definition of validity for TSO and PSO speculative
computations.

Definition 12 (Valid Speculative Computation). A speculative computa-
tion γ is D-valid iff for every thread t we have that γ|t is a D-valid specula-

tion, and additionally, if γ = γ′ ·
rdop,v−−−→
t,o′

· γ2 where γ′ = γ0 ·
wrp,v−−−→
t,o

· γ1, and

match([γ′|t, (rdop,v, o′)]) ∼ [γ0|t, (wrp,v, o)] then [γ0|t, (wrp,v, o)] is not committed
in γ′.

Hence, DTSO-valid speculative computations describe TSO, and similarly
DPSO-valid speculative computations describe PSO. Thus, the examples of Fig-
ure 1 are valid.

3 A Formal Comparison

We prove that both instances of PSO are equivalent by showing how a com-
putation with write buffers can be transformed into an equivalent one with
speculations, and vice versa. A similar result for TSO is obtained as a corollary
observing that the semantic rules for PSO are a superset of the rules of TSO.

Since the mechanisms used in these formalizations are very different, we
introduce a third calculus incorporating both, write buffers and speculations.
We consider this calculus merely as a tool for the proof. We then show that
computations of PSO with write buffers can be embedded in this third calculus,
and so can computations of PSO with speculations. Our proof of coincidence
amounts to proving that: starting from a computation of the third calculus
embedding a computation with write buffers (or speculations) one can reorder
actions, with an appropriate instance of the reordering equivalence relation, to
get a computation that is an embedding of a speculative (respectively write
buffers) PSO computation. To simplify the results we disregard casp,v observing
that its treatment can be deduced from similar conditions on read and write
actions.

Let us formalize this third calculus, which we call merge. The semantic rules
for single expressions are exactly the same as for the semantics of speculations;
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that is, the rules of Figure 2 with speculation contexts Σ instead of E. For
example, the rule for read in Figure 2 is translated in the merge calculus to:

Σ[(! p)]
rdp,v−−−→ Σ[v]

To cope with speculation we further add the redex (λxe0e1) and its associated
reduction rule presented in Equation (1).

Configurations, and the rules for thread systems are the same as presented
for the semantics of write buffers in Figure 4 with the exception of the rule rdop,v
which in merge has no constraints. As we did in the semantics of speculations
the transitions will be labeled with the occurrence and the thread performing
the action. Let us refresh the semantics of Figure 4, emphasizing the only change
we make:

e
a−→
o
e′

(S, (B, et)‖T )
a−−→
t,o

(S′, (B′, e′t)‖T )
(∗)

{
a = rdop,v ⇒ S′ = S & B′ = B

. . .

where the conditions not mentioned are similar to the ones of (∗) in Figure 4.
As we have done before, we now define an equivalence by reordering of inde-

pendent steps for merge, which allows us to compare its executions. Importantly
the addition of buffers to the calculus of the previous section makes the defi-
nition of conflict, and hence dependency, change. This is because in merge the
actual memory update is done by the buffer update rule (bup,v) rather than the
write rule (wrp,v). Moreover, memory update only affects reads from the memory
(rdp,v) unlike buffer reads (rdop,v) which are retrieved from the thread local buffer.
The definitions of conflict and dependency for the merge calculus are then:

#MG = {(bup,v, bup,w), (rdp,v, bup,w), (bup,v, rdp,w) | p ∈ Ref , v, w ∈ Val}
DMG , #MG ∪ nPSO ∪ (Rd ×Rd) ∪ (Rd ×Wr)

It is not hard to see that every computation of a program in the semantics
of PSO with write buffers is strictly included the semantics of that program
in merge. This is obvious since the configurations are the same, and the set of
semantic rules of write buffer PSO is strictly included in the set of rules of merge.
Similarly any computation of PSO with speculation can be trivially embedded
into merge by simply forcing a buffer update (by the bup,v rule) after every
write (wrp,v). We shall denote the merge trace resulting from the speculation
trace γ by this forcing semantics by dγe. Conversely, a computation γ of the
merge-calculus can be related with PSO speculations by “erasing” all the buffer
update actions that immediately follow its generating write. We shall denote by
bγc this operation in the sequel. The following remark establishes these trivial
embeddings.

Remark 13. Every computation γ : C
∗−→ C ′ of PSO with write buffers (as

in Figure 4) is also a legal execution of the merge-calculus. For every valid

speculative computation γ : C
∗−→ C ′ (as in Figure 5), dγe : C

∗−→ C ′ is a
computation of the merge-calculus.
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This remark provides us with embeddings and projections from, and to, the
merge-calculus for both write buffers and speculations. The rest of the proof
only deals with the reordering of steps in the merge-calculus. To that end, we
reproduce the result of Lemma 4, this time for the merge-calculus.

Lemma 14 (Merge Reordering). If e0
a0−→
o0

e
a1−→
o′1

e1, then there exists e′ such

that e0
a1−→
o1

e′
a0−→
o′0

e1 such that o′1 ≡ o1/e0(a0, o0) and o′0 ≡ o0/e0(a1, o1).

We can then instantiate the reordering relation (Definition 6) of the previous
section using the merge reordering lemma, and we denote by ∝MG the merge

reordering relation: ∝D
MG

.
Much can be said about the merge-calculus equivalence by reordering rela-

tion. However the merge-calculus is just a tool in our proof, with little practical
interest for the memory models we consider in this paper. We point the inter-
ested reader to Appendix B.3, and more generally the full Appendix B, for a
detailed account of the merge-calculus intermediate results. Suffice it to say in
this section that the equivalence by reordering of merge allows us to transform,
by reorderings independent steps, the embedding in merge of a trace of PSO
with write-buffers (or PSO with speculations) into a an embedding in merge of a
trace of PSO with speculations (or PSO with write-buffers respectively). These
are the main results that we consider next.

From Buffers to Speculations. In the following theorem we show how to trans-
form the a PSO write-buffers computation (embedded in the merge-calculus)
into an equivalent merge-computation where the buffers have no effect. By this
we mean that each write in the resulting computation is immediately followed
by its update into memory. The resulting computation corresponds to the em-
bedding of a PSO speculation in the merge-calculus, and therefore erasing the
buffer updates we obtain a PSO speculative computation.

The intuition behind this proof is that, while writes in the write-buffer cal-
culus are executed in program order – that is, respecting the program text –,
their effects are only visible at the time when the buffer is updated into memory.
Based on this observation we conclude that in the semantics with write buffers,
a write does not affect the behavior of other threads until its buffer update.
Therefore, we can push the write to happen at a later time, by introducing
speculations that execute instructions that follow the write in program order.
In fact, doing so we prove that we can postpone executing the write up to the
point where its buffer update is executed. For a simplified example consider a
trace γ of PSO with write buffers where we stand out an occurrence of a write
and its subsequent corresponding buffer update:

γ = γ0 ·
wrp,v−−−→
t

· γ1 ·
bup,v−−−→
t

· γ2

The following theorem is based on an intermediate result proving that the merge
segment γ1 can be permuted by the merge reordering relation to render an
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equivalent trace:

γ ∝MG γ0 · γ′1 ·
wrp,v−−−→
t

· bup,v−−−→
t

· γ′′1 · γ2

where γ′1 ·
wrp,v−−−→
t

· bup,v−−−→
t

· γ′′1 has speculative behavior (as permitted by

the merge calculus). Notice that all actions in γ1 by threads other than t are
independent of the write, and for actions on t we show that there is at least one
such write that can be speculated upon (see the formalization in Corollary 41
in Appendix B).

