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Abstract

Most current multiprocessor architectures and shared memory parallel program-
ming languages are not sequentially consistent for parallel programs. Their pos-
sible behaviors are characterized by weak or relaxed memory models. A memory
model describes the way in which parallel programs can interact by reading and
writing the shared memory. Thus, a relaxed memory model exhibits more be-
haviors than sequential consistency (a “strong” memory model). The fact that
most architectures have relaxed memory models has been known for decades,
and yet few programmers understand which are the exact behaviors a parallel
program can have in such architectures. We argue in this thesis that the prob-
lem stems from the difficulty in understanding the specification of these relaxed
memory models. Firstly because few architectures or programming languages
provide a formal definition of their memory model. And secondly because the
majority of the existing formal definitions are axiomatic, which hinders their un-
derstandability and makes them unsuitable for language-based techniques such
as static analysis or model checking. We propose an alternative characteriza-
tion of relaxed memory models. Our characterization is operational, which we
believe makes it simpler to understand for the programmer, and better suited
to standard language-based techniques.

Our first contribution in this thesis is the operational formalization of write-
buffering architectures. Write-buffering is pervasive across multi-core architec-
tures, and thus its understanding is fundamental for parallel programming in
such architectures. By means of standard programming languages concepts, we
prove that the standard Data Race Free (DRF) guarantee is satisfied by our
formalization. Hence, reasoning about sequentially consistent computations is
sound for programs free of simultaneous accesses on a single memory location.

Our second contribution is a framework for the operational characterization
of speculative computation techniques. This framework allows us to formally de-
fine the intuitive notion of valid speculation. For this framework two languages
are considered; a high-level programming language that supports locks; and
a low-level programming language, closer to the Instruction Set Architecture
(ISA) of a machine, that supports only barriers and a simple compare-and-swap
instruction. We identify properties for programs of both of these languages that
are sufficient to guarantee that only sequentially consistent behaviors can be
observed when the programs are executed speculatively.

The final contribution is the instantiation of the write-buffering and spec-
ulative frameworks to formalize the Total Store Ordering (TSO), Partial Store
Ordering (PSO), and Relaxed Memory Ordering (RMO) memory models of the
Sparc architecture. In particular, we observe that the framework of write buffers
is not well suited to formalize liberal relaxations as allowed by RMO. We prove

i



ii

a correspondence result between the formalizations of PSO and TSO in both
frameworks. The fact that RMO cannot be instantiated by means of write-
buffers is a good indication that the speculative framework is more general than
the one of write buffers.



Résumé

La plupart des architectures multiprocesseurs et des langages de programma-
tion parallèle à mémoire partagée actuels ne sont pas séquentiellement con-
sistant pour les programmes parallèles. Leurs comportements possibles sont
caractérisés par des modèles mémoire faibles ou relâchés. Un modèle mémoire
décrit la manière dont les programmes parallèles peuvent interagir par des lec-
tures et des écritures dans la mémoire partagée. Ainsi, un modèle mémoire
relâché présente plus de comportements que le modèle séquentiellement con-
sistant (modèle mémoire “fort”). Le fait que la plupart des architectures ont
des modèles mémoire relâchés est connu depuis des décennies, et peu de pro-
grammeurs comprennent quels sont les comportements exacts qu’un programme
parallèle peut avoir dans de telles architectures. Nous soutenons dans cette
thèse que le problème provient de la difficulté à comprendre la spécification de
ces modèles de mémoire. Ceci, d’abord car peu d’architectures ou de langages
de programmation donnent une définition formelle de leur modèle mémoire, et,
ensuite, parce que la plupart des définitions formelles existantes sont axioma-
tiques, ce qui les rendent difficiles à comprendre et inadaptées à des techniques
basées sur le langage, telles que l’analyse statique ou le model checking.

Notre première contribution dans cette thèse est la formalisation
opérationnelle des architectures à tampons d’écriture (write buffers). Les
write buffers sont omniprésents dans les architectures multi-core, et donc leur
compréhension est fondamentale pour la programmation parallèle dans de telles
architectures. En utilisant des concepts standard des langages de programma-
tion, nous démontrons que la classique “Data Race Free (DRF) guarantee” est
satisfaite dans notre formalisation. Par conséquent, raisonner par des calculs
séquentiellement consistant est correct pour les programmes libres d’accès si-
multanés sur une même case mémoire.

Notre deuxième contribution est un framework pour la caractérisation
opérationnelle des techniques de calcul spéculatif. Ce framework nous per-
met de définir formellement la notion intuitive de spéculation valide. Pour
cette formalisation deux langues sont considérés, un langage de programma-
tion de haut niveau avec un mécanisme d’exclusion mutuel par verrous, et un
langage de programmation de bas niveau, plus proche de l’Instruction Set Ar-
chitecture (ISA) d’une machine, avec des mécanismes de barrières mémoire et
des instructions atomiques. Pour les programmes de ces deux langages, nous
identifions les propriétés suffisantes pour garantir que seuls les comportements
séquentiellement consistant peuvent être observés lorsque les programmes sont
exécutés de manière spéculative.

La dernière contribution est l’instanciation de ces deux frameworks
sémantiques pour formaliser les modèles mémoire “Total Store Ordering
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(TSO)”, “Partial Store Ordering (PSO)”, et “Relaxed Memory Ordering
(RMO)” de l’architecture Sparc. En particulier, nous observons que le frame-
work des write buffers n’est pas bien adapté pour formaliser des relaxations trop
libérales comme le permet RMO. Nous démontrons un résultat de correspon-
dance entre les formalisations de PSO et TSO dans les deux frameworks. Le
fait que RMO peut pas être instanciée par le framework des write buffers est
une bonne indication que le framework spéculatif est plus générale que celui des
write buffers.
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Chapter 1

Introduction: On Relaxed
Memory Models and
Programming Languages

Writing correct and efficient computer programs requires a thorough under-
standing of the underlying programming language semantics, that is, how pro-
grams of that language are executed. Therefore, having a clear, simple and
formal semantics for the programming language is a prerequisite for writing
programs with strong guarantees, let alone verifying their correctness.

The techniques and methodologies used to provide formal semantics for se-
quential programming languages are the subject of a well established and mostly
uncontroversial discipline. A particularly useful formalism is Structural Opera-
tional Semantics of Plotkin [1975, 1981], in which the state transitions happening
during the execution of the program are described by means of rewriting rules.
For shared memory parallel programming languages – that is programs with
multiple processes (or threads) that communicate through the memory – there
is a rather obvious extension of the structural operational semantics of sequen-
tial programs, in which at each step of the execution a process (or thread) is
nondeterministically chosen and a step of this process is performed atomically
(that is, without being interrupted by steps of other processes). This is com-
monly known as the interleaving semantics of parallel programs. Another name
for this semantics, which is more common to the literature of relaxed memory
models, is sequential consistency. The concept of sequentially consistent systems
was introduced by Lamport [1979] and it is considered the standard semantics
of shared memory parallel systems. Indeed, most verification techniques for
multiprocess programs rely on sequential consistency [Owicki and Gries, 1976;
Brookes, 2007; Lamport, 1977; Jones, 1983].

In spite of the simplicity of sequential consistency, this is not the semantics
supported by most multiprocessor systems [SPARC, 1994; Intel Corporation,
2007; AMD, 2010; PowerPC, 2009]. On the contrary, most parallel computer
architectures provide semantical models that exhibit more behaviors than those
allowed by sequential consistency. These semantical models are know as “re-
laxed” or “weak” memory models [Dubois et al., 1998; Adve and Gharachorloo,
1996]. It is a well known fact that parallel programming is harder than sequen-
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2 CHAPTER 1. INTRODUCTION

tial programming [Owicki and Gries, 1976]. The adoption of relaxed memory
models adds an extra level to the difficulty of programming such systems, since
programmers are required to consider behaviors that do not correspond to the
ones of the more familiar sequential consistency. We will comment later on the
issues of programmability in relaxed memory models.

The adoption of relaxed memory models, as opposed to the simpler sequen-
tial consistency, curiously has its roots in performance considerations as regards
sequential programs rather than parallel ones. Indeed, parallel programming
has not been exposed to the programmer at the programming language level
(in mainstream programming languages), until rather recently. And even if
these days it is gaining a lot of interest, it would be hard to claim that parallel
programming is a common practice in the software industry. We say that re-
laxed memory models have been adopted for performance as regards sequential
programs because: first, it is a reason of performance that leads to the incor-
poration of optimizing techniques that cause parallel programs to expose more
behaviors than those of sequential consistent executions, we will consider this
aspect in detail in the next section; and second, these optimizing techniques
regard mainly sequential programs since the correctness consideration to qual-
ify these optimizations as correct has been, for the most part, the semantics
of sequential programs. This last aspect is partly due to the prolonged lack of
interest in parallelism that we have mentioned before, implying that the de-
velopment of these techniques has been rather oblivious to the semantics of
parallel programs. Let us devote the following section to the consequences of
these optimizing techniques on the semantics of parallel programs.

1.1 Performance First: The Need for Relaxed
Memory Models

Performance is a crucial aspect of computer systems. It was early noticed that
memory accesses have an important impact on the execution time of programs.
Fortunately, the latency induced by memory requests can be greatly reduced by
performing memory accesses in parallel, in an asynchronous way, hopefully with-
out disrupting the semantics of programs. For a store to the memory this means
that one can continue executing instructions after issuing the store, without
waiting for an acknowledgment from the memory unit; and for reads this means
that one can issue several reads in parallel, or even ahead of time. Techniques
such as write buffering [Dubois et al., 1998], pipelining and instruction-level
parallelism [Fisher, 1981; Hennessy and Patterson, 1996], branch prediction and
speculative computation [Smith, 1981; Hennessy and Patterson, 1996], achieve
this kind of effects and have been early adopted in commercial computer ar-
chitectures, improving their overall performance. But this raises the following
question: Does the semantics of programs running in machines empowered with
these optimizations remain unchanged with respect to machines that do not
implement the optimizations? The intuitive answer to this question should be
that these semantics correspond to each other, as the word optimization seems
to suggest. This is actually the case for sequential programs, and more gener-
ally, for programs running on a single processor. However, for parallel programs,
these techniques can result in deviations from the sequentially consistent seman-
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tics. Let us illustrate this issue by a very simple example taken from the seminal
work by Lamport [1979] in the area of relaxed memory models. In this example
we assume the initial value stored in the variables (or more precisely memory
locations) flag0 and flag1 is the boolean true.

Example 1.1. flag0 := false ;
if flag1 then

critical section 0

 ‖
 flag1 := false ;

if flag0 then
critical section 1


In this work Lamport searches for conditions that suffice to guarantee that

the execution of the parallel program is correct. He starts by observing that
if the the write of flag0 and read of flag1 in the condition of the branching
construct are performed in the reverse order in the first thread, there is no
violation of the sequential semantics of the thread. That is to say, that the
result of thread 1 (in isolation) is unaffected by performing these actions in the
reverse order. However it is observed in that work that in this case, the mutual
exclusion of the proposed algorithm does no longer work. Let us see a schema
of a possible computation to support this claim. In the picture below we depict
the thread on the left at the top and the one on the right at the bottom, where
we label by p := v the event of updating the memory location p with value v
and by p← v the event of reading the value v from the memory location p:

flag1 ← true- flag0 := false- -

flag1 := false- flag0 ← true- -

We can see that the order in which instructions are performed in the left thread
is reversed, which leads to a computation where both threads can see a value
true for the flag and thus, both threads can enter their critical sections. Lam-
port concludes then that to “correctly execute multiprocess programs” the ar-
chitecture must guarantee that “each processor issues memory requests in the
order specified by its program” – this is commonly known as the program or-
der. Unfortunately Lamport’s requirement for “correct execution” (in fact for
sequential consistency) is not met by most current multiprocessor architectures.

In the above example we have considered the result of reordering the execu-
tion of the read and write instructions in the program on the left, but we have
not considered why this could happen. In fact, there are many ways in which
common architectures could manifest that behavior. Indeed, the universal rea-
son is the performance of programs. To have a better performance, architectures
implement optimizations which could have the effect of reordering the actions
to different processes. An example of a mechanism that performs this kind of
reordering is write buffering [Dubois et al., 1998], that instead of performing
writes immediately delays writes in internal buffers without interrupting the
execution. In the example above we could consider that the write of flag0 has
been buffered, and it has only reached the memory after the read of flag1 was
performed. Other architectural optimizing techniques, such as pipelining and
caching could have similar effects. We will discuss some of the effects of these
techniques in the sequel.
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In fact, these optimization techniques do not pertain only to hardware, but
to software as well. It is indisputable that high-level programming languages
provide a good abstraction level for programming complex algorithms. How-
ever, being at a higher level of abstraction makes it hard for the programmer
to take full advantage of the low-level facilities of the machine in which the
program will be deployed. To avoid considering such low-level details is pre-
cisely the purpose of a high-level programming language. Automatic program
optimizations provide a mostly satisfactory answer to the trade-off between the
ease of programming, achieved by high-level programming languages, and the
efficiency of low-level mechanisms provided by the machine architecture. These
optimizations could happen at different instances of the program life cycle (in-
cluding compile-time and run-time). Notably, most modern compilers optimize
code along the compilation process and some virtual machines, or just-in-time
compilers optimize code along the execution of the program. Observe that a
compiler that reorders memory access on different memory locations can lead
to the result in the example above even if the machine architecture does not
optimize the accesses. One might wonder though, if a compiler is allowed to
reorder the code in this way, or, formulated as a question: Which is the crite-
rion to decide whether a certain optimization is correct or not with respect to
parallel programs?