The inductive application of the intuition stated above renders a compu-
tation where all writes and barrier actions are immediately followed by their
corresponding commit. The proof is by induction on the number of write and
barrier actions that are not immediately committed.

Theorem 15 (Write Buffers ⇒ Speculations). For any computation γ :

C
∗−→ C ′ of the formalization of PSO with write-buffers there exists a merge

computation γ′ : C
∗−→ C ′ such that for every thread t, γ′|t ∝MG γ|t. Moreover,

bγ′c is a DPSO-valid speculative computation.

From Speculations to Buffers. As the reader might expect, the converse argument
follows the same idea in the opposite direction. As a simplified example, suppose
that we start with a PSO speculative computation of the form

γ = γ0 ·
wrp,v−−−→
t

· γ1

Our embedding of γ into the merge would render:

dγe = dγ0e ·
wrp,v−−−→
t

· bup,v−−−→
t

· dγ1e

We show in Appendix B (Lemma 47) that dγ0e can be decomposed to obtain:

dγe ∝MG dγ′0e ·
wrp,v−−−→
t

· dγ′′0 e ·
bup,v−−−→
t

· dγ1e

such that the occurrence of the write wrp,v is no longer speculative – that is,
respects the program order. We leave the details of this construction to Appendix
B.

Using this argument inductively we conclude that given a merge calculus
computation where all thread projections are valid, there is a merge computation
with the same initial and final configurations such that the steps are reordered by
pushing write and barrier actions to their normal occurrence – that is, respecting
the program order –, and is therefore a PSO write buffer computation.

Theorem 16 (Speculations ⇒ Write Buffers). Given γ : C
∗−→ C ′ a DPSO-

valid speculative computation of the formalization of PSO with speculations, there
exists a merge computation γ′ : C

∗−→ C such that for all t ∈ T id, dγe|t∝MG γ′|t.
Moreover, γ′ is a computation of the calculus with buffers.
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Notice that although the proofs we provided are stated for PSO, nothing
in the proof themselves is PSO specific. On the contrary, they are stated using
generic notions of conflict/dependency. Therefore the same result holds for TSO.

Corollary 17. The semantics of TSO with write buffers and speculations are
equivalent.

As a final corollary of the proof of equivalence of the semantics we get the
proof of the fundamental property for the speculative semantics of TSO and
PSO, which we did not prove in Section 2 nor in [8]. This illustrates the power
of these different presentations of the semantics. While the proof of the funda-
mental property for write-buffering semantics was studied in [7], its proof for
the semantics with speculations was missing in [8]. Hence, our equivalence result
establishes the fundamental property for speculations without needing a new
proof strategy.

Corollary 18 (Fundamental Property). The speculative semantics of TSO
and PSO satisfy the fundamental property of relaxed memory models.

The proof is an immediate consequence of Theorems 3, 16 and 15.

4 Related Work

Our semantics of TSO and PSO with write buffers instantiates our framework [7].
In [14] a TSO-like semantics with write buffers is given for x86 architectures.
This semantics is very similar to the semantics of TSO we present here, which
results as a natural consequence of instantiating [7]. The speculative semantics of
TSO, PSO and RMO are based on our framework of [8]. However, although the
principle of speculation is the same, value-speculation was not considered in [8]
which greatly simplifies, and subsumes the technical treatment of that paper. In
that sense, the speculation calculus of this paper supersedes the framework of [8].
The equivalence between the formalizations of TSO and PSO in the different
frameworks are new to this paper and were developed as part of the thesis [15] but
are otherwise unpublished. Importantly [7,8] focus on high-level programming
languages whereas in this work we focus on architectures through the use of
those frameworks.

There are many formalizations of TSO, PSO and RMO in the literature, each
with a specific goal in mind. Of the axiomatic definitions of these architectures we
distinguish [3,18]. There are as well other operational formalizations, eg. [4,5].
Most of these leave the programming language abstract. In particular [4,5]
focus on decidability rather than on the programming language semantics, and
therefore the language is immaterial. Our work is unique in its focus is on a
programming languages semantics and programming languages techniques for
relaxed memory models.
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5 Conclusion

We provided two different formalizations of the TSO and PSO memory models
using different operational frameworks. We prove that these instantiations are
equivalent using standard programming languages techniques based on the per-
mutation equivalence of [6]. The more sophisticated model of speculations proves
to be more general than the one of write buffers. Our proofs show the potential
of operational formalizations of relaxed memory models to support technical de-
velopments. We speculate that operational models should also be well suited to
support verification techniques.
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Appendix A Speculation

For the following proof we will use the following remark whose proof is trivial
by induction.

Remark 19. If e
a−→
o
e′ then {x/v}e a−→

o
{x/v}e′ for any v.

We can prove the reordering lemma.

Lemma 4 (Reordering Lemma). If e0
a0−→
o0

e
a1−→
o1

e1 with o1 ≡ o′1/e0(a0, o0) and

o′0 ≡ o0/e0(a1, o
′
1), then there exists e′ (unique up to α-conversion) such that

e0
a1−→
o′1

e′
a0−→
o′0

e1

Proof. By cases on the respective positions of o0 and o′1. Notice first that if o0 �
o′1 and o′1 � o0 (that is the occurrences are disjoint), then o1 = o′1 ≡ o1/e0(a0, o0)
and o′0 = o0 ≡ o0/e0(a1, o

′
1), and it is easy to see that the two speculations can

be done in any order.
Let us assume that o0 < o′1. Since o1 is well defined, according to the defini-

tion of o′1/e(a0, o0) we have three possibilities:

– o′1 = o0 ·(λ [] )·o′′1 and a0 = βv and e@o′1 is a redex. In this case we have e0 =
Σ0[(λxe′0ē)] and e = Σ0[(λv?({x 7→ v}e′0)ē)]. From the hypotheses we have

e′0
a1−→
o′′1

e′′0 , and using Remark 19 we have that {x 7→ v}e′0
a1−→
o′′1

{x 7→ v}e′′0 .

We conclude then with e′ = Σ0[(λx({x 7→ v}e′′0)ē)] where verifying that the
steps can be commuted is trivial.

– o′1 = o0 · (λ [] ) · o′′1 and a0 = β. Then we have that e0 = Σ0[(λv?e′0v)] and

e = Σ0[e′0]. But from the hypotheses we also have e′0
a1−→
o′′1

e′′0 . Then we have

e′ = Σ0[(λv?e′′0v)] and the conclusion is obvious.
– o′1 = o0 · ( []) · o′′1 and a0 = βv. Then we know that e0 = Σ0[(λxe′0ē)] and

from the hypotheses ē
a1−→
o′′1

ē′. The candidate for e′ is then Σ0[(λxe′0ē
′)] and

the verification that the transitions commute is immediate.

The case of o′1 < o0 is symmetric, and o0 = o′1 is impossible since o1 is well
defined.
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Appendix B Correspondence Proof

We will prove that PSO executions in the semantics of write buffers correspond
to executions in the semantics with speculations and vice versa. In particular,
the proof also applies in a trivial way to the formalizations of TSO, and therefore
we will mainly focus on PSO, which is more general.

We base our results on the reordering relation, which is a refinement of the
permutations equivalence [6]. Then, we need to state the asynchrony lemma for
the merge-calculus as we did in 4.

Lemma 14. (Merge Reordering) If e0
a0−→
o0

e
a1−→
o′1

e1 with o′1 ≡ o1/e0(a0, o0) and

o′0 ≡ o0/e0(a1, o1) then there exists e′ such that e0
a1−→
o1

e′
a0−→
o′0

e1.

Proof. The proof is almost identical to that of Lemma 4.

The reordering relation we consider here is the instantiation of the definition

6 with the dependency relation of the merge-calculus (∝nMG

) which we shall
denote by ∝MG.

Appendix B.1 Relevant Moves

To simplify the following developments we will only consider executions in a
certain normal form (Relevant Moves Normal Form) which separates the redex-
creating actions at the beginning of the trace, from the memory affecting actions,
which we shall call relevant moves. This way, we will not need to deal with redex
creation when talking about the memory model. We can do that because we are
considering an ANF calculus, where redex creation can happen at any time, by
means of the βv reduction. One can observe then, that for any computation of the
merge calculus, redex creations by means of βv reductions and reference creations
(νp,v) can be pushed at the beginning. All redexes and all β (i.e. speculation
matching reductions) are pushed to the end of the computation. In between we
find the relevant events.

The reader is invited to skip this section if not interested in the rather tech-
nical but intuitive arguments around this transformation.

We start by defining the condition that states that a speculation has its
memory model related actions isolated. To that end we define the set of actions
that happen in a speculation as:

act(σ) =

{
∅ if σ = ε

act(σ′) ∪ {a} if σ =
a−→
o
· σ′

We can now define the Relevant Moves Normal Form (RMNF) for merge-calculus
speculations.

20



Definition 20 (Relevant Moves Normal Form). We say a speculation σ is
in Relevant Moves Normal Form (RMNF) if there are σ0, σ1 and σ2 such that
σ = σ0 · σ1 · σ2 with act(σ0) ⊆ {βv, νp,v | v ∈ Val , p ∈ Ref }, also act(σ1) ⊆
Rd ∪Wr ∪ Bar and finally σ2 ∈ β∗.

Notice in the above definition that the subspeculation σ2 contains all, and only,
the memory model related actions. This is exactly the purpose of the RMNF.

Now we show that any speculation can be transformed into RMNF.

Lemma 21. Given e0
a0−→
o0

e
a1−→
o′1

e1 such that a0 /∈ {βv, νp,v} and a1 6= β there

exist o1, o′0 and e′ such that e0
a1−→
o1

e′
a0−→
o′0

e1 with o′0 ≡ o0/e0(a1, o1) and o′1 ≡

o1/e0(a0, o0).

Proof. Notice that by the Asynchrony Lemma 14 we only need to prove that
there exist o′0 and o1 satisfying the required conditions. Let us proceed by case
analysis on the relation between o0 and o′1:

– Suppose first that (o0 ≤ o′1). Then o′1 = o0 · o′′ for some o′′ and that exists

Σ0 such that e0 = Σ0[r0]
a0−→
o0

Σ0[ē] with o0 = @Σ0. Moreover ē contains

a redex at o′′. The only cases for a0 such that e0 produces a subexpression
capable of containing a redex to be reduced in the next step are a0 ∈ {βv, β}
by a simple analysis on the semantic rules. Notice that by the hypothesis
the only case that remains to be analyzed is a0 = β in which case we have
r0 = (λv?ēv) for some v ∈ Val and thus o1 = o0 · (λ [] ) · o′′ and o′0 = o0
satisfy the conditions required by the lemma.

– if (o0 > o′1) then o0 = o′1 · o′′. If e0@o′1 = r1 (recall that this notation
from section 2) is a redex then r1 = (λv?ēv) for some ē and v (there is
no other expression containing a redex that can be reduced in the previous
step), in which case a1 = β contradicting the hypothesis. If e0@o′1 is not a
redex then then o0 = o′1 · ( []) with again a1 = β, a contradiction.

– if (o0 � o′1) and (o0 ≯ o′1) we conclude simply with o′0 = o0 and o1 = o′1.

Then it is not hard to see that any speculation can be reordered to obtain
a RMNF equivalent speculation. In particular none of the actions in {β, βv} is
involved in the dependency relation, which justifies the following corollary.

Corollary 22 (Relevant Moves Normal Form). For every speculation γ
there is a speculation γ′ such that γ′ ∝MG γ and γ′ is in RMNF.

Proof. The proof is trivial by reordering the actions from the left by means
of Lemma 21.
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Appendix B.2 Global Relevant Moves Normal Form

From here on we do not consider the cases of “irrelevant” moves in our proofs
since they are trivial. Let us now consider the obvious extension of the depen-
dency relation to speculations, denoted by σ DMG a, and meaning that there
exists a′ ∈ act(σ) such that a′ DMG a. Then we can prove that steps can be
reordered w.r.t. independent subspeculations.

Lemma 23 (Independent moves). Let γ = σ ·σ′ ·σ′′ be a RMNF computation

such that σ′ contains no {βv, β} action and let σ′ = σ0 ·
a−→
o

with ¬(σ0DMGa).

Then there exist σ′0 and o′ such that
a−→
o′
· σ′0 ∝MG σ′ and thus σ · a−→

o′
· σ′0 ·

σ′′ ∝MG γ.

Proof. Induction in the length of σ0. We use Lemma 21 for the inductive case
and conclude by the induction hypothesis.

We will consider buffers up to reordering of updates of different references.
The equivalence of buffers is given in the following definition:

Definition 24 (Buffer equivalence). The buffers equivalence relation is the
least equivalence ≡ between buffers satisfying:

p 6= q

B0 / [p← v] / [q ← w] / B1 ≡ B0 / [q ← w] / [p← v] / B1

An important consequence of adding buffers to the speculative semantics
is that now there are creations of transitions induced by the write-buffers; for
instance, a buffer update (bup,v) action cannot happen if the buffer is empty,
and a normal read rdp,v cannot happen if there is a pending update on reference
p in the buffer, in this last case it is only after the pending writes are committed
into the memory that a normal read can proceed. Simply said, there are actions
that are only enabled for buffers of a certain shape. The buffer-dependency
relation is a relation of two consecutive semantic steps, that clearly depends on
the originating configuration. The following definition captures that intuition:

Definition 25 (Buffer Dependency). Whenever we have C
a−−→
t,o

C ′
a′−−→
t,o′

C ′′

we say that a creates a′ from C, which we denote by (a, t).C(a′, t), if the following
conditions hold: C = (S, (B, t, e) ‖ T ) and

B 6= [b] . B′ and a′ = b or

B(p) /∈ (ww)∗ and a′ = rdp,v or

B(p) 6= (wr)∗ · v · s′ and a′ = bup,v

We can now prove that whenever we have two consecutive events of the same
thread in a speculative computation, such that the actions they produce are not
dependent, and the events are not dependent through the buffers, then these
events can happen in the reverse order in the computation, resulting in the same
final configuration.
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Lemma 26 (Global Reordering: Intrathread). Given a configuration C0

with C0 = (S0, (B0, t, e0)‖T0) such that:

i) C0
a0−−→
t,o0

C
a1−−→
t,o1

C1, and

ii) a1 6= β or a0 /∈ {βv | v ∈ Val}, and
iii) ¬(a0 .C0

a1), and
iv) if both a0, a1 /∈ {bup,v, wr, ww | p ∈ Ref , v ∈ Val} then ¬a0DMGa1,

then there is C ′ such that:

C0
a1−−→
t,o′1

C ′
a0−−→
t,o′0

C1

Proof. Let us consider the possible cases for a0 and a1:

– If a0 = β we need to consider the following cases for a1. If
a1 ∈ {bup,v, wr, ww | p ∈ Ref , v ∈ Val} we have the conclusion directly with
B′ = B1 and e′ = e. In the cases where a1 ∈ Act we have by hypothesis
ii) and Lemma 21 that there is e′ with e0

a1−→
o′1

e′
a0−→
o′0

e1 ∝MG e0
a0−→
o0

e
a1−→
o1

e1

and clearly S′ = S1 and B′ = B1 since a0 does not modify neither the store
nor the buffers.
Almost the same reasoning applies to all the cases for a0 with a1 ∈ {βv | v ∈
Val} which we will not develop in the sequel.