A brief answer to this question is that the criterion for the validity of a
compiler optimization – and for a hardware optimizing technique for that pur-
pose – is the sequential semantics of the program. In other words, the de-facto
standard is that a compiler optimization is considered correct if the sequential
semantics of the original piece of source code corresponds to the sequential se-
mantics of the optimized version of the code, where the program is assumed not
to be parallel. This inevitably leads to behaviors like the one we considered in
the previous example, which do not coincide with any sequentially consistent
execution of the concurrent program. Since most compiler and hardware opti-
mizations are parallelism “agnostic”, in general parallel programming languages
do not entail a sequentially consistent semantics. There are many ways in which
program transformations can lead to behaviors that are not sequentially con-
sistent for parallel programs, ranging from compiler optimizations to hardware
optimizations; these sources are eloquently developed by Gao and Sarkar [1997].
Only recently the effects of compiler optimizations have been considered with
respect to the semantics of parallel programs [Manson et al., 2005; Ševč́ık and
Aspinall, 2008; Ševč́ık, 2009; Burckhardt et al., 2010]. However, the criterion for
considering an optimization correct with respect to a parallel program in these
works, is no longer that the source and optimized version correspond to each
other with respect to their simplest semantics – that is the interleaving one –
but rather that they correspond in their interleaving semantics for a particular
class of programs; namely Data-Race-Free programs.

We will discuss the definition and the importance of this property shortly,
but before moving on in the discussion of relaxed memory models it is interest-
ing to notice here that there is a priority inversion regarding the correctness
criterion for considering optimizations valid between sequential and parallel
programs. While for sequential programs a simple semantics prevails as the
driving criterion, for parallel programs performance prevails against a simple
semantics (i.e. sequential consistency). The performance penalty required to
implement sequential consistency is in general considered unacceptable for mul-
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tiprocessor machines. It has been shown however, that for the class of data-race-
free programs we can still benefit from a simple semantics without necessarily
penalizing performance excessively [Adve and Hill, 1990; Gharachorloo et al.,
1990]. We mention however that the complexities induced by programming
with relaxed memory models have recently driven many researchers to recon-
sider whether sequential consistency is really unacceptable [Hill, 1998], and even
more to reconsider the nondeterministic nature of shared memory parallel pro-
gramming [Bocchino et al., 2009; Bergan et al., 2010].

Let us conclude this section by considering typical examples of behaviors to
be found with relaxed memory models that could perhaps surprise the program-
mer. As we have mentioned before, optimizations having the effect of reordering
writes with respect to subsequent reads can induce behaviors that are not se-
quentially consistent. This can be observed in the following example, where
the initial memory contains a 0 value for both locations p and q and where we
assume that r0 and r1 are registers local to a single processor (or thread):

Example 1.2. [
p := 1 ;
r0 := q

]
‖
[
q := 1 ;
r1 := p

]

One might be surprised to learn that the final result r0 = r1 = 0 is indeed
possible. But this is not so surprising if we are aware of the fact that many ar-
chitectures reorder read memory accesses with respect to previous write accesses
provided that these are on different references. In this example it suffices to ex-
ecute both reads first to obtain the result in question. This behavior is typical
of many memory architectures, including the x86 memory models [Owens et al.,
2009; Intel Corporation, 2007; AMD, 2010], the SPARC [1994] memory models,
and the Java programming language [Manson et al., 2005] just to mention a few.
We refer to the work of Adve and Gharachorloo [1996] for a more exhaustive
list of such architectures.

A similar phenomenon happens when the architecture has the effect of re-
ordering write instructions on different locations. The following example is a
clear indication of that:

Example 1.3. [
p := 1 ;
q := 1

]
‖
[
r0 := q ;
r1 := p

]

If the architecture has the capability of reordering the write accesses in the left
thread, the final result r0 = 1 and r1 = 0, which is not sequentially consistent
becomes possible. This is typical of the PSO and RMO (Relaxed Memory
Ordering) memory models of SPARC [1994] that we will consider in Chapter 4.
Notice that if writes cannot be reordered but reads can, it suffices to reorder
the reads of the right thread to have the exact same result, this is possible in
the RMO memory model.

Let us consider a final example that is possible in the RMO memory model,
and happens if one is allowed to reorder writes with respect to preceding reads
on a different memory address:
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Example 1.4. [
r0 := q ;
p := 1

]
‖
[
r1 := p ;
q := 1

]
We can see that under that relaxation, the final result r0 = r1 = 1 becomes
possible. This can happen in the Sparc RMO memory model as we will see.

Many more relaxations that we do not consider here are possible, in partic-
ular the Java memory model [Manson et al., 2005] allows behaviors for which
current optimizing techniques do not exist yet. This has been considered in
anticipation to future possible optimizations. We will discuss other common
optimizations and relaxations by means of examples, as they become relevant
to the discussion in this thesis.

1.2 Relaxed Memory Model: the Basics

Knowing that most parallel programming languages and computer architectures
do not provide sequentially consistent semantics inevitably leads to the question:
Which are the behaviors allowed for a parallel program? This is exactly the topic
of memory models.

In essence a memory model specification dictates which are the possible val-
ues that a read on a memory location is capable of returning. Clearly, the
possible values a read might return are intrinsically related to the original value
of the location in the memory and writes issued to that location by the threads
of the program. Actually, the answer to this question is trivial for sequential
programs, where every read must return the last value written to that refer-
ence. For parallel programs, the interleaving semantics is the direct extension
of the sequential semantics, since it induces a total order of memory accesses
by choosing a single thread at a time and computing with that thread. How-
ever, for relaxed memory models there is a significant shift from the sequentially
consistent semantics. In fact, memory accesses on a certain reference need not
be totally ordered in the computation, meaning that it is not always obvious
which is the last write to a certain reference. This is typically the case of con-
current accesses to the same reference with at least one of them being a write,
a phenomenon known by the name of data race. Let us illustrate this issue with
a very simple example with only two threads accessing a single reference. We
take p to be an arbitrary memory location, and we consider that r0 is a local
variable to the left thread (or local register in a processor) and we assume the
initial value of p to be 0.

Example 1.5. [
p := 1 ;
r0 := p

]
‖
[
p := 2

]
For the sake of clarity let us consider the schema of the following interleaving
computation, where as before, we depict the left thread on top and the right
one below:

p := 1- p← 2- r0 := 2-

p := 2-
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It is indisputable that this is an expectable behavior for the program above,
in particular, it is perfectly sequentially consistent. But let us now consider a
small variation of the semantics. Let us assume that every write will not be
directly performed in the main memory but instead it will be stored in a buffer
local to the processor, where only the processor owning the buffer can read.
Clearly these buffers have to be flushed, updating the memory accordingly. Let
us consider that in the computation we will denote by update p v the fact that a
write that was standing in a buffer has finally been committed into the memory.
Let us suppose that if a buffer is pending for update, only the thread issuing the
write is able to read that value, and indeed, no other value can be read. Then
we can see that the previous computation directly translates to something like:

p := 1- update p 1- p← 2- r0 := 2-

p := 2- update p 2-

And let us now consider what happens if we delay the update of the thread on
the left after the one of the thread on the right:

p := 1- update p 1- p← 1- r0 := 1-

p := 2- update p 2-

Suddenly, adding just a small piece of hardware, which in fact does not necessar-
ily reorder the execution of instructions, implies that the definition of last write
is not univocally defined anymore. Maybe in this case one should talk about the
last write to be performed (or updated from the buffer into the memory) rather
than issued. In fact, these distinctions between performed and issued are deli-
cate, and sometimes dependent on the particular optimization being considered.
Moreover, the programmer producing the source code program does not need
to be aware that there is an update action involved, and from the programming
language point of view it is best that way.

What one can observe from the above example is that in relaxed memory
models, if we need to keep the description to the actions that are recognizable at
the source code level (thus excluding the update actions of the above example)
the total order provided by the interleaving semantics cannot be assumed, and a
better notion is an irreflexive partial order (that is an antisymmetric and tran-
sitive relation) between instructions. In the example above we can only assume
that both writes happen before the read (for the particular interleaving consid-
ered) and that therefore the read action can see any of the two. Notice however
that the result of the final computation we considered above corresponds to an-
other interleaving of the source program. We see now that specifying a correct
memory model with a semantics that is precise enough to be programmable
is not an obvious task. We will discuss an operational formalization of write-
buffering, similar to the one in this example in Chapter 2, where we will provide
a syntactic representation for the buffers that are implicit in the example. We
notice that since the specification of memory models considers partial orders
and a set of possible values for a read action – as opposed to a a total order
defining a unique value – it does not fit well in the standard semantical tools
for formalizing operational semantics.
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Another important aspect of the memory model is that it defines which are
the synchronization constructs [Briggs, 1979; Dubois et al., 1998] that permit
to impose constraints on the possible values a read might return, or more gen-
erally on the behavior of memory-related actions. For example, knowing that
in a certain architecture accesses to different locations on the memory can be
reordered, requires a mechanism to restore sequentially consistent executions;
for this particular case such a mechanism could be barrier instructions. Notice
that these mechanisms are mostly useless when considering sequential programs.
Clearly the system is not forced to provide these mechanisms, but not being able
to reestablish the standard interleaving semantics of parallel programs would
make programming very hard if not impossible, which is why, to the best of our
knowledge, all realistic memory models provide one or more such mechanisms.
Thus, it is task of the memory model specification to define which are the syn-
chronization mechanisms provided to restore sequential consistent executions –
or more generally to prevent undesired relaxations.

Finally, the memory model specifies the atomicity of memory accesses. For
example, in certain architectures accesses to double words are guaranteed to
be atomic (that is uninterruptible) whereas other architectures might provide
atomicity only for single words. Also the atomicity of instructions like compare-
and-swap is precisely defined by the memory models specification. In this work
we will concentrate mainly on the ordering and visibility aspects of relaxed
memory models, rather than atomicity of individual memory accesses. We be-
lieve this aspect of memory models is not hard to model by considering that
nonatomic memory locations correspond to more than one memory access in
our framework.

1.3 Programmability: The Data Race Freeness
Guarantee

We have seen that many multiprocessor architectures and high-level program-
ming languages are not provided with a sequentially consistent semantics but
rather a relaxed memory model. Let us once more motivate the discussion with
a question: Which is, then, the exact semantics for parallel programs in such ar-
chitectures or high-level programming languages? This question led researchers
to investigate under which circumstances, or for which type of programs, the se-
mantics of the relaxed model coincides with sequential consistency. Among the
first to investigate this issue were Dubois et al. [1998], who identified the impor-
tance of synchronization in reestablishing sequential consistency for hardware
with write-buffering capabilities. In that work the authors define a property of
multiprocessor systems which they call weak ordering. The basic idea of weak
ordering is to classify variables in two different classes:

• Normal variables, that might be shared and form part of the program
logic but do not control the concurrent execution, and

• Synchronization variables, “which protect the access to shared writable
operands or implement synchronization between processors.”

Then, according to this classification of variables the authors propose the
following conditions, which we will explain below:
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A multiprocessor system is weakly ordered if:

1. accesses to global synchronizing variables are strongly ordered
and if

2. no access to a synchronizing variable is issued in a processor
before all previous global data accesses have been performed
and if

3. no access to global data is issued by a processor before a pre-
vious access to a synchronizing variable has been performed.

The first condition, in brief, requires synchronizing accesses, that is accesses to
synchronizing variables, to obey a sequentially consistent semantics with respect
to each other. Notice that this item does not mention normal variables in any
way. The terminology strongly ordered means that for the concerned events, in
this case synchronizing memory accesses, there exists a total order which reflects
the execution of these events in the program. In fact, every synchronizing read
must see the value of the latest write on the same variable that immediately
precedes it in this total order. In this sense, the value of a synchronizing access
is uniquely determined by the interleaving of synchronizing actions. The second
condition requires any “global” data access previous, in the sense of the order
of the program text, to a synchronizing memory access to be performed before
the latter. Here the terminology performed means that the effects of these
memory accesses are globally visible to all the other threads. In other words, this
condition requires that before engaging into a synchronizing memory access the
effects of previously issued memory operations, synchronizing or normal, must
be accessible (or visible) to any other processor in the system. Finally, the third
item requires that accesses to global data, synchronizing or normal, be delayed
until all previously issued synchronizing memory accesses are performed. In
essence, it requires that memory accesses following a synchronizing one, do not
start until the effects of the synchronizing access are visible to all the processors
in the system.

Let us see what is achieved by this property with a simple example. We
consider a slight variation of the producer consumer algorithm of Adve and
Gharachorloo [1996]:

Example 1.6.[
data := 1 ;
flag := tt

]
‖
[

while (flag = ff ) do skip ;
r0 := data

]

Let us analyze two cases, first consider the case where the variable flag is
normal and later the one in which it is synchronizing according to the previous
definition. To illustrate this point we will assume that normal write memory
accesses can be reordered (where the reason for this reordering is left implicit)
with respect to previously issued write accesses. If, in the first case, the variable
flag is a normal one, nothing in the definition implies that the write to data,
which we assume to be normal, and flag cannot be reordered. So a possible
execution is presented in the following schema, where the computation of the
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thread on the left is placed on top and the thread on the right is at the bottom.

flag := tt- data := 1-

flag← ff- flag← ff- flag← tt- data← 0-

We can easily understand in this execution why the nonsequentially consistent
behavior where r0 is set to 0 results from considering the reordering of normal
write accesses to different references. Notice here that the above picture is
just a simplification of the many ways in which this behavior could happen; in
particular, the accesses to data and flag could happen at the same time, or
even be delayed in buffers for example, here we depict only the moment in which
this accesses are performed and not when they are issued.

However, if we consider the program more carefully we see that the flag

variable is only there for controlling the parallel computation, actually to notify
the fact that the variable data has been modified. Therefore, according to the
definition of Dubois et al. [1998] stated above, this variable should be considered
a synchronizing one. Let us reconsider the above execution but now assuming
that flag is a synchronizing variable. If the above execution were permitted by
the system we would have that the normal global access of data is performed
only after the synchronizing access of flag is issued. A clear violation of the
second requirement. Thus, the above execution does not correspond to a weakly
ordered system. Indeed, we can see that all weakly ordered computations must
have the following shape:

data := 1- flag := tt-

flag← ff- flag← ff-
flag← tt

-

Synch
- data← 1-

with possibly more, or less reads of the flag variable returning ff at the begin-
ning of the lower thread. One can observe here that reading 0 for the variable
data is impossible, which exactly corresponds to sequentially consistent com-
putations of this program.

It might be instructive to observe here that if all communications – that is
a write in one thread and a read of the same reference in a different thread –
between normal memory accesses are separated by communications on synchro-
nizing variables one gets sequentially consistent executions. This intuition will
be further developed in the rest of this section.

In fact, it is natural when looking at these diagrams to make a connection
between synchronizing accesses and the events in the happens-before definition
of Lamport [1978]. In that work Lamport defines the happens-before relation to
be the smallest relation such that if two events a and b are related by the program
order (i.e. they are generated by the same processor, and a comes before b in
the program text), then a happens-before b; and if a is the sending of a message
by one process (in our case writing a synchronizing variable) and b is the receipt
of that message by a different process (in our case a read obtaining the value
of the previously mentioned write) then a happens-before b; and this relation
is transitive. According to this definition we see that in the first case, when
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flag is normal, the writing and reading of data are not happens-before related,
whereas in the case where flag is synchronizing the writing of data necessarily
happens-before the reading, and thus, it must see the value of the write. We will
see that the happens-before relation is fundamental in the definition of some
relaxed memory models.

Defining which variables should be synchronizing and which should not,
highly depends on the relaxations allowed by the underlying relaxed memory
model. In the definition of weak ordering that we have considered above the
programmer is responsible for identifying which variables are synchronizing and
which are normal. Indeed, this classification of variables depends on the underly-
ing memory model, since in some cases variables that imply communication are
not subject to memory model relaxations, and therefore do not need to impose
extra synchronization, which could degrade the performance unnecessarily. An
example of this can be found when considering the TSO (Total Store Ordering)
relaxed memory model [SPARC, 1994] in contrast with the PSO (Partial Store
Ordering) one [SPARC, 1994]. In the former writes cannot be reordered with
respect to previous writes, and thus in examples like the one above there is no
need to classify the flag variable as synchronizing (even if it does synchronize).
However, in the latter one, this relaxation is possible, and thus flag has to be
considered synchronizing. The fact that this classification can depend on the
memory model in question implies that the programmer is still required to rea-
son about the relaxed memory model, which is somewhat unsatisfactory from
a high-level programming language point of view. This requires programmers,
at the higher-level, to be aware of the intricacies of the underlying architecture,
which is exactly what high-level programming languages attempt to avoid. This
problem only gets exacerbated if we consider multiplatform programming lan-
guages like Java for instance, since it targets multiple architectures, and pro-
grams are subject to intermediate virtual machines that could optimize code as
well.

A more satisfactory answer, from the programmer view point, to the problem
of which programs provide sequentially consistent semantics under the relaxed
memory model, was given by Adve and Hill [1990] and Gharachorloo et al. [1990]
simultaneously. Adve and Hill [1990] propose what they called a new definition
of weak ordering. This definition relies on a synchronization model, which is a
programming discipline, assessing when synchronization needs to be performed.
Programs satisfying this programming discipline are considered to be correctly
synchronized. Then, the proposed weak ordering definition is as follows:

Hardware is weakly ordered with respect to a synchronization model
if and only if it appears sequentially consistent to all software that
obey the synchronization model.

The idea here is that the compliance to the synchronization model must be
determined only considering the semantics (in particular the sequentially con-
sistent semantics) of the high-level programming language. Then, the guarantee
establishes that if a program is correctly synchronized (according to the syn-
chronization model), it will only exhibit sequentially consistent behaviors in the
relaxed memory architecture. It is easy to observe that this definition dispenses
the programmer from considering the low-level features of the relaxed memory
model if she/he follows the synchronization model of the programming language.
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Figure 1.1: DRF Guarantee

The new weak ordering property, then, mandates that synchronization mech-
anisms at the high-level programming language have to imply synchronization
at the lower-level one (that is at the level of the architecture).

In their work Adve and Hill [1990] propose the DRF0 synchronization model.
Departing from that work, systems satisfying the new weak ordering definition
according to the DRF0 synchronization model are said to satisfy the Data-Race-
Freeness guarantee [Manson et al., 2005], or put more pompously the fundamen-
tal property of relaxed memory models [Saraswat et al., 2007], indicating the
importance of this property. The DRF0 synchronization model requires pro-
grams at the source (high-level) programming languages to be free of data races
in their interleaving semantics. Therefore the synchronization model DRF0 im-
plies that programs that do not have Data Races [therefore, Data Race Free
(DRF)] in sequentially consistent executions of the source programming lan-
guage should behave in the relaxed memory architecture in a sequentially con-
sistent way. Hence, the programmer needs to consider only the interleaving
semantics of her/his source program to guarantee that it does not have data
races, and thereafter reasoning in a sequentially consistent way is sound. A
graphical view of the property is given in Figure 1.1, where we consider the
sets of possible computations of an arbitrary program P . On the left-hand side
of the figure we can see the inclusion relation between the set of all possible
executions of P in the relaxed architecture, under the label Relaxed, the set of
executions of P that are sequentially consistent, under the label SC, and finally
the set of executions of that P that are free of data races, under the label DRF.
Clearly, since the DRF property is defined in terms of sequentially consistent
computations, the set of computations DRF is included in the set SC. In fact,
the problematic computations, in the sense that they are unexpected by the
programmer, are the ones that are allowed by the relaxed semantics but are not
sequentially consistent (that is the ones in Relaxed\SC). Fortunately the DRF
guarantee states that under the condition that all sequentially consistent exe-
cutions are free of data races (that is SC ⊆ DRF ) we have that the three sets
collapse to a single one, as in the right-hand side of the figure. In this picture
there are no problematic computations and thus, the programmer is freed from
thinking about the executions that are not sequentially consistent.

In a way, one can think that the DRF guarantee transfers the importance
of synchronization at the hardware level to the software level. Synchroniza-
tion mechanisms at the software level can greatly vary from simple barriers (or
fences) to more complex mutual exclusion mechanisms such as locks and mon-
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itors, as in the case of Java, which means that many times the translation of
these mechanisms to the lower-level (machine) language is far from trivial.

Another way to look at the DRF guarantee, in fact the view advocated
by Adve and Hill [1990], is as a contract between the programmer and the pro-
gramming environment (that includes the compiler and the hardware among
other components). The idea here is that the environment guarantees that
programs free of data races (for the DRF methodology) have a sequentially
consistent semantics, and the programmer is compelled to write programs that
are free of data races. This view of the DRF guarantee has the advantage
that it enables the use of common optimization techniques for sequential pro-
grams. Compiler writers, and the architecture itself are allowed to perform the
standard (sequential) optimizations provided that these do not tamper with
synchronization mechanisms. The observation to make here is that to write
programs that are free of data races, the synchronization mechanisms provided
by the language have to be used. If optimizations do not exceed the limits (by
reordering, or by speculating) of the synchronization of the program, then one
has the guarantee that at most one thread at a time is accessing each piece of
memory, and therefore it is safe to optimize it according to the rules of sequen-
tial programs. Indeed, one can go a step forward and consider that modifying a
program by making it more synchronized will not incur in sequential consistency
violations. This has been proposed for Java under the name of the “roach motel
semantics” [Manson, 2004], but the Java memory model has been unfortunately
shown to be unsound with respect to this kind of optimization [Ševč́ık, 2009];
a similar account for C and C++ Pthreads is given by Boehm [2007]. Some
recent works consider which optimizations are valid under the view of the DRF
guarantee [Saraswat et al., 2007; Ševč́ık, 2009; Burckhardt et al., 2010].

It is now widely accepted that the DRF guarantee is a good requirement for
high-level programming languages. However, a problem with the DRF guaran-
tee is that to check whether a program is DRF one must consider all possible
computations of the interleaving semantics of that program. To some extent one
can use data-race detection techniques [Abadi et al., 2006; Naik et al., 2006],
but these techniques are not always accurate, even more so for programs using
unconventional synchronization idioms.

Moreover, it is unclear whether data race freeness is a sufficient property.
For instance, to implement high-level synchronization mechanisms (such as locks
and monitors) in a low-level (machine) language one might have to resort to data
races. If we consider an architecture in which the only available synchronization
mechanisms are memory barriers (or memory fences) and compare-and-swap in-
structions, that do not necessarily imply barrier semantics (as it is the case in
the language we will consider in Chapters 3 and 4) data races are needed to
implement mutual exclusion mechanisms [Lamport, 1987]. Indeed, this kind
of architecture is not arbitrary, SPARC [1994] is a good example here. It is
therefore still necessary to have a definition of the semantics of programs con-
taining data races as well, and moreover, to provide properties that guarantee
the sequentially consistent execution of programs possibly with data races. We
will consider these issues in Chapters 3 and 4. These topics are also studied
by Alglave et al. [2010].
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1.4 The Specification of Relaxed Memory Mod-
els

Not only understanding the intuitive behaviors of relaxed memory models is
difficult, but also formalizing their semantics is in general problematic. This is
so because the techniques used in the formalization of relaxed memory models
are inherently more complex than those involved in the semantics of sequential
programs. Let us briefly review the current state of memory model specifica-
tions. We can see that most memory models fit in one or more of the following
categories:

• Informal specifications: Unfortunately, many hardware memory models
descriptions fall in this category. These specification documents gener-
ally include a number of examples with depicted behaviors and some text
stating whether the behavior in question is allowed or not, and why. Such
example programs showing a relaxation of the memory model or a con-
straint imposed by it, are so called litmus tests and are ubiquitous in the
literature of relaxed memory models starting with the early works of Col-
lier [1992].

Salient examples in this category are the Intel’s memory ordering white
paper [Intel Corporation, 2007] and AMD’s memory system descrip-
tion [AMD, 2010], which have recently been reconsidered and formalized
by Sarkar et al. [2009] and Owens et al. [2009]. We could also include
ARM’s memory model documentation [ARM, 2008] and Power’s one [Pow-
erPC, 2009] in this class.

We refer to the works of Zappa Nardelli et al. [2009]; Adve and Boehm
[2010] for a discussion of why this style of specification is not a good
practice. Fortunately, the tendency seems to be towards more formal
specifications as argued by Sewell et al. [2010].

• Axiomatic specifications: Most formal memory model specifications fall in
this category. Unlike the previous category these specifications are math-
ematically sound and define in a precise way the behaviors of programs.

In this category we find the specification of the Sparc memory
model [SPARC, 1994], the Alpha’s memory model [Compaq, 2002], the
Java memory model [Manson et al., 2005] and the formalization of the
x86 model by Sarkar et al. [2009], among others.