– If both a0, a1 /∈ {β, βv, bup,v, wr, ww | p ∈ Ref , v ∈ Val} we simply apply the
hypothesis iv) and the Local Asynchrony Lemma 14 to obtain the appro-
priate e′. Obviously the store does not change in any of these steps, and
it is easy to verify that the resulting buffer is the same up to the buffer
equivalence '.

– If a0 = rdp,v we have, from the semantics, that B(p) = (ww)∗ and S(p) = v.
Clearly in this case by hypothesis iii) we have a1 /∈ {wr, bup,w | w ∈ Val}
and thus the conclusion is very easy. Notice that the case where a1 = wrp,w
has already been discarded in the previous case.

– If a0 = rdop,v the conclusion is immediate since this action does not depend
nor modify in any way the buffers or the store.

– If a0 = wrp,v the conclusion is simple as well observing that if a1 = bup,w
then B(p) = (wr)∗ · [p 7→ w] · s for some s; otherwise we would violate the
hypothesis ii). Also it is clear that a1 6= ww. We obtain the conclusion easily.

– If a0 ∈ {ww, wr} we have the that, given the condition iii), the requirement
for performing a0 is such that the reordering is guaranteed. For instance if
a0 = ww and a1 = ww then B = ww · s for some s. Similarly for wr.

– If a0 = bup,v then a1 /∈ {ww, bup,w, rdp,w | w ∈ Val}; and if a1 = wr by iii)
we know that B(p) = wr · s for some s, the conclusion is immediate in the
remaining cases.

– If a0 = ww then a1 /∈ {buq,w, wr | r ∈ Ref , w ∈ Val}. Again in this case the
conclusion is direct. The same reasoning applies to a0 = wr where we know
by iii) that a1 6= rdq,w for all q and w, nor a1 = ww .
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And a similar, but simpler result can be derived for the case in which the
events occur in different threads.

Lemma 27 (Global Reordering). Let C0 = (S, (B0, t0, e0)‖(B1, t1, e1)‖T )

and C0
a0−−−→
t0,o0

C
a1−−−→
t1,o1

C1 with t0 6= t1 and ¬(a0 #MG a1). Then there ex-

ists C ′ such that
C0

a1−−−→
t1,o1

C ′
a0−−−→
t0,o0

C1

Proof. We proceed by case analysis on a0 and a1. We consider only the cases of
actions that access the memory, the other being trivial (Notice that wrp,v actions
do not directly access the memory and thus are trivial too):

– a0 = rdp,v. If:
• a1 = rdq,w the conclusion is trivial, even if p = q (with w = v).
• a1 = buq,w. If p = q then a0 # a1 contradicting the hypothesis. In case
p 6= q the conclusion is immediate.
• Notice that a1 = wrq,w does not modify the memory and thus is trivial.

– a0 = bup,v. If:
• a1 = rdq,w. If p = q we have a contradiction to the hypothesis and if p 6= q
the conclusion is immediate.
• a1 = buq,w. Then p = q ⇒ (a0 # a1) and p 6= q the conclusion is trivial.

By means of this lemma we can relate the RMNF of speculations with global
computations.

Proposition 28 (Global RMNF).

Given a global computation γ with γ = (Ci
ai,oi−−−→
ti

Ci+1)0≤i≤n there exists an

execution γ′ starting from C0 and ending in Cn+1 such that γ′|t ∝MG γ|t and
γ′|t is in RMNF for all t ∈ T id.

Proof. The proof is trivial by repeatedly applying Lemma 27 and Lemma 21.

Appendix B.3 Step Ordering Analysis

For the results that follow we will need to identify events that are necessarily
ordered (akin to causality) by the dependencies induced by the memory model.
The reader can observe that relevant moves that cannot be reordered by the
reordering relation are somehow related in a dependency chain. We establish the
following ordering definition between steps.

Definition 29 (Step ordering).

Given a speculation σ, such that σ = σ0 ·
a0−→
o0
· σ1 ·

a1−→
o1
· σ2, we say that the

step [σ0, (a0, o0)] is ordered before the event [σ0 ·
a0−→
o0
·σ1, (a1, o1)], which we

shall denote [σ0, (a0, o0)]≺σ [σ0 ·
a0−→
o0
· σ1, (a1, o1)], iff for all σ′ with σ′ ∝MG σ
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then σ′ = σ′0 ·
a0−→
o′0

· σ′1 ·
a1−→
o′1

· σ′2 with [σ0, (a0, o0)] ∼ [σ′0, (a0, o
′
0)] and

[σ0 ·
a0−→
o0
· σ1, (a1, o1)] ∼ [σ′0 ·

a0−→
o′0

· σ′1, (a1, o′1)].

Notice that here we are using the step equivalence ∼ that was defined in 7.
We can immediately observe that if in a computation we have two dependent

actions, in every reordering of that computation the events are in the same order.
In particular steps with conflicting actions are step ordering related.

Remark 30 (Dependency implies Ordering).

Given a speculation γ, such that γ = (ei
ai−→
oi

ei+1)0≤i≤n where ajDMGah with

1 ≤ j < h ≤ n we have [σj−1, (aj , oj)]≺γ [σh−1, (ah, oh)].

Proof. The proof is trivial by induction on n and the definition of the reordering
relation ∝MG.

Conversely, an event following a write, such that they are ordered, indicates that
the second event is conflicting with the write, unless they are related by redex
creation.

Remark 31 (Ordering implies Dependency). Given a speculation σ such that

σ = σ0 ·
wrp,v−−−→
o
· a1−→
o1
· σ1, if [σ0, (wrp,v, o)] ≺σ [σ0·

wrp,v−−−→
o

, (a1, o1)] with a1 6= β

then wrp,vDMGa1.

Proof. The proof is immediate by contradiction.

We can now prove that if two events in a RMNF speculation are not related,
there must be an equivalent speculation where these events are adjacent and in
the opposite order.

Lemma 32. Given a merge-calculus speculation σ such that
σ = σ0 ·

a0−→
o0
· σ1 ·

a1−→
o1
· σ2 and such that σ is in RMNF and

a0, a1 /∈ {β, βv, νp,v, } and also ¬([σ0, (a0, o0)] ≺σ [σ0 ·
a0−→
o0

· σ1, (a1, o1)]),

then there exist σ′1 and σ′′1 such that:

σ0 · σ′1 ·
a1−→
o′1

· a0−→
o′0

· σ′′1 · σ2 ∝MG σ

Proof. The proof proceeds by induction on the length of σ1:

– In the base case σ1 = ε and thus σ = σ0 ·
a0−→
o0
· a1−→
o1
· σ2 and by Remark 30

we know ¬(a0DMGa1), and thus we can apply Lemma 14 to conclude.