This kind of specification is an enormous improvement with respect to the
category we considered above, but it has some limitations. On the one
hand, some axiomatic definitions of memory models are hard to under-
stand [Adve and Boehm, 2010] and even more to practice, in the sense
that knowing whether a certain behavior is possible or not becomes a
daunting task [Ševč́ık and Aspinall, 2008], where “dedicated software” is
needed to deal with these formalizations [Sarkar et al., 2009]. Moreover,
to have reasonably understandable formalizations the partial orders and
axioms involved have to be kept to a small number. We believe that the
failure to keep these orders and axioms to the reasonably understandable
is what has lead to the bugs recently found in Java [Cenciarelli et al.,
2007; Ševč́ık and Aspinall, 2008]; notably Cenciarelli et al. [2007] report
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a counter example to a theorem by Manson et al. [2005]. On the other
hand, this kind of specification is generally ill suited for language-based
techniques that certainly need to deal with the semantics of programs to
guarantee their correctness. Indeed, axiomatic specifications of memory
models do not formally consider the language, but only events represent-
ing memory operations. These reasons motivate our work on operational
specifications of relaxed memory models.

A major difficulty with the formalizations of axiomatic type is that one
needs to consider the validity of certain program behavior by initially pos-
ing a set of events and a number of relations between these events (an
event structure). In some sense the notion of computation as a sequence
of steps generated by the program (as defined by Plotkin [1981]), and even
more the notion of program are absent of the event structure correspond-
ing to a program behavior. For example, the only binding between the
program and the posed events is given by the program order which is, one
among many other orders required to describe a “computation” in the
axiomatic sense. To verify whether a certain result is plausible one cannot
simply enumerate all possible executions of the program. Instead one must
propose an ad hoc candidate event structure and check that all the axioms
required by the formalization are satisfied by the proposed structure. Ver-
ifying that a certain behavior is not possible requires then, proving that
for all candidate instantiation of the components of the formalization at
least one of the axioms does not hold. This kind of formalization is clearly
nongenerative (in the sense of Jagadeesan et al. [2010]), which as we will
see soon limitates its usability.

We will illustrate the kind of reasoning required to deal with axiomatic
formalizations with a small example below.

• Operational specifications: Indeed, it is the thesis of our work that relaxed
memory model formalizations should be operational.

Specifications in this category are provided in terms of abstract state ma-
chines [Shen et al., 1999; Saraswat, 2004], rewriting systems [Boudol and
Petri, 2009, 2010] following the style advocated by Plotkin [1981] or even
event structures [Cenciarelli et al., 1999].

There are not many memory models formalized in this style. Attempts
to provide operational descriptions for relaxed memory models can be
found by Shen et al. [1999], and for the particular case of Java we find the
works of Saraswat [2004]; Cenciarelli et al. [1999] previous to the revision
of the Java memory model and by Cenciarelli et al. [2007]; Jagadeesan
et al. [2010] for the current specification of the Java memory model. We
report [Cenciarelli and Knapp, 2007] that serious problems have been iden-
tified in the work of Cenciarelli et al. [2007]. The proposed formalization
by Jagadeesan et al. [2010] is an overapproximation of the current Java
memory model [Manson et al., 2005], which is justified due to its com-
plexity. The recent C++ memory model [Boehm and Adve, 2008] belongs
to this kind as well. However, the C++ prescribes sequentially consistent
semantics for DRF programs, and it does leave the semantics of programs
with data races undefined. In that sense we can consider that the C++
memory model is trivially operational, relying on the DRF guarantee. Fi-
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[
(a) x := 1 ;
(b) r0 := y

]
‖
[

(c) y := 1 ;
(d) r1 := x

]

Figure 1.2: Axiomatic characterization of example 1.2.

nally, Owens et al. [2009] and Sewell et al. [2010] present an operational
formalization that corresponds to their axiomatic model of the x86 archi-
tecture. Their formalization is very similar to the one presented by Boudol
and Petri [2009] and can be seen as a particular case of this last one.

In our view there are several advantages in having an operational formaliza-
tion, as opposed to an axiomatic one. To start with, we consider that this kind
of formalization is easier to understand and therefore a better tool for the pro-
grammer. Moreover, these models define the possible executions of the program,
which could enable the use of techniques such as model checking [Clarke et al.,
1999] as considered by Atig et al. [2010]. Another advantage is that this ap-
proach enables standard language-based techniques, which in general are proved
correct by means of structural induction principles as proposed by Plotkin [1981]
and Felleisen and Hieb [1992]. This last advantage is not a minor one since it
opens the door to the use of standard static analysis techniques such as type-
systems, something we will exploit in future works.

To emphasize the importance of operational descriptions of memory models
let us do a simple exercise. Let us consider the axiomatic formalization of
Example 1.2 from Section 1.1 in light of the formalization by Alglave et al. [2010].
The example is reproduced in Figure 1.2 with references p and q replaced by
x and y respectively to comply with the example as it is presented by Alglave
et al. [2010]. Moreover, we have annotated the instructions to the left with
letters to represent the events generated by each of them. Thus (a) means the
event generated by the execution of the write of x in the left-hand thread and
so on. To justify that the result r0 = r1 = 0 is possible we have, as required by
axiomatic models, to pose a candidate execution. In the work of Alglave et al.
[2010] a candidate execution X has the following shape:

X = (E, po−→, dp−→, rf−→, ws−−→)

where E is the set of events, in our case simply the set {(a), (b), (c), (d)}; po−→
is the relation conveying the program order among the events of E, in our case

(a)
po−→ (b) and (c)

po−→ (d). We refrain from explaining every single relation
required in this execution witness, referring the reader to [Alglave et al., 2010]

for more details. Suffice it to say that the relation
dp−→, and

ws−−→ are empty for

the example in question. And finally, the relation
rf−→ standing for reads-from
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indicates which write event fulfills a certain read event; in other words w
rf−→ r

means that the event r obtains the value written by the event w. Since in our

case both reads see the initial value for references x and y we can say that
rf−→ is

also empty. So far we have an execution candidate, it remains to be seen whether
this execution candidate is valid according to the axioms of the memory model.
Let us be more abstract from this point on. Indeed, to be to able consider the

axioms one has to build the orders
fr−→, standing for from-read,

ghb−−→ standing
for global-happens-before and numerous other ordering relations among events,
that we refrain from detailing here. Once all these orders are constructed one
can verify the axioms. These axioms, which we will not state, anticipating that
they all hold for the example in question include: uniproc(X) guaranteeing the
consistency of the happens-before relation with the individual program order
of each thread, by checking the acyclicity of the transitive closure of the union
of these orders; thin(X) requiring that values read can be justified by a read in
the computation (cf. thin-air reads in the Java memory model), among many
others. Once more, we invite the reader to check the paper by Alglave et al.
[2010] for further details. A figure, extracted from that work [Alglave et al.,
2010] showing the events and the different orders among them can be found
at the right of Figure 1.2. It should be noticed here that we are not arguing
against the formalization by Alglave et al. [2010], which constitutes a titanic
effort to formalize and clarify existing relaxed memory models, but we intend
to suggest that axiomatic formalizations can, and in general do, become very
quickly unmanageable for nonexperts. Moreover, axiomatic formalizations do
not immediately support language-based techniques for the analysis and veri-
fication of parallel programs. On the other hand operational specifications are
much more tractable in the cases where one can find a good machine abstrac-
tion. The example above is trivial to explain with a semantics with write-buffers
as we considered in Example 1.6.

However, providing an operational formalization for relaxed memory models
is not a straightforward task due to the fact that standard techniques for spec-
ifying the semantics of sequential programming languages do not immediately
translate to relaxed memory models. We already mentioned that sequential
consistency is the only semantics that is an immediate generalization of the se-
mantics of sequential programs. It is the subject of this thesis to present new
techniques for the operational formalization of relaxed memory models.

Before we conclude this introduction to the field of relaxed memory models
we would like to express an opinion. It is beyond doubt that the data-race-
freeness guarantee is a fundamental property for the programmability of relaxed
memory models. Some programming languages, like Ada [Ledgard, 1983], and
the more recent C++ memory model proposal [Boehm and Adve, 2008] consider
that programs with data-races are erroneous and then, these languages provide
interleaving semantics (standing on the data-race-free guarantee) for programs
without errors and no semantics for programs with data-races. This is also the
approach taken by Reynolds [2004] for the formalization of the semantics of
parallel programs. The reasons, at least in the case of C++, for taking this
approach are deep and well justified. This approach has also been considered
for Java, but to preserve Java’s safety guarantees the model had to be extended
to programs containing data races as well. However, the problem with this
approach is that even if data-races are errors, most programming languages do
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not offer the capability of detecting them at runtime without incurring in high
performance penalties. Moreover, programs with such errors many times do not
fail to produce a result; hence, a possibly unnoticed erroneous result. On the
other hand, from the point of view of modularity, it is not always possible to
know whether a call to library code is data-race-free, which could compromise
the correctness of the whole program, since incurring in a data-race renders
the semantics of the program undefined. We think that the memory model
specification for C++ by Boehm and Adve [2008] is a great step forward towards
having a formal and dependable formalization of parallel C++ , but we feel that
the relaxed memory models community has to address the issue of programs
with data-races in a more satisfactory way as discussed in the works by Adve
and Boehm [2010] and Boehm [2009]. We cannot conclude without mentioning
some interesting research in the direction of finding data-races at runtime [Adve
et al., 1991] and raising exceptions [Marino et al., 2010], and detecting data-races
statically [Abadi et al., 2006; Naik et al., 2006].

1.5 Summary of Contributions

The main contributions of this thesis are presented in the following three chap-
ters and can be summarized as follows:

• In Chapter 2 we present an operational semantics for relaxed memory
models with write-buffering capabilities. The novelty of our approach is
that we describe the semantics by means of a standard operational se-
mantics for an imperative core-ML programming language extended with
a dynamic thread creation construct and high-level locks for mutual exclu-
sion. The semantics we provide is simple and covers many of the behaviors
present in realistic memory models, like the Total Store Ordering (TSO)
and the Partial Store Ordering (PSO) memory models of SPARC [1994].

Our semantics can be proved sound with respect to the standard Data
Race Freeness guarantee that we have discussed before. We prove
this result using standard programming languages techniques introduced
by Berry and Lévy [1979]; Lévy [1980] for the λ-calculus. These tech-
niques are pervasive throughout this thesis. The proof of the DRF guar-
antee that we present here is interesting not only for its implications on
programmability, but also because it is a good exercise for our formaliza-
tion techniques, making use of well established theories on programming
languages semantics.

It should be noticed that this chapter is essentially the work presented
in [Boudol and Petri, 2009].

• In Chapter 3 we present an operational approach for speculative computa-
tion for two variations of the language of Chapter 2: one including locks
and the other providing only barriers and a compare-and-swap instruc-
tion for handling synchronization. Speculative computations are mod-
eled in this semantics by generalizing the standard evaluation contexts
by Felleisen and Hieb [1992] to permit computing “ahead of time”. As
part of our formalization we define valid speculations, that in essence
correspond to computations where each thread produces a trace that is
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“equivalent” (according to a definition similar to the equivalence by per-
mutations by Berry and Lévy [1979]) to a sequential execution of the
thread.

Indeed, the speculative techniques we consider are highly motivated by
common relaxed memory model relaxations. We are able, by means of
this speculative semantics, to capture program relaxations that were not
captured by the model of Chapter 2.

An important property of the program speculations treated in this chap-
ter is that the standard data race free guarantee does not hold for the
semantics we consider. We propose a different property for the semantics
of the language with locks, and we prove that this “robustness” property
is enough to guarantee that the results of computations of the speculative
framework are those obtained from sequentially consistent executions. In-
terestingly, for the language without locks, we observe that the standard
data race free guarantee does not help, nor does the property discussed
for the language with locks. We introduce an alternative property which
is based on the reorderings appearing in valid computations. Enforcing
this property requires the use of barriers.

This chapter is based on our previous work [Boudol and Petri, 2010] but
has significant differences with respect to that work, which will be dis-
cussed in more detail in the chapter.

• Finally in Chapter 4 we instantiate the formalizations of Chapters 2 and 3
to the memory models of the Sparc family [SPARC, 1994]. In particular,
the TSO and PSO memory models can be formalized in both the frame-
work of write-buffers, and the one of speculations. We therefore provide
a formal proof that both formalizations are equivalent, that is, departing
from a computation in one of the formalizations we can find one in the
other formalization that has the exact same behavior. This proof provides
an indication that the formalization of speculative computations of Chap-
ter 3 is more general than the one with write-buffers of Chapter 2. In
particular, the RMO memory models can be formalized with the first and
not with the latter.

The technical contents of this chapter have not yet been published.