– In the case where σ1 =
a2−→
o2
· σ′′′1 we proceed by cases:

• If ¬(a0DMGa2) we can simply apply the asynchrony lemma (14) to obtain
a2−→
o′2

· a0−→
o′0

· σ′′′1 ∝MG a0−→
o0
· σ1. with σ′′′1 having a shorter length than σ1 we

conclude by the induction hypothesis.
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• If a0DMGa2 then ¬([σ0 ·
a0−→
o0
, (a2, o2)] ≺σ [σ0 ·

a0−→
o0
· σ1, (a1, o1)]),

otherwise we would have a contradiction with the hypothesis about
the ordering of a0 and a1. Thus we can apply the induction hy-

pothesis on the step [σ0 ·
a0−→
o0
, (a2, o2)] to obtain σ̂′1 and σ̂′′1 with

σ0 ·
a0−→
o0
· σ̂′1 ·

a1−→
o′′1

· a2−→
o′2

· σ̂′′1 · σ2 ∝MG σ, where clearly σ̂′1 has a shorter

length than σ1 which allows us to use the induction hypothesis to conclude.

Also, if two events are ordered by the step ordering relation, either their actions
are dependent or there is an intermediate event that is conflicting with the first
one and ordered with the second one.

Lemma 33. Given γ = σ0·
a0−→
o0
·σ1·

a1−→
o1
·σ2 a RMNF execution with a0, a1 /∈

{β, βv} and [σ0, (a0, o0)]≺γ [σ0·
a0−→
o0
·σ1, (a1, o1)] we have one of the following:

i) a0DMGa1, or
ii) there are σ′1, σ′′1 , a2 and o2 such that σ1 = σ′1·

a2−→
o2
·σ′′1 and a0DMGa2 and

[σ0·
a0−→
o0
·σ′1, (a2, o2)]≺γ [σ0·

a0−→
o0
·σ1, (a1, o1)]

Proof. The proof is by induction on the length of σ1. In the base case the con-
clusion is obvious satisfying the condition i). In the induction case σ1 =

a3−→
o3
·σ̂1.

Clearly if ¬(a0DMGa3) we use Lemma 23 to reorder them and conclude by

means of the induction hypothesis. If (a0DMGa3) and [σ0·
a0−→
o0
, (a3, o3)] ≺γ

[σ0 · σ1, (a1, o1)] we have the conclusion directly. Let us suppose then that

¬[σ0·
a0−→
o0
, (a3, o3)] ≺γ [σ0 · σ1, (a1, o1)]. In this case we can apply Lemma 32

to obtain σ̂′1, σ̂′′1 , o′1 and o′3 such that γ ∝MG σ0·
a0−→
o0
·σ̂′1·

a1−→
o′1

· a3−→
o′3

·σ̂′′1 · σ2, with

σ̂′1 a shorter speculation than
a3−→
o3
·σ1, and hence we conclude by the induction

hypothesis.

The following lemmas state that some particular cases of events related by
the step reordering relation, whose actions are not dependent as per the memory
model reordering relation, have intermediate events that transitively relate them.

Lemma 34. Given am RMNF speculation σ such that

σ = σ0 ·
wrp,v−−−→
o0
· σ1 ·

a1−→
o1
· σ2 and [σ0, (wrp,v, o0)]≺σ [σ0 ·

wrp,v−−−→
o0
·σ1, (a1, o1)]

then either:

i) wrp,vDMGa1, or

ii) σ1 = σ′1 ·
b−→
o′
· σ′′1 ·

a2−→
o2
· σ′′′1 with b ∈ Bar (where we consider possible that

a2−→
o2
· σ′′′1 = ε, in which case a1 stands for a2), and b DPSO a2.
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Proof. The proof is by induction on the length of σ1. Clearly if σ1 = ε then
wrp,vDMGa1 by Remark 31. Let us consider the induction case now. Let us
assume that ¬(wrp,vDMGa1), otherwise we have the conclusion. We can then

apply Lemma 33 to conclude that σ1 = σ1 ·
a2−→
o2
· σ′1 with wrp,vDMGa2 and

[σ0 ·
wrp,v−−−→
o0
· σ1, (a2, o2)]≺σ [σ0 ·

wrp,v−−−→
o0
· σ1, (a1, o1)]. Let us now consider the cases

for a2:

– if a2 = wrq,w for some q ∈ Ref and w ∈ Val we can apply the induction hy-

pothesis considering [σ0 ·
wrp,v−−−→
o0
· σ1, (wrq,w, o2)] in the place of [σ0, (wrp,v, o)],

which renders the conclusion.
– if a2 = ww we consider the following cases for a1:
• with a1 = wrq,w for some q and w we obtain the conclusion.
• with a1 ∈ {rdq,w, rdoq,w | q ∈ Ref , w ∈ Val} we can consider using Lemma 33

again to obtain that σ′1 = σ̂1 ·
a3−→
o3
· σ̂′1 and a2DMGa3 which implies that

a3 = wrq,w for some q and w. Moreover

[σ0 ·
wrp,v−−−→
o
· σ1 ·

a2−→
o2
· σ̂1, (a3, o3)]≺σ [σ0 ·

wrp,v−−−→
o
·σ1, (a1, o1)]

This concludes the case.
– if a2 = wr, then we consider the following cases for a1:
• with a1 ∈ {rdq,w, rdoq,w | q ∈ Ref , w ∈ Val} we have the conclusion of the
lemma.
• with a1 = wrq,w for some q and w we can apply Lemma 33 to obtain that

σ′1 = σ̂1 ·
a3−→
o3
·σ̂′1 and wrDMGa3 which implies that a3 ∈ {rdr,v′ , rdor,v′ | r ∈

Ref , v′ ∈ Val} which renders the conclusion. Moreover [σ0 ·
wrp,v−−−→
o
· σ1 ·

a2−→
o2

· σ̂1, (a3, o3)]≺σ [σ0 ·
wrp,v−−−→
o
·σ1, (a1, o1)].

Lemma 35. Given a speculation σ = σ0 ·
wrp,v−−−→
o
· σ1 ·

a−→
o′
· σ2 with a ∈

{rdq,w, rdoq,w | p 6= q}, or a = rdop,w, and where there are no wr actions in σ1 and

[σ0, (wrp,v, o)]≺σ [σ0 ·
wrp,v−−−→
o
· σ1, (a, o′)]. Then there exist σ′1, σ′′1 and σ′′′1 such

that σ1 = σ′1 ·
wrr,w−−−→
o0

· σ′′1 ·
rdr,w−−−→
o1
· σ′′′1 .

Proof. The proof is by induction on the length of σ1, with the base case being vac-

uously true since we assume that [σ0, (wrp,v, o)]≺σ [σ0 ·
wrp,v−−−→
o
· σ1, (a, o′)]. Let

us consider the inductive case. We have ¬(wrp,vnMG a), and thus by Lemma 33

there must be the case that σ1 = δ · a2−→
o2
· δ′ with wrp,vDMGa2 and

[σ0 ·
wrp,v−−−→
o
· δ, (a2, o2)]≺σ [σ0 ·

wrp,v−−−→
o
· σ1, (a, o′)]. Let us consider the cases for

a2 such that wrp,vDMGa2 is satisfied:
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– if a2 = rdp,v′ we have the conclusion with r = p, σ′1 = ε and taking
[σ0, (wrp,v, o)] for the write event.

– if a2 = wrr,v′ we have from Lemma 33 that

[σ0 ·
wrp,v−−−→
o
· δ, (wrr,v′ , o2)]≺σ [σ0 ·

wrp,v−−−→
o
· σ1, (a, o′)], and thus we can

apply the induction hypothesis to conclude.
– if a2 = ww then can apply again Lemma 33 to obtain that δ′ = δ0 ·

a3−→
o3
· δ1

with wwDMGa3 which implies that a3 = wrr,v′ for some r and v′. Once more

[σ0 ·
wrp,v−−−→
o
· δ · a2−→

o2
·δ0, (a3, o3)]≺σ [σ0 ·

wrp,v−−−→
o
· σ1, (a, o′)] so we can apply

the induction hypothesis to conclude.

Corollary 36. Given a speculation σ = σ0 ·
ww−→
o
· σ1 ·

a−→
o′
· σ2 with a ∈

{rdq,v, rdoq,w | p 6= q} or a = rdop,w, and where there are no wr actions in σ1

and [σ0, (ww, o)]≺σ [σ0 ·
ww−→
o
· σ1, (a, o′)]. Then there exist σ′1, σ′′1 and σ′′′1 such

that σ1 = σ′1 ·
wrr,w−−−→
o0

· σ′′1 ·
rdr,v′
−−−→
o1
· σ′′′1 .

Proof. The proof is trivial applying Lemma 33 and Lemma 35.

Lemma 37. Let σ = σ0 ·
wrp,v−−−→
o
· σ1 ·

wrq,w−−−→
o′

· σ2 where σ1 contains no ww

action, with p 6= q and [σ0, (wrp,v, o)] ≺σ [σ0 ·
wrp,v−−−→
o

· σ1, (wrq,w, o′)]. Then

σ1 = σ′1 ·
rdp,v′
−−−→
o′
· σ′′1 .

Proof. The proof is by induction on the length of σ1, with the base case being

vacuous since σ1 = ε contradicts [σ0, (wrp,v, o)] ≺σ [σ0 ·
wrp,v−−−→
o
· σ1, (wrq,w, o′)].

Let us consider the inductive case. We have ¬(wrp,vnMGwrq,w) if p 6= q, and thus

by Lemma 33 there must be the case that σ1 = δ · a2−→
o2
· δ′ with (wrp,vDMGa2)

and [σ0 ·
wrp,v−−−→
o
· δ, (a2, o2)]≺σ [σ0 ·

wrp,v−−−→
o
· σ1, (wrq,w, o′)]. Let us consider the

cases for a2 such that wrp,vDMGa2 is satisfied: if a2 = rdp,v′ we have the con-
clusion, and if a2 = wrp,v′ we apply the induction hypothesis. We have from the
hypothesis that ww does not occur in σ1 so this concludes the lemma.

Appendix B.4 From Write-Buffers to Speculations

It is fairly straightforward to see that for every computation of PSO as given by
the semantics of write-buffers the exact same computation is a computation of
the merge-calculus. This was previously stated as Remark 13, but we restate it
here for clarity.

Remark 13. Any computation γ : C
∗−→ C ′ of PSO as provided by the semantics

of write-buffers (of Figure 4) is a legal execution of the merge-calculus as well.
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We will call these computations of the merge-calculus purely buffered, since the
only relaxation is provided by means of buffers and not speculations.

To prove our correspondence result, we need to construct a speculative com-
putation that simulates the one with buffers. However, in the semantics of the
merge-calculus the requirements for rdop,v actions are almost vacuous, whereas
in the semantics with write-buffers these actions can only happen under some
conditions regarding the buffers. Indeed, the conditions required in the semantics
with write-buffers are important to prove the correspondence of the semantics.
Our proof proceeds by showing how actions can be reordered to reach a compu-
tation of the merge-calculus that corresponds to a speculative computation. In
order to prove that we can reorder the actions we use the fact that they were
generated by a valid computation of the semantics with buffers. For that pur-
pose we define a property on computations of the merge-calculus that indicates
that actions that have not yet been reordered do comply with the semantics of
write-buffersc.

Definition 38 (Buffer Compliance).
We say that the computation γ complies with the semantics of buffers,

denoted by WB(γ), if whenever γ = γ0 ·
wrp,v−−−→
t,o

· γ1 · (C
rdop,v−−−→
t,o′

C ′) · γ2 with

C = (S, (B, t, e)‖T ) and match[(γ0 ·
wrp,v−−−→
t,o

· γ1)|t, (rdop,v, o′)] = [γ0|t, (wrp,v, o)]
then B(p) = s · v · wwn and wr does not occur in s.

In other words rdop,v actions respect the semantics of write-buffers. Importantly
the condition WB(γ) only requires that the value read be the last value in the
buffer for own reads that follow their matching write in γ. It is easy to see that
this condition is satisfied for every computation of the merge-calculus that is a
computation of the semantics of PSO with write-buffers (Figure 4). Again, we
restate this direction of Remark 13.

Remark 13. Given a computation γ : C
∗−→ C ′ of PSO as provided by the

semantics of write-buffers (as in Figure 4) we have WB(γ).

Evidently every purely buffered computation γ satisfies WB(γ).
The following definition states that in a prefix of the computation every buffer

update, or committed barrier is immediately preceded by the write, or a barrier
action that justifies it.

Definition 39 (Late-commit freedom). We say a speculative computation γ

is late-commit free, if γ = σ0 · (C0
a0−−−→
t0,o0

C
a1−→
t1

C1) · σ1 implies that:
a1 = bup,v ⇒ t0 = t1 & a0 = wrp,v &

C0 = (S, (B, t, e)‖T )⇒ B(p) = ε

a1 = ww ⇒ t0 = t1 & a0 = ww & C0 = (S, (ε, t, e)‖T )

a1 = wr ⇒ t0 = t1 & a0 = wr & C0 = (S, (ε, t, e)‖T )

We can prove a lemma that shows that events that depend on a write event
can be permuted after the buffer update that corresponds to the write being
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considered. This will later enable us to “move” the write action next to its
buffer update. Once all writes immediately precede their corresponding update
we have an execution that is similar to a speculative one.

Lemma 40 (Delayed Dependencies). Let γ be a RMNF computation satis-

fying WB(γ). Suppose that γ = γ0 ·
wrp,v−−−→
t,o

· γ1 ·
bup,v−−−→
t,ε

· γ2, where γ0 ·
wrp,v−−−→
t,o

· γ1
is the longest late commit free prefix of γ. Suppose as well that [γ0|t, (wrp,v, o)]
is the first uncommitted write to p by t in γ. Let γ′1 and γ′′1 be such that

γ1 = γ′1 ·
a1−−→
t,o1

· γ′′1 with [γ0|t, (wrp,v, o)] ≺γ|t [γ0 ·
wrp,v−−−→
o

· γ′1, (a1, o1)] and

¬(a1 # γ′′1 |t). Then there exists γ̂1 such that

γ′ = γ0 ·
wrp,v−−−→
t,o

· γ′1 · γ̂1 ·
bup,v−−−→
t,ε

· a1−−→
t,o′1

· γ2

and for all t′ 6= t we have γ′|′t = γ|t and γ′|t∝MG γ|t. Moreover we have WB(γ′).

Proof. By induction on the size of γ′′1 .