In order to preserve the homogeneity of this thesis we have not included other
previous works [Huisman and Petri, 2007, 2008] regarding the Java Memory
Model [Manson et al., 2005]. However, it must be acknowledged that those
works strongly influenced the views and results presented in this thesis.

To simplify the presentation and the comparison of the different formal-
izations we use several times the same examples, many of which are standard
in the literature. To ease the readability we have included in Appendix A a
compendium of all the examples of relaxations appearing in the thesis with
references to the pages where they are discussed.
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Chapter 2

An Operational
Formalization of Relaxed
Memory Models: Write
Buffers

In the previous chapter (1) we have argued that there is a significant mismatch
between the expected interleaving semantics of parallel programs and their be-
haviors when running under relaxed memory model architectures. Providing a
comprehensible operational model for relaxed memory architectures is the topic
of this chapter. We will formalize here by means of standard programming
languages techniques, an operational semantics of a high-level programming
language that supports simple, but powerful relaxations with respect to its se-
quentially consistent semantics.

The particular relaxations that we will consider here are introduced by write-
buffering [Dubois et al., 1998]: a technique that reduces the performance penal-
ties induced by the latency of storing data into the main memory by delaying
its completion and continuing, in an asynchronous fashion, with subsequent ac-
tions. We will see that many of the standard relaxations present in common
memory models can be explained through this simple technique.

With the support of this operational semantics, we will prove a standard
property of relaxed memory models, namely the “fundamental property of re-
laxed memory models” [Saraswat et al., 2007] that we have mentioned in the
introduction of the thesis. It might be worth repeating here that this prop-
erty serves as a correctness criterion for relaxed memory models, and at the
same time facilitates the programmability of architectures providing such mod-
els. Moreover, the proof that we present of this result is not only interesting for
its implications, but also for the techniques used. Formalizing the semantics by
means of techniques that are standard in the programming languages literature
makes it possible to reuse well established theories of concurrency and program-
ming languages. To be concrete, we will support our developments by adapting
concepts of the true concurrency and the λ-calculus literature, and the core of
the proof is a simple bisimulation. These concepts should not be particularly
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surprising for readers acquainted with programming languages semantics; and
yet, they seldom appear in the literature of relaxed memory models.

Write Buffering Let us now provide a brief introduction to write buffering,
and its semantical implications. Accesses to the memory have been early iden-
tified as an important bottleneck for the performance of programs that make
heavy use of the memory. The penalties induced by accessing the memory can
be greatly reduced by – relatively simple – hardware optimization techniques
such as caching, pipelining and the buffering of accesses to the memory [Briggs,
1979; Kroft, 1981]. In general these optimizing techniques are innocuous – in the
sense that they do not alter the semantics – for sequential programs. However,
as identified by Collier in his seminal work [Collier, 1992], the rules governing
the execution of parallel programs are modified by adding these optimizations.
In other words, the semantics of parallel programs can diverge from the intuitive
interleaving semantics as a side effect of adding such optimizations. In some
sense, we can think that for parallel programs, these optimizations trade per-
formance for simplicity of programming. Then some questions arise naturally:
Which are the exact behaviors that are introduced by adding such techniques?
And, how can the programmer still guarantee that the execution of parallel pro-
grams will not run into unexpected errors? Clearly, semantical techniques other
than the usual interleaving semantics are required to answer these questions.

Dubois, Scheurich and Briggs, in [Dubois et al., 1998], were among the first
to investigate the semantical effects of buffering memory accesses in multipro-
cessors. In that work they first identify programs whose execution differs from
their expected sequentially consistent semantics when allowing some of these
optimizations. Once these hazards are identified they proceed to propose con-
ditions on programs that suffice to guarantee that these corner cases will not
arrive during the execution; hence, that the programs behave as prescribed by
their sequentially consistent semantics. We take the work of Dubois et. al. as
a starting point to develop an operational semantics1 that accounts for the ef-
fects of write-buffering – in the sense of [Dubois et al., 1998]. However we will
consider a different property to guarantee the sequentially consistent execution
of parallel programs following [Adve and Hill, 1990; Gharachorloo et al., 1990];
namely, the absence of data races (that is concurrent conflicting accesses to the
same reference) in their interleaving semantics. We consider the proof of this
property as an interesting checkpoint of our general approach.

To motivate the topic of write buffering it might be of interest to consider a
classical (see [Adve and Gharachorloo, 1996]), and critical example of a failure
to provide sequentially consistent semantics, we are talking about Dekker’s early
mutual exclusion algorithm (of Example 1.1): flag0 := false ;

if flag1 then
critical section 0

 ‖

 flag1 := false ;
if flag0 then

critical section 1


If we consider that initially the memory locations flag0 and flag0 are set to
true the assignement to the flag by each of the threads communicates to the
other thread its intention to engage in its critical section. Notice that a thread

1Knowledge of [Dubois et al., 1998] is not required to comprehend the contributions of our
work.
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enters its critical section only after verifying that the other one did not signal its
intention to do so as well. It is easy to check that in all sequentially consistent
executions of this code, at most one of the threads reaches its critical section.
However, relaxing the execution order of writes w.r.t. subsequent (in the sense
of the program text) reads permits reading the flag, for instance flag1 for the
thread on the left, before the effects of its previous write, to flag0 in this case,
have been made visible to the other thread. Then both threads can reach their
critical sections; exactly the behavior the algorithm is meant to avoid. One
possible explanation for the reordering of these events, and the one on which
this chapter is based, is the presence of hardware that delays the writes to the
flags instead of performing them immediately.

Another interesting example (also presented in [Adve and Gharachorloo,
1996] and given in 1.6) is the producer-consumer algorithm (also known as safe
publication): [

data := 1 ;
flag := true

]
‖
[

while not flag do skip ;
r := data

]
Here, the thread on the left can obtain an outdated value of data if the update to
flag (initially assumed to be false) reaches the right thread before the update
to data. As we already suggested in the previous chapter, synchronization
mechanisms can prescribe this reordering, and guarantee that events are made
visible in a way that overcomes these problems. We will come back to this point
later.

To describe the behaviors of programs under write-buffering we need to
have a syntactic representation of buffers. However a clarification is due: in
this work we will treat write-buffers as a mere formalization artifact, not nec-
essarily reflecting real hardware architectures. Indeed, the effects introduced
by write-buffering are common to many hardware (or software) optimizations,
such as caching, instruction pipelining, the buffering of memory accesses and
the reordering of instructions performed at compilation just to mention some.
We are clearly inspired by the write-buffering technique, but we do not pretend
model the exact hardware in our semantics; only its behavior.

Let us move on by making the notion of write-buffer more concrete: by write-
buffers we mean mappings from memory locations (or references) to sequences
(with FIFO semantics) of values written to the memory that are pending to be
updated2. Formally, a buffer B is a mapping of the form:

B = {p1 7→ v1
1 . . . v

1
n1
, . . . , pk 7→ vk1 . . . v

k
nk
}

where pi is a memory location and vij is the j-th value that is pending for
update for reference pi. We will represent parallel programs in runtime as trees
containing the threads in the leaves and buffers in the internal nodes. The
syntax for thread systems containing write buffers is given by:

T ::= e | 〈B〉T | (T‖T ′)

where e is an expression of the programming language which represents a thread
of execution. The idea here is that buffers hold values of writes issued by any of

2There are other possible interpretations of write-buffers. We will considered a different
one in subsequent chapters.
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〈B0〉

‖

‖

e0 e1

〈B1〉

‖

〈B2〉

e2

T ’

Figure 2.1: T = 〈B0〉((e0‖e1)‖〈B1〉(〈B2〉e2‖T ′))

the threads that lie under it (in the tree where the root is at the top). One can
think of these thread systems as descending trees with unary nodes containing
buffers, branching nodes separating parallel sub-systems and threads as the
leaves. Thus, the thread system T = 〈B0〉((e0‖e1)‖〈B1〉(〈B2〉e2‖T ′)), where ei
represents an arbitrary thread expression and Bi represents an arbitrary buffer,
can be depicted as in Figure 2.1.

As we said before, the introduction of write-buffers changes the semantics of
writing and reading into the memory. Now a thread writing on a reference p –
as it would result from executing the expression (p := v) – creates a new buffer
containing the value v for reference p, rather than directly updating the contents
of the main memory. Later in the execution of the program, this buffered
update will be lazily propagated towards the main memory. We will make this
intuition formal in the semantic rules that follow. Importantly, to preserve data
dependencies present in the program code, reading a reference p – the result of
reducing the expression (!p) in ML’s notation – must acknowledge the effects of
previous writes to p by the same thread. We will choose here to allow reads to
obtain the last-in pending value in the buffers for that reference. If there is no
such pending value in the buffers the value is retrieved from the memory. An
alternative approach would be to delay the execution of reads until there are
no pending writes on the same reference; this resembles the semantics of the
IBM 370 architecture according to [Adve and Gharachorloo, 1996]. We chose
here the former approach as it is more general, and has interesting semantical
implications that the latter does not have. Then in our formalization reading a
reference p does not constrain pending writes on references other than p.

To better understand this formalization of write buffers let us consider some
classical examples. As a side note on conventions, many of the examples we
will consider here are ubiquitous in the literature of relaxed memory models,
a tradition probably initiated by the work of Collier [Collier, 1992]. These
examples are globally know as litmus tests, and their intention is to prove a
particular relaxation of a memory model w.r.t. sequential executions of the test.
We will follow this tradition by considering these examples as they are presented
in the literature whenever possible. In particular, we will denote by ri references
that are in general considered to be local to a thread (in particular registers).
In our language we do not deal with registers, but we will consistently use
references named ri in a single thread to conform to that rule. Let us now
proceed with the examples.
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Since reads retrieve values of pending writes in the buffers we can see that in
the example that follows (introduced in Example 1.2) – where we assume that
the initial values of p and q are 0:

Example 2.1 (Write Read Reordering).[
p := 1 ;
r0 := (!q)

]
‖
[
q := 1 ;
r1 := (!p)

]
Both reads can result in 0 values at the end of the execution, obtaining as a
final result r0 = r1 = 0, which clearly disagrees with the standard interleaving
semantics of the program. To show how this could happen it suffices to execute
the writes of p and q first obtaining the following trace (where we include the
buffers to the left of each thread):

∅
[
p := 1 ; r0 := (!q)

]
‖ ∅

[
q := 1 ; r1 := (!p)

]
∗−−→ 〈[p← 1]〉

[
r0 := (!q)

]
‖ 〈[q ← 1]〉

[
r1 := (!p)

]
∗−−→ 〈[p← 1]〉

[
r0 := 0

]
‖ 〈[q ← 1]〉

[
r1 := 0

]
in which we have an intermediate configuration where the two writes are buffered
and the reading redexes are enabled. Since no pending updates on q is present
in the buffer of the left thread, the read returns the initial value in the memory,
and similarly for the thread on the right and reference p reaching the third
configuration in the trace. This kind of behavior is sometimes described as a
relaxation of the write to read order, following [Adve and Gharachorloo, 1996],
and symbolically denoted by W→ R.

Another significant relaxation provided by the kind of buffers considered here
is the reordering of writes, which allows writes to different references – obviously
reordering writes on the same reference would violate the sequential semantics –
to reach the memory in a different order than the one imposed by the program.
This characteristic is called the write to write ordering relaxation in [Adve and
Gharachorloo, 1996], and it is denoted by W→W. Let us illustrate it with
the Example 1.3 of the previous section.

Example 2.2 (Write Write Reordering).[
p := 1 ;
q := 1

]
‖
[
r0 := (!q) ;
r1 := (!p)

]
Thus, in the example above a possible result (assuming in the initial memory
p = q = 0) is r0 = 1 and r1 = 0, which can happen if the buffer update of
q reaches the memory before that of p. The capability of reordering writes to
different references in the buffers is called jockeying in [Dubois et al., 1998].

To finish with examples of the relaxations of this chapter let us consider the
following one.

Example 2.3 (Read Own Write Early). p := 1 ;
r0 := (!p) ;
r1 := (!q)

 ‖

 q := 1 ;
r2 := (!q) ;
r3 := (!p)


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As usual, we take the initial memory to contain a 0 for every reference. This
example is slightly more intricate than the previous ones. One can observe
that the first write and the first read of each thread are on the same reference;
which makes them conflicting actions, and thus are not affected by the W→ R
relaxation we discussed before. We have thus far not talked about relaxing the
order of reads w.r.t. subsequent reads, which indeed is not a behavior introduced
by write buffering alone. So one might ask, considering that no read to read
reordering is available: is r0 = r2 = 1 and r1 = r3 = 0 a possible result of this
program? It could be surprising to see that the behavior is actually possible.
The key insight here is that, as we briefly mentioned, reads are allowed to
retrieve their contents from buffers yet to be updated. Thus, the first read
of each thread is “forced”, by the sequential dependencies of the program, to
read its previous update to the same reference. However, these updates need
not be visible to the other thread at the time of the second read, and thus
a value of 0 can be returned for the second read. This relaxation w.r.t. the
sequentially consistent semantics cannot be simply stated in terms of reordering
of actions of one kind w.r.t. actions of another (or the same) kind. In [Adve
and Gharachorloo, 1996] this relaxation is know as the capability to read own
writes early and it is common to many memory models [SPARC, 1994; Intel
Corporation, 2007; AMD, 2010; PowerPC, 2009; ARM, 2008].