– In the base case we have γ = γ0 ·
wrp,v−−−→
t,o

· γ′1 ·
a1−−→
t,o1

· bup,v−−−→
t,ε

· γ2. Here

we clearly have that a1 6= rdp,v′ for the semantics disallows a1 = rdp,v′ ,
and we notice that Lemma 26 allows to reorder a1 and bup,v provided that
¬(a1 .C bup,v) which is guaranteed since the buffer of t has a pending write
on p not generated by a1. Also notice that if a1 = rdoq,w (where possibly
p = q) then by Lemma 34 that there must be a preceding barrier b, which
by the hypothesis WB(γ) cannot be a wr. From the construction of the proof
of Lemma 34 we know that the barrier b (= ww) is ordered before rdoq,w, so
we can apply Corollary 36 which implies that there is a wrq,w and a following
rdq,v′ action in γ′1; a contradiction to the semantics of buffers, provided by
hypothesis WB(γ), since the write of p is pending and there is an intermediate
ww barrier. Hence a1 6= rdoq,w. This guarantees that the permutation of a1
after the bup,v action preserves WB(γ′).

– Suppose now that γ′′1 =
a2−−−→
t′,o2

· γ̄1. Consider the following cases:

• if t = t′ we can verify once more that a1 6= rdoq,w since

[γ0|t, (wrp,v, o)]≺γ|t [γ0 ·
wrp,v−−−→
o
· γ′1, (a1, o1)] in conjunction

with Lemma 34 and Corollary 36 would violate the semantics of
buffers granted by WB(γ).
By cases on a1. Suppose that a1 = rdq,w then we have from the semantics,
that q 6= p (no read can happen with pending writes). By Lemma 34 there
must be a preceding barrier b and a following action that is dependent
on b. Of course b cannot be a wr since it would violate the semantics of
buffers. So it must be a ww and there must be an intermediate write on
reference q that conflicts with the read rdq,w, as per Corollary 36. Thus,
the preceding write on p should be committed before the one for q and
there could not be a rdq,w action. Hence a1 6= rdq,w. Otherwise suppose
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that a1 = wrq,w. If q = p we have from the semantics of buffers that a1
is not committed in σ′′1 and thus it is trivial to see that can be reordered
after the buffer update (using Lemma 26, Lemma 27 and Lemma 23).
So, in particular can be reordered with a2. If p 6= q then there must be an
intermediate ww, else we would have no ordering (again as per Lemma 34
and Lemma 37); thus we know that the write is not committed in σ′1
(otherwise we would have a violation to the semantics of buffers) and we
can permute a1 after the buffer update, thus in particular after a2. We
observe then that the resulting computation γ′ satisfies WB(γ′) and we
can use the induction hypothesis to conclude.

• if t 6= t′ we can trivially reorder a1 (recall from the previous case that
a1 /∈ {rdq,w, rdoq,w}) with a2 by Lemma 27 and conclude by the induction
hypothesis. Notice that the permutation trivially preserves WB(γ′).

It should be easy to see that similar (but simpler) results can be derived in
the case where the first late-commit is a ww or wr action. What is important to
observe here is that from the proof we know that only wrp,w, ww or wr actions
need to be permuted. Read actions need never be reordered. We will use this
observation in the sequel.

The following corollary states that we can always find a speculation where
writes are immediately followed by their corresponding buffer updates. Clearly
the same holds for barrier actions as shown in the subsequent corollaries. This
property is the core of the proof establishing that the semantics of speculations
can simulate the one of write-buffers.

Corollary 41 (Matching Write Update). Let γ : C
∗−→ C ′ be a RMNF com-

putation such that WB(γ) and γ = σ0 ·
wrp,v−−−→
t,o

· σ1 ·
bup,v−−−→
t,ε

· σ2 with σ0 ·
wrp,v−−−→
t,o

· σ1
the longest late-commit free prefix of γ, and with [σ0|t, (wrp,v, o)] the first uncom-
mitted write on reference p of thread t in γ. Then there exists o′, σ′1 and σ′′1 and

γ′ : C
∗−→ C ′ such that

γ′ = σ0 · σ′1 ·
wrp,v−−−→
t,o′

· bup,v−−−→
t,ε

· σ′′1 · σ2

and for all t′ 6= t we have γ|′t = γ′|′t and γ′|t ∝MG γ|t. Moreover WB(γ′) holds.

Proof. Simple induction on σ1 repeatedly applying Lemma 40, Lemma 26 and
Lemma 27.

Corollary 42 (Matching Barrier Update). Let γ : C
∗−→ C ′ be a RMNF

computation such that WB(γ) and γ = σ0 ·
b−−→
t,o
· σ1 ·

b−→
t,ε
· σ2 with b ∈ Sync

and σ0 ·
b−−→
t,o
· σ1 the longest late-commit free prefix of γ, and with [σ0|t, (b, o)]

the first uncommitted b barrier of thread t in γ. Then there exists o′, σ′1 and σ′′1
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and γ′ : C
∗−→ C ′ such that

γ′ = σ0 · σ′1 ·
b−−→
t,o′

· b−→
t,ε
· σ′′1 · σ2

and for all t′ 6= t we have γ|′t = γ′|′t and γ′|t ∝MG γ|t. Moreover WB(γ′) holds.

Proof. Same as for the previous lemma.

To establish a relation between computations in the formalization with write-
buffers and the formalization with speculations we need to identify which are
the computations of the merge-calculus that correspond to computations of the
speculative semantics. For that purpose we will define quasi-speculative compu-
tations.

Definition 43 (Quasi-speculative Computation). A computation γ : C
∗−→

C ′ of the merge-calculus is called quasi-speculative if every write is immediately
followed by its corresponding buffer update, and every barrier action is followed
immediately by its corresponding barrier commit.

Lemma 44. Given γ : C
∗−→ C ′ a computation of the merge-calculus satisfying

WB(γ) there exists a quasi-speculative computation γ′ of the merge-calculus such
that for every thread t we have γ′|t ∝MG γ|t.

Proof. The proof proceeds by induction on the number of buffer update (includ-
ing barrier commit) actions present in γ and orders writes, or barriers to match
their respective buffer-update action as stated by corollaries 41 and 42.

In a quasi-speculative computation of the merge-calculus we still have the
buffer updates and the commits of barrier symbols in the buffers. To obtain a
truly-speculative computation we need to erase these actions from the computa-
tion. Let us denote by bγc the computation that results from erasing all commit
actions from the merge-calculus computation γ.

Theorem 15 (Write Buffering ⇒ Speculations). Given a computation γ : C
∗−→

C ′ of the formalization of PSO with write-buffers (as defined in Figure 4) there

exists a quasi-speculative computation γ′ : C
∗−→ C ′ such that for every thread t

it holds γ′|t ∝MG γ|t. Then bγ′c is a DPSO-valid speculative computation.

Proof. Given the computation γ we have from remarks 13 and 13 that γ is a
computation of the merge-calculus and in particular we have WB(γ). We can

therefore apply Lemma 44 to obtain γ′ : C
∗−→ C ′ a quasi-speculative computa-

tion. It is not hard to see from the construction of γ′ that since the execution γ
satisfies WB(γ) the final computation bγ′c is a DPSO-valid speculative compu-
tation.
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Appendix B.5 From Speculations to Write-Buffers

Let us see now how a computation of the speculative formalization of PSO
can be turned into one of the formalization with write buffers by reordering
speculatively performed actions to the position where they become “normal”. In
essence, since we consider only DPSO-valid speculations, we know that for every
thread projection γ|t, for an hypothetical speculation γ, there exists a normal
speculation that is a DPSO-reordering of γ|t, and let us denote such normal
computation γ[t]. We prove here that we can always find a computation γ′ of
the merge-calculus such that coincides with γ, the initial and final states are the
same, and for every thread γ′|t = γ[t]. Let us now proceed with the proof.

Given a valid speculative computation γ we can trivially obtain a quasi-
speculative computation dγe of the merge-calculus where all writes and barrier
instructions are immediately committed.

Remark 45. Given a valid computation γ : C
∗−→ C ′ of the speculative calculus

there is a quasi-speculative computation dγe : C
∗−→ C ′ of the merge-calculus

such that for all t we have γ|t = γ′|t.
We now prove that buffer commit actions can be reordered w.r.t. every action

other than a read or a buffer commit action of the same thread to reach the same
final configuration.

Lemma 46. Suppose that we have C
a0−→
t,ε

C0
a1−−→
t,o1

C ′ and a0 ∈
{bup,v, ww, wr | p ∈ Ref , v ∈ Val} and a1 /∈ {rdp,v, bup,v, ww, wr | p ∈ Ref , v ∈
Val}, then there exists C1 such that C

a1−−→
t,o1

C1
a0−→
t,ε

C ′.

Proof. The proof is trivial by case analysis. Notice that no a1 action other than
a write modifies or depends on the buffers or memory. In the case of a write
action, it simply puts its contents at the end of the buffer which is independent
of any previous buffer update.

If an action does not conflict with preceding actions of different threads, then
this action can be moved backwards in the computation obtaining an equivalent
computation (in the sense that individual speculations are preserved and the
initial and final configurations are the same).

Lemma 47. Let γ = C
∗−→ C ′ be a computation of the merge-calculus and let

γ = γ0 ·
a0−−→
t,o0

· γ1 ·
a1−−→
t,o1

· γ2 with a1 /∈ {rdp,v, bup,v, wr, ww | p ∈ Ref , v ∈ Val}

and γ1|t = ε. Then there exists γ′ = C
∗−→ C ′ and γ′1 such that for all t we have

γ|t = γ′|t and γ′ = γ0 ·
a0−−→
t,o0
· a1−−→
t,o1
· γ′1 · γ2.

Proof. We proceed by induction on the length of γ1. Clearly if γ1 = ε we have
the conclusion. If γ1 = γ1 ·

a2−−−→
t2,o2

we have the following cases:

– t = t2 and therefore we know that a2 ∈ {bup, wr, ww | p ∈ Ref } by γ1|t = ε.
We can simply apply the previous lemma (46) and conclude by the induction
hypothesis.

33



– t 6= t2 and since a1 /∈ {rdp,v, bup,v, ww, wr | p ∈ Ref , v ∈ Val} we can directly
apply Lemma 27 and the induction hypothesis to conclude.

And similarly to the previous result, if an action does not conflict with sub-
sequent actions of different threads in the computation, we can push it forward
to obtain an equivalent computation.

Lemma 48. Let γ : C
∗−→ C ′ be a merge-calculus computation such that γ =

γ0 ·
a−−→
t,o
· γ1 · γ2 with a /∈ {wrp,v, rdp,v, bupv, ww, wr | p ∈ Ref , v ∈ Val} and

γ1|t = ε. Then there are γ′ and γ′1 such that γ′ = γ0 · γ′1 ·
a−−→
t,o
· γ2 with

γ′ : C
∗−→ C ′ and for all t ∈ T id we have γ|t = γ′|t.

Proof. The proof is obvious since a does not modify or inspect the buffers or the
memory.

Lemma 49. Let γ : C
∗−→ C ′ be a merge-calculus computation such that every

thread projection is valid, i.e. for all t ∈ T id then γ|t∝MG γ[t] with γ[t] a normal
speculation. Suppose as well that γ|t ∝MG γ′t ∝MG γ[t] with γ|t reaching γ′t by

a single reordering. Namely γ = γ0 ·
a0−−→
t,o0

· γ1 ·
a1−−→
t,o1

· γ2 with γ1|t = ε and

γ′t = γ0|t·
a1−→
o′1

· a0−→
o′0

·γ2|t. Then there exists γ′1, γ′′1 and γ′ : C
∗−→ C ′ such that

γ′ = γ0 · γ′1 ·
a1−−→
t,o′1

· a0−−→
t,o′0

· γ′′1 · γ2. Moreover for all t′ ∈ T id with t′ 6= t we

have γ′|t = γ|t.

Proof. Let us proceed by cases on a1:

– If a1 ∈ {rdp,v, rdop,v | p ∈ Ref , v ∈ Val} we have from the fact that γ|t∝MG γ′t
that ¬(a1DPSOa0) which implies that a0 /∈ {rdq,w, rdoq,w,wrq,w | q ∈ Ref , w ∈
Val} and thus we can apply Lemma 48 and Lemma 26 to conclude.

– If a1 = wrp,v we can apply Lemma 47 and Lemma 26 to get the desired
reordering.

– If If a1 = {ww, wr} we proceed as in the previous case.
– All the remaining cases are trivial.

One remark from the proof of this lemma is that it requires to reorder only
memory-model-related actions (that is reads, writes or memory barriers) forward
in the computation (in particular in the speculation). One can observe that the
actions that need to be reordered are write actions and barrier actions, where
read actions can be regarded as remaining at their place. Indeed, we see in the
proof that if a1 is a read action the a0 action is moved to a later stage in the
computation (but in this case a0 is not a memory model related action), and in
the cases where a1 is a write or a barrier, it is this action that is moved to the
front of the computation.
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The following lemma states that merge-calculus computations corresponding
toDPSO-valid speculative computations can be reordered to reach a computation
of the semantics with write-buffers.

Lemma 50. Let dγe : C
∗−→ C ′ be a quasi-speculative computation of the merge-

calculus corresponding to a DPSO-valid speculative computation γ of the formal-
ization of PSO by means of speculations, and let γ′ : C

∗−→ C ′ be a merge-calculus
computation such that for all t ∈ T id, γ|t ∝MG γ′|t. Then there is γ′′ : C

∗−→ C ′

a purely buffered computation of the merge-calculus such that for all t ∈ T id,
γ′|t ∝MG γ′′|t.

Proof. The proof is by induction on the summation of reorderings needed to
reach γ[t] from γ′|t for every t. In the base case all projections are normal, and
thus the computation corresponds to a computation of the calculus with write
buffers. We simply apply the previous lemma (49) in the induction case and
conclude by the induction hypothesis. Notice as well that the validity condi-
tion guarantees that rdop,v actions are actually allowed and moreover obtain the
correct value from the buffers.

And we can finally prove that DPSO-valid computations in the speculative
semantics of PSO correspond to computations of the semantics of PSO with
write-buffers.

Theorem 16 (Speculations ⇒ Write Buffers). Given γ : C
∗−→ C ′ a DPSO-valid

speculative computation of the formalization of PSO with speculations. There
exists a purely buffered computation of the merge-calculus γ′′ : C

∗−→ C such that
for all t ∈ T id then γ|t ∝MG γ′′|t = γ[t]. And in particular γ′′ is a computation
of the calculus with buffers.

Proof. The proof is simple consequence of Remark 45 and Lemma 50.
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