Let us conclude this introduction by providing a small summary of the relax-
ations allowed by write-buffering as considered here, and by providing a brief
description of our approach. We will in the following sections present a core
high-level parallel programming language and two different operational seman-
tics for it. The former is the standard interleaving semantics of the language,
the later one includes the write-buffers we have introduced above. The seman-
tics with write-buffers allows for many standard memory model relaxations, in
particular, it allows for write read reordering (W→ R), it allows for write write
reordering (W→W) and it allows thread to see their own writes early. With
the formalization of these two semantics at hand, we will be able to prove that
our semantics of write-buffers supports the standard data race freeness guaran-
tee of relaxed memory models.

2.1 The Language

To highlight the important aspects of relaxed memory models without obfus-
cating the technical definitions with unnecessary constructs we have chosen a
simple language close to core ML; that is a call-by-value imperative λ-calculus
augmented with two concurrency constructs; namely, thread creation and a
block-based locking construct. The syntax of the language is the following:

v ::= x | λxe | tt | ff | () values

e ::= v | (e0e1) | (if e0 then e1 else e2) expressions

| (ref e) | (! e) | (e0 := e1)

| (thread e) | (with ` do e)

where x is a variable belonging to the set Var , constants tt and ff correspond
to boolean values – which for simplicity are the only values available at the
source language. We will generically denote the set of values of the language
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by Val . Functions are defined by means of the λxe, which binds the variable
x in the expression e. Expressions will be regarded up to α-conversion, i.e.
up to the renaming of bound variables. We denote by e{x 7→ e′} the capture
avoiding substitution of the free occurrences of variable x in e by the expres-
sion e′. We shall use the notation (let x = e0 in e1) which is syntactic sugar
for the expression (λxe1e0), which will also be denoted by e0 ; e1 whenever x
does not occur free in e1. The expressions of the language are very standard
comprising applications, conditionals and imperative constructs for: reference
creation (ref e), dereferencing (! e) and memory update (e0 := e1). We have also
included a construct for creating parallel threads (thread e) and a block-based
synchronization construct (with ` do e), where ` is taken from an infinite set
Locks of locks, and whose intended semantics is to exclusively acquire the lock
`, reduce the expression e and release the exclusive access on `.

One can observe that we have not included syntax for recursion. This is not
a weakness of our approach since adding it would not pose any difficulties. We
do not add it here simply for perspicuity.

In order to describe the operational semantics of the language we need to
introduce some run-time values and expressions. Firstly, to manage the memory
we introduce the set Ref of reference names, ranged over by p, q, . . . , which
are values in the run-time language. We assume that Ref is a disjoint set from
Locks, and represents the set of references in the memory (also called memory
locations, addresses, or pointers). Secondly, we need to introduce the expression
(e\`) that represents that the expression e is being evaluated while holding the
lock `. Thus the run-time language becomes:

p, q . . . ∈ Ref references

v ::= · · · | p run-time values

e ::= · · · | (e\`) run-time expressions

where we use dots to avoid repeating the productions that were presented before.

We follow the approach of [Felleisen and Hieb, 1992] to describe the transi-
tions of the call-by-value semantics of our language, by decoupling the run-time
expression e into an evaluation context, defined by the grammar E below, and
a redex to be reduced, defined by r below. Evaluation contexts are just expres-
sions of the language where some subexpression has been replaced by a hole
(denoted by []). As it is standard, we denote by E[e] the expression resulting
from filling the hole in E with the expression e.

E ::= [] | (E e) | (vE) evaluation contexts

| (ref E) | (! E) | (E := e) | (v := E)

| (if E then e0 else e1) | (E\`)

r ::= (λxev) | (ref v) | (! p) | (p := v) redexes

| (if v then e0 else e1) | (thread e)

| (with ` do e) | (v\`)

Clearly, there are expressions that represent errors in the computation, for
example dereferencing a value other than a reference is an erroneous situation.
This is expressed in the following definition:
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Definition 2.4 (Faulty expression). We say an expression e is faulty if it
contains a subexpression which has any of the following forms:

• e = (ve′), where v is not a functional value (i.e. v does not have the form
(λxe′′), for every x and e′′), or
• e = (!v) or e = (v := e′), where v /∈ Ref , or
• e = (if v then e0 else e1), where v is not a boolean value (i.e. v /∈ {tt ,ff }).

An important property of evaluation contexts is that: every nonfaulty ex-
pression is either a value or it can be uniquely decomposed into an evaluation
context and a redex. The evaluation contexts we have defined here impose a call-
by-value reduction strategy for our language. We establish the above intuition
formally in the following lemma:

Lemma 2.5. For any expression e of the run-time language, either e is a value,
or there are unique E, an evaluation context, and e′, a redex or a faulty expres-
sion, such that e = E[e′].

Proof. By induction on the expression e.

2.2 The Semantics

We will define now the call-by-value semantics – which we will regard as the
reference semantics – of our language. This semantics will be presented in two
phases: in a first phase we define the semantics of expressions, which correspond
to the execution of single threads; in a second phase we introduce global con-
figurations, that coordinate in a coherent way the steps of the different threads
and their relation with the global store and state of locks. In fact, actions β,
↙ and ↘ are not necessary to coordinate different threads, since these actions
are effect free; however we shall have a use for them in the sequel. This style
of presenting the semantics in two stages will be recurrent along this document.
To be able to compose different threads in the global semantics we will need
to know which is the action being performed in each step taken by the thread.
Hence, we use labeled transitions to describe the semantics of single threads,
where labels represent the action being taken. The set Act of actions is given
by:

a ∈ Act ::= β | ↙ | ↘ | νp,v | rdp,v | wrp,v | spwe |
y
` |

x
`

where e is a closed expression in the action spwe. Then, reducing an applica-
tion generates a β labeled transition; taking the then branch of a conditional
generates the ↙ action, and taking the else branch produces ↘; creating a new
reference p with a value v – assumed to be closed – is denoted by νp,v; reading
the value v from the reference p is denoted by rdp,v, and similarly writing is
denoted by wrp,v – here, again, we assume the value v to be closed –; spawning
a new thread to execute closed expression e generates the action spwe; finally,

acquiring the lock ` is denoted
y
` and, symmetrically, releasing it is denoted by

x
` .
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E[(λxev)]
β−→ E[{x 7→ v}e]

E[(if tt then e0 else e1)]
↙
−→ E[e0]

E[(if ff then e0 else e1)]
↘
−→ E[e1]

E[(ref v)]
νp,v−−→ E[p]

E[(p := v)]
wrp,v−−−→ E[()]

E[(! p)]
rdp,v−−−→ E[v]

E[(thread e)]
spwe−−−→ E[()]

E[(with ` do e)]
y
`−→ E[(e\`)]

E[(v\`)]
x
`−→ E[v]

Figure 2.2: Single expression operational semantics

2.2.1 The Semantics of Single Expressions

The full semantics of expressions (or single threads) is presented in Figure 2.2.
The most salient aspects of these transitions are the rules for reading and ac-
quiring locks. In the first case one can notice that the value read (namely v
in the action rdp,v) is not necessarily present in the left-hand side of the pro-
duction; we can consider the value v as being guessed, we will later see that it
must agree with the contents of the store at the time the action happens in the
global semantics. Similarly, in the case of acquiring the lock ` (in the action
y
` ) the lock is guessed to be free; accordingly we will check this condition when
composing threads in the global semantics.

2.2.2 The Global Semantics

To describe the transitions of multithreaded programs we need to compose the
semantics of single threads, as given previously, into a single configuration that
includes the threads, the store and the state of the locks involved in the pro-
gram. Let us start by defining the configurations of the run-time semantics.
Configurations have the form:

C = (S,L, T ) strong configurations

which comprises: a store – also called the memory – S : Ref ⇀ Val , which
is a mapping from a finite set dom(S) of references to values, representing the
contents of the main memory; a set of locks L, representing the locks currently
held by some thread in the configuration; and finally a thread system T , which
is generated by the syntax:

T ::= e | (T‖T ′) strong thread systems

where we denote by (T‖T ′) the parallel composition of the threads in T and
T ′. In what follows we will qualify these configurations as strong to distinguish
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them from another kind of configurations that will be presented in Section 2.4.
For reasons that will be established later, we do not assume here that parallel
composition is commutative nor associative.

As usual, we shall consider only well-formed configurations, meaning that
any reference that occurs somewhere in the configuration belongs to the domain
of the store, that is, it is bound to a value in the memory – we shall not define
this property, which is preserved in the operational semantics, more formally.
For instance, if e is an expression of the source language, the initial configuration
(∅, ∅, e) is well-formed.

To focus on a certain thread we introduce thread system contexts, generated
by the following definition:

T ::= [] | (T‖T ) | (T‖T)

which represents a thread system with a hole []. As the reader might expect the
notation T[T ] represents the thread system context T where the hole has been
replaced by the thread system T .

In what follows, we will not only need to know what action is being taken, but
also where in the thread system the action happens. For that purpose we adopt
the notion of occurrence. These occurrences are unique identifiers of subtrees in
the thread system. The set Occ of occurrences contains sequences of symbols �
and �, meaning the left and the right subtrees in a parallel composition. We will
use the variable occ or simply o to range over the set Occ. We shall use various
kinds of sequences in the following, which we collectively denote by σ, ξ . . . (and
later also γ), and therefore we fix a few notations regarding sequences.

Notation 2.6. We denote by ε the empty sequence, and the concatenation of
the sequence σ′ after the sequence σ is denoted σ · σ′. The prefix ordering is
denoted ≤, that is, σ ≤ σ′ if σ′ = σ · σ′′ for some σ′′. The length of σ is |σ|.

For each thread system T and occurrence occ, we define the subsystem (sub-
tree) T/occ of T at occurrence occ – if this is indeed an occurrence of a subtree
–, in the obvious way, that is:

T/ε = T

(T‖T ′)/ � · occ = T/occ

(T‖T ′)/ � · occ = T ′/occ

(otherwise undefined), and we define similarly T/occ. The (unique) occurrence
of the hole in a parallel context, that is occ satisfying T/occ = [], is denoted
@T. Whenever occ is an occurrence in T , that is T/occ is defined, we denote by
T [occ ← T ′] the thread system obtained from T by replacing the subtree T/occ
at occurrence occ by T ′ (we omit the formal definition, by induction on occ,
which should be obvious). With the notion of an occurrence, we are able to say
where, that is, in which thread, a reduction occurs: an occurrence is similar to
a thread identifier in a thread system.

The global operational semantics, again given by means of transition rules,
is presented in Figure 2.3. The labels that decorate the transitions indicate the
action being produced (a) and where (or which thread) in the thread system
the step is taken (@T). We will use this information in the following proofs.
One can observe that at each step a single thread from the thread system is
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e
a−→ e′

(S,L,T[e])
a−−→

@T
(S′, L′,T[e′])

(∗)
e

spwe′′−−−−→ e′

(S,L,T[e])
spwe′′−−−−→
@T

(S,L,T[(e′‖e′′)])

Figure 2.3: Multithreaded semantics: Strong (Interleavings)

nondeterministically chosen and performs a step atomically. The resulting store
S′ and lock pool L′ after a step depend on the action a being taken by the
chosen thread as follows – where we denote by S[p← v] the store resulting from
updating the reference p with the value v:

(∗) =



a ∈ {β,↙,↘} ⇒ S′ = S & L′ = L

a = νp,v ⇒ p /∈ dom(S) & S′ = S ∪ {p 7→ v} & L′ = L

a = rdp,v ⇒ S(p) = v & S′ = S & L′ = L

a = wrp,v ⇒ S′ = S[p← v] & L′ = L

a =
y
` ⇒ ` /∈ L & S′ = S & L′ = L ∪ {`}

a =
x
` ⇒ S′ = S & L′ = L\{`}

Hence, the global semantics binds the actions of the different threads in a co-
herent way, with their effects being reflected in the global configuration. For
instance, the read transition requires that the contents of the reference being
read coincide in the store with the returned value, and a similar argument ap-
plies for acquiring a lock. Moreover, write actions modify the store, thus making
the side effects of each thread immediately visible to all the other threads in
the system. We shall not develop more on this semantics, as it is the standard
interleaving semantics for this language.

We will consider the relation “−→” between configurations such that C −→ C ′

if there exists a and o such that C
a−→
o
C ′; and we will denote by C

∗−→ C ′ the

reflexive and transitive closure of the “−→” relation. We say that C ′ is reachable
from C if C

∗−→ C ′. Our main result will be established for configurations
that are reachable from an initial configuration of the form (∅, ∅, e) where e is
a closed expression of the source language. More generally, we shall consider
regular configurations, where at most one thread can hold a lock, and where
a lock held by some thread is indeed in the lock context. This is defined as
follows:

Definition 2.7 (Regular Configuration). A configuration C = (S,L, T ) is reg-
ular if and only if it satisfies

i) if T = T[E[(e\`)]] ⇒ ` ∈ L, and
ii) if T = T0[E0[(e0\`)]] = T1[E1[(e1\`)]] then T0 = T1, E0 = E1 and

e0 = e1.

For instance, any configuration of the form (∅, ∅, e) where e is an expression of
the source language is regular. The following should be obvious:

Remark 2.8. If C is regular and C → C ′ then C ′ is regular.
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For the sake of simplicity, the only available values of our language are
boolean values; however we prefer to present examples (or litmus tests) in their
traditional form: that is using integer values. We will mostly use the values 0
and 1 which are trivially convertible to boolean values. Notice that the inclusion
of integers in our language would be trivial as well. Let us reconsider a possible
interleaving of the Example 1.2 presented in the introduction of this chapter,
where we assume the initial store contains p and q with the default value of 0,
and we leave β steps implicit:(

{p 7→ 0, q 7→ 0}, ∅, p := 1 ; r0 := (!q) ‖ q := 1 ; r1 := (!p)
)

wrp,1−−−→
�(

{p 7→ 1, q 7→ 0}, ∅, r0 := (!q) ‖ q := 1 ; r1 := (!p)
)

wrq,1−−−→
�(

{p 7→ 1, q 7→ 1}, ∅, r0 := (!q) ‖ r1 := (!p)
)

rdq,1−−−→
�(

{p 7→ 1, q 7→ 1}, ∅, r0 := 1 ‖ r1 := (!p)
)

rdp,1−−−→
�(

{p 7→ 1, q 7→ 1}, ∅, r0 := 1 ‖ r1 := 1
)

Notice that this is just one of the possible executions. It should be clear that no
matter which thread starts first, the execution must start with a write to the
store, which disallows the result r0 = r1 = 0 discussed in the introduction. We
will reconsider this example when presenting the relaxed semantics in the next
section.

To state the core result of this chapter, namely the fundamental property of
relaxed memory models, we need first to define precisely what a data-race is,
and then, what it means for a program to be free of data races.

Definition 2.9 (Data-Race). We will say that a configuration C = (S,L, T )
contains a data-race whenever T = T[E[(p := v)]] = T′[E′[r]] with T 6= T′ and
r ∈ {(!p), (p := w)|w ∈ Val}.

In other words, C has a data-race if there are two threads that can immediately
perform actions on a certain reference p, such that at least one of the actions is
a write, and the other is either a read or a write. This is a standard definition in
concurrency theory. In particular, we do not consider concurrent accesses on the
same lock to be a data-race. An alternative definition of data-race is presented
in [Lamport, 1978], which required a definition of when an event happens before
another event in the execution and two events are considered to form a data-race
if they are not ordered by the happens-before relation. This definition is most
commonly found in works regarding relaxed memory models, however programs
containing data races according to this later definition can be proved to contain
data races as in our more primitive definition [Boyland, 2008; Boehm and Adve,
2008]. We will discuss the happens before relation in the next section.

The definition of data-race can be easily lifted to programs.

Definition 2.10 (DRF Program). We say a configuration C is data-race free
(DRF for short) if every configuration C ′ reachable from C by the interleaving

semantics (i.e. C
∗−→ C ′) contains no data-race. An expression e is data-race

free if the configuration (∅, ∅, e) is data-race free.

In the semantics of this chapter the lock construct is completely abstract. We
do not discuss here the implementation of such a construct. However, it must
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be acknowledged that such mechanism has to be implemented in a lower-level
language to provide a compiler for the language of this section. In general, lock
constructs will also be implemented using shared memory, such as the one we
have in the store S of our configurations. Interestingly, most implementations
of this construct will involve some kind of data-race in the language used to
implement the source language considered here.

2.3 Concurrency, Conflict and Event Ordering

Inspired by the literature on true concurrency semantics [Boudol and Castel-
lani, 1988, 1994] and Berry and Lévy’s notion of equivalence by permutation of
transitions in a computation [Berry and Lévy, 1979], we will formally define
when an event “inherently precedes” another event. In some sense, this defini-
tion relates to the happens-before definition of Lamport [Lamport, 1978], but
we also include the conflict notion into this definition. Some concepts that we
will need in the sequel are those of concurrency, for which we will use the pre-
vious defined occurrences, and conflict, that identifies events that compete in
accessing the memory in a possibly destructive way; meaning that they should
not happen simultaneously to avoid hazardous situations. Also, in general, con-
flicting events cannot be sequentially reordered, since their reordering can lead
to different results even for sequential programs. We notice here that these de-
velopments exhibit a great resemblance with those of [Boudol and Castellani,
1988, 1994].

Intuitively, we say two occurrences o0 and o1 are concurrent if they point to
disjoint subtrees of the thread system in the configuration. This can be easily
observed by comparing the occurrences:

Definition 2.11 (Concurrency). Two occurrences o and o′ are concurrent, in
notation (o ^ o′), if neither is a prefix of the other: (o � o′) & (o′ � o).

We can easily observe that replacing subtrees in disjoint branches of a thread
system renders the same result regardless of the order in which the replacements
are performed.

Remark 2.12. Given a thread system T , and two occurrences o0, o1 ∈ Occ such
that o0 ^ o1 and both T/o0 and T/o1 are defined, then for all T0 and T1 we
have:

(T [o0 ← T0])[o1 ← T1] = (T [o1 ← T1])[o0 ← T0]

Notice that the previous remark applies identically to thread contexts rather
than thread systems. Another property that is also obvious is that parts of the
thread subsystem that are disjoint to the one being updated remain unmodified
after the replacement.

Remark 2.13. Given a thread system T , and two occurrences o0, o1 ∈ Occ such
that o0 ^ o1 and both T/o0 and T/o1 are defined, for all T ′ we conclude that

T/o1 = (T [o0 ← T ′])/o1

The conflict relation, which is standard in concurrency literature, is a binary
relation on actions, whose intended meaning is to relate actions that have effects
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Figure 2.4: Diagram of the Asynchrony Lemma (2.15)

that possibly modify the result of the other related action, or restrict its use.
Thus, a write on reference p and a subsequent read on p are conflicting actions,
since the side effect of writing p generally modifies the result of reading p. To
be more precise, conflict is defined as follows:

Definition 2.14 (Conflict). We define the conflict relation, denoted by #, to
be the following binary relation on actions:

# ,
⋃

p∈Ref , v,w∈Val

{(wrp,v,wrp,w), (wrp,v, rdp,w), (rdp,v,wrp,w)}

∪
⋃

`∈Locks

{
y
` ,

x
` } × {

y
` ,

x
` }

The following asynchrony lemma – for details on the terminology refer
to [Boudol and Castellani, 1988, 1994] – forms the core of the definition of
the permutation equivalence of transitions. The lemma states that whenever
we have two successive transitions that are nonconflicting and concurrent, in
the sense of the above definitions, then the order in which these transitions
are performed is irrelevant as regards the final configuration. A diagram of the
statement of the lemma can be found in Figure 2.4. Alternatively, we could have
proved a diamond property, as depicted in Figure 2.5, as it is the case in [Boudol
and Castellani, 1988, 1994], stating that if there are two concurrent and noncon-
flicting enabled transitions in a certain configuration C0 rendering two different
configurations C and C ′ respectively, then a configuration C1 can be found to
which C and C ′ converge after performing the transition not performed in C.
This will be the formalization of choice for the next chapter.

Lemma 2.15 (Asynchrony). Assuming a well-formed configuration C0 and

given a computation C0
a0−→
o0

C
a1−→
o1

C1 such that ¬(a0 # a1) and o0 ^ o1,

then there exists a unique (up to α-conversion) configuration C ′ with C0
a1−→
o1

C ′
a0−→
o0

C1.

Proof. Let Ci = (Si, Li, Ti), C = (S,L, T ) and C ′ = (S′, L′, T ′). From the
hypotheses we have

C0 = (S0, L0,T0[E0[r0]])
a0−−−→

@T0

(S,L,T0[T ′0]) = C
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which means that T = T0[T ′0], and

C = (S,L,T1[E1[r1]])
a1−−−→

@T1

(S1, L1,T1[T ′1]) = C1

where T ′i = ei if ai 6= spwe′i or T ′i = (ei‖e′i) otherwise. We know that T/o0 =

T ′0 and T/o1 = E1[r1] with o0 ^ o1. That means, from remark 2.13, that
T0/o1 = E1[r1] and therefore there is T′1 (precisely T′1 = T [o1 ← []]) such
that T0 = T′1[E1[r1]], meaning that a1 can be produced as the first step, and
by remark 2.13 a0 can be produced as the second one. It remains to see that
the reordered steps produce the same resulting thread systems T ′i (a single
expression in case both are not spwei actions) and the final stores and lock
pools are the same. To that end, we proceed by case analysis on the actions a0

and a1.

• {a0, a1}∩ {β,↙,↘, spwe′} 6= ∅. These cases are trivial since at least one of
the actions does not modify and/or depend in any way on the store S nor
the lock pool L. Clearly the resulting thread systems are the same and
the lock pool and store only change as defined by the action that uses the
store or the lock pool, if any.

• a0 = wrp,v. Let us be precise in this case, the other cases will fol-
low the same reasoning. We have from hypothesis ¬(a0 # a1) that
a1 /∈ {wrp,w, rdp,w}. Let a1 = wrq,w with q 6= p, then clearly T ′1 = T ′0 = (),
and this is irrelevant of the order in which redexes are reduced, or the store
S and lock pool L, and we have that in one case S1 = (S[p← v])[q ← w]
and on the other case S1 = (S[q ← w])[p← v], which are clearly the same
store. If a1 = rdq,w then we have S′(q) = w = S(q) and thus T ′1 = w in
both cases, and again the final store only depends on a0. The cases of

a1 ∈ {
y
` ,

x
` , νq,w} use the same argument as before.

• a0 = νp,v. Then a1 /∈ {wrp,w, rdp,w}, since the reduction of (ref v) cannot
affect the contents of a different thread (implied by the o0 ^ o1 hy-
pothesis) and the configuration C0 is well-formed. The cases where a1 ∈
{rdq,w,wrq,w} are similar to the previous case. Let us consider the case
where a1 = νq,w: clearly p 6= q because p ∈ dom(S) with S = S0∪{p 7→ v}
and the semantic rule requires that q /∈ dom(S). Again, performing the
actions in the reverse order renders S1 = S ∪ {p 7→ v} ∪ {q 7→ w}, the
order of the unions being irrelevant. The other cases are easy and do not
deserve being developed.

• a0 =
y
` . We have that a1 /∈ {

y
` ,

x
` } and S = S0. Then, the action a1 can

be performed in C0 obtaining C where we know that ` /∈ C. Also, notice
that the effect of a1 on the store S will be directly propagated to the store

S1, and the same happens for the lock pool L1. The case for a0 =
x
` is

similar to this one.

We can now define the equivalence by permutation of transitions on compu-
tations. The intention of the equivalence by permutations is to equalize compu-
tations that are indistinguishable up to the interleaving of actions of different
threads. In other words, two computations will be considered equivalent if their
only difference resides in the order in which actions of different threads are per-
formed; however, the results of reads and writes must be the same. In this
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Figure 2.5: Diagram of the Diamond Property

way, we can consider the classes of executions that are indistinguishable up to
irrelevant interleavings. A computation is a sequence of (decorated) transitions

γ = C0
a1−→
o1

C1 · · · Cn−1
an−−→
on

Cn

More formally, γ is a sequence of steps Ci
ai+1−−−→
oi+1

C ′i such that Cj+1 = C ′j for any

j, but one should notice that, given an initial configuration C0, the sequence of
actions and occurrences is enough to determine the whole computation. Then
the equivalence by permutation is the congruence (with respect to concate-
nation, which, on computations, is only partially defined) on such sequences
generated by the asynchrony property:

Definition 2.16 (Permutation Equivalence). We define the equivalence by per-
mutation of transitions to be the least equivalence ' on computations satisfying
the following conditions:

i) if C
a0−→
o0

C0
a1−→
o1

C ′ with ¬(a0 # a1) and o0 ^ o1, then

C
a0−→
o0

C0
a1−→
o1

C ′ ' C a1−→
o1

C1
a0−→
o0

C ′

where C1 is determined as in the Asynchrony Lemma 2.15;
ii) γ0 ' γ′0 & γ1 ' γ′1 ⇒ γ0 · γ1 ' γ′0 · γ′1.

Some clear consequences of this definition are that if γ ' γ′ then |γ| = |γ′|, and
γ and γ′ perform the same actions at the same occurrences (and in the same
number for each of such pair), possibly in a different order. The main purpose
of this definition is to allow us to formally define an event ordering relation with
respect to a computation γ. To introduce this last notion, let us first see an
example. Let e0 = (p := v), e′0 = (p := v′), e1 = (λx(λzze′0)()) and T = (e0‖e1).
Then for S satisfying p ∈ dom(S) we have

γ = (S, ∅, T )
wrp,v−−−→
�

(S′, ∅, (()‖e1))
β−→
�

(S′, ∅, (()‖(λzze′0))

wrp,v′−−−−→
�

(S′′, ∅, (()‖(λzz())) β−→
�

(S′′, ∅, (()‖())
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This computation is equivalent to the following one:

γ′ = (S, ∅, T )
β−→
�

(S, ∅, (e0‖(λzze′0)))
wrp,v−−−→
�

(S′, ∅, (()‖(λzze′0))

wrp,v′−−−−→
�

(S′′, ∅, (()‖(λzz())) β−→
�

(S′′, ∅, (()‖())

where we have permuted the first two steps. We cannot go any further, since the
second step in this computation (γ′) is conflicting with the third, which in turn
is not concurrent with the last one (these last two steps are in “program order”
since they are performed from the same thread). In this example we can say
that the first write (wrp,v) “inherently precedes” (this will be formally defined
below) the second one, and also precedes the second β reduction. Moreover the
first β reduction “inherently precedes” the second write (wrp,v′) and the second
β reduction. This example shows that a given action, say wrp,v in the example
above, may have in a given computation several different relations with another
action, for example β in γ. Then the notion of action, even if complemented
with its occurrence, is not the right basis to define the ordering we are looking
for. We have to introduce the notion of an event, as follows:

Definition 2.17 (Events). An event in a computation γ is a pair (a, o)i deco-
rated by a positive integer i, where the action a is performed at occurrence o in
the computation γ, and i is less than the number of such pairs (a, o) in γ (that
is, (a, o)i is the i-th occurrence of action a performed at occurrence o in γ). We
denote by Events(γ) the set of events determined by the computation γ.

For instance, for the computation γ above, we have

Events(γ) = {(wrp,v, �)1, (wrp,v′ , �)
1, (β, �)1, (β, �)2}

For a given computation

γ = C0
a1−→
o1

C1 · · · Cn−1
an−−→
on

Cn

we denote by ∂(γ) the sequence (a1, o1)1 · · · (an, on)k of events of γ in temporal
order, that is, as they appear successively in γ. We can finally define the event
ordering determined by a computation:

Definition 2.18 (Event Ordering). Given a computation γ, we say that an
event (a, o)i ∈ Events(γ) inherently precedes (a′, o′)j ∈ Events(γ) in γ, in no-
tation (a, o)i ≤γ (a′, o′)j, if and only if in every γ′ ' γ, the i-th occurrence of
(a, o) precedes the j-th occurrence of (a′, o′).

It should be clear that this is indeed an ordering, that is, a reflexive, transitive
and anti-symmetric relation. Moreover, two conflicting actions can never be
permuted, and therefore if

∂(γ) = σ0 · (a, o)i · σ1 · (a′, o′)j · σ2

with a # a′ then (a, o)i ≤γ (a′, o′)j . For instance, in the computation γ above,
we have

(wrp,v, �)
1 ≤γ (wrp,v′ , �)

1 ≤γ (β, �)2
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and

(β, �)1 ≤γ (wrp,v′ , �)
1

The event ordering in a computation contains in particular the “program order,”
that relates actions (a, o) and (a′, o′) in temporal order, such that o ≤ o′ (this
ordering also takes into account the “creation of redexes” identified by Lévy
[Lévy, 1980] in the λ-calculus).

Remark 2.19. Let γ be a computation such that ∂(γ) = σ0·(a, o)i·σ1·(a′, o′)j ·σ2

and o ≤ o′ then (a, o)i ≤γ (a′, o′)j.

To conclude this section we prove a property of DRF programs that will
be crucial in establishing our main result. This property shows in particular
that if, in a computation starting from a DRF configuration, two conflicting
actions are performed in different threads, then in between the two there must

be synchronization, that is an action
x
` of releasing a lock. Let us define:

Definition 2.20 (Well-Synchronized). A configuration C is well-synchronized
if, for any computation

C = C0
a1−→
o1

C1 · · · Cn−1
an−−→
on

Cn

where ai # aj (with i < j) and oi ^ oj then there exists h such that i 6 h 6 j,

ah =
x
` and oi ≤ oh.

This is similar to the DRF0 property of [Adve and Hill, 1990]. To show that
DRF programs are well-synchronized, we first need a lemma stating that, two
events can be moved to occur in the reverse temporal order in a computation γ,
if the first of them (in the serialization order of γ) does not inherently precede
the second one:

Lemma 2.21 (Transposition). Let γ be a computation such that

∂(γ) = σ0 · (a, o)i · σ1 · (a′, o′)j · σ2

with (a, o)i 6≤γ (a′, o′)j. Then there exists γ′ with γ′ ' γ and such that
∂(γ′) = σ0 · σ′1 · (a′, o′)j · (a, o)i · σ′′1 · σ2.

Proof. The proof is given by induction on |σ1|. If σ1 = ε, we have neither o ≤ o′
nor a # a′, since otherwise we would have (a, o)i ≤γ (a′, o′)j , and therefore
o ^ o′ and ¬(a#a′). Then by definition of the permutation equivalence we can
commute these two steps. If σ1 = (a′′, o′′)h · ξ there are two cases:

• (a′′, o′′)h 6≤γ (a′, o′)j . In this case we apply twice the induction hypothesis,
to transpose first (a′′, o′′)h and (a′, o′)j , and then the latter with (a, o)i.

• (a′′, o′′)h ≤γ (a′, o′)j . We do not have o ≤ o′′, since otherwise we would
have (a, o)i ≤γ (a′, o′)j by Remark 2.19 and the transitivity of ≤γ , and
therefore o ^ o′′. Similarly, it is impossible that a # a′′, and then by
definition of the permutation equivalence we can transpose (a, o)i with
(a′′, o′′)h, and conclude using the induction hypothesis.
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We can now establish a connection between data race free configurations and
well-synchronized ones.

Proposition 2.22. DRF regular configurations are well-synchronized.

Proof. We will show that for any computation γ starting from a DRF regular
configuration C, if

∂(γ) = σ0 · (a, o)i · σ1 · (a′, o′)j · σ2

with (a, o)i ≤γ (a′, o′)j and o ^ o′, then there exist `, o′′, k, ξ0 and ξ1 such that

(a, o)i · σ1 · (a′, o′)j = ξ0 · (
x
` , o′′)k · ξ1 with o ≤ o′′, i.e. C is well-synchronized.

We proceed by induction on |σ1|.

• σ1 = ε. In this case we must have a#a′, since otherwise we could commute
(a, o)i and (a′, o′)j , contradicting (a, o)i ≤γ (a′, o′)j . Then we proceed by
cases on a#a′. If a, a′ ∈ {wrp,v, rdp,v} for some p and v, where either a or a′

is wrp,v, then e is not data-race free, since o ^ o′. Finally the only possible

case is a, a′ ∈ {
y
` ,

x
` } for some `. Since one cannot acquire twice the same

lock consecutively in a computation, either a or a′ is
x
` . Moreover, since C

is a regular configuration, the same holds for the configuration performing

(a, o)i, by Remark 2.8, and therefore either a =
x
` , or a =

y
` , a′ =

x
` and

o′ = o which contradicts o ^ o′.
• σ1 = (a′′, o′′)h · ξ. We distinguish again two cases.

1. (a′′, o′′)h ≤γ (a′, o′)j . If o′′ ^ o′ then we use the induction hypothesis
to conclude. Otherwise, we have o′′ ≤ o′, and since o ^ o′ this implies
o′′ ^ o, because if o′′ < o then we would also have o ≤ o′′ which in
turn implies o ≤ o′, contradicting o ^ o′. Now if a# a′′ we argue as
in the base case, and otherwise we can commute (a, o)i with (a′′, o′′)h,
and then apply the induction hypothesis.

2. (a′′, o′′)h 6≤γ (a′, o′)j . In this case we use the Transposition Lemma
above, and conclude using the induction hypothesis.

2.4 The Weak Semantics

The main contribution of this chapter is the characterization of a relaxed mem-
ory model for the language of the previous section by means of a small-step
operational semantics, and the proof of the fundamental property of memory
models for this semantics. As mentioned in the introduction of the chapter,
the key additional ingredient of this formalization is write-buffers. Even if the
formalization of buffers presented here is inspired by the work of Dubois et al.
[1998] it is not bound to a particular machine architecture. Instead here we
try to reflect any hardware or software mechanism whose effect is to delay the
commitment of writes into the main store. Some instances of such mechanisms
are the reordering of memory accessing commands (at any level, ranging from
compiler optimizations to pipelining at the hardware level), noncoherent caching
and write-buffering just to mention some.
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Let us now introduce some notations to talk about buffers. The precise
meaning of buffers is captured by the following syntax:

B ::= ε | B / [p 7→ v]

where [p 7→ v] is a pair consisting of p ∈ Ref ; and v, a run-time value of the
language. This syntax corresponds to queues where ε is the empty list con-
structor and / is the cons, in reverse order, i.e. it adds the element at the end
of the list. We prefer to have a concrete representation of buffers rather than
having an abstract one, because, as we will see in Chapter 4, different interpre-
tations of buffers (as a function, or as a sequence) render different semantics,
that correspond to different memory models. In this chapter we will regard a
buffer as determining a partial function from a set of references to sequences of
values. That is, we denote by B(p) the (FIFO) ordered list of pending writes
on reference p in the buffer B as defined below, where we use the notations for
sequences that we introduced in 2.6:

B(p) ,


ε if B = ε

B′(p) if B = B′ / [q 7→ v] & p 6= q

B′(p) · v if B = B′ / [p 7→ v]

We will use the notion of buffers as a sequence in Chapter 4.
By abuse of notation we will denote by B / B′ the concatenation of two

buffers defined as follows:

B / B′ ,

{
B if B′ = ε

(B / B′′) / [p 7→ v] if B′ = B′′ / [p 7→ v]

In this chapter, two buffers determining the same function are equivalent:

Definition 2.23 (Buffer equivalence). The buffers equivalence relation is the
least equivalence ≡ between buffers satisfying:

p 6= q

B0 / [p 7→ v] / [q 7→ w] / B1 ≡ B0 / [q 7→ w] / [p 7→ v] / B1

This definition implies that for all buffers B and B′ with B ≡ B′ we have that
for all reference p the sequence of values for p in B is the same as the one in B′,
i.e. B(p) = B′(p). For the rest of this chapter we will consider buffers up to the
≡ equivalence.

We can now incorporate the notion of buffers into the thread system. The
definition of thread systems containing buffers is as follows:

Θ ::= T | 〈B〉Θ | (Θ‖Θ′) weak thread systems

An example of one such system was presented in the Figure 2.1 in the introduc-
tion of the chapter. Now configurations are triples of the form:

C = (S,L,Θ) weak configurations

These configurations are called weak as opposed to the strong configurations
that we presented earlier. Again, we will only consider well-formed weak con-
figurations, which in particular adds the constraint that if in the configuration
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e
a−→ e′ a 6= spwe′′ ,wrp,v

(S,L,Θ[e])
a
↪−→
@Θ

(S′, L′,Θ[e′])
(∗)

e
spwe′′−−−−→ e′

(S,L,Θ[e])
spwe′′
↪−−−→

@Θ
(S,L,Θ[(e′‖e′′)])

e
wrp,v−−−→ e′

(S,L,Θ[e])
wrp,v
↪−−−→

@Θ
(S,L,Θ[〈ε / [p 7→ v]〉e′])

Figure 2.6: Multithreaded Semantics: Relaxed

(S,L,Θ) the reference p appears in the domain of a buffer contained in the
thread system Θ, then p ∈ dom(S). Thread system contexts also need to be
modified to encompass the inclusion of write-buffers, they become:

Θ ::= [] | 〈B〉Θ | (Θ‖Θ) | (Θ‖Θ)

As we mentioned earlier, the semantics of reads will return the value of the
latest pending write on any of the buffers visible to the thread; and if there is
no such pending write, it will return the current value in the store. To give a
precise statement for that intuition we adopt the notation (S,Θ)(p) to denote
the latest value of p in the buffered thread context Θ and store S. However,
before defining it we need an auxiliary function that retrieves the ordered list
of values from the buffers in the path from the hole in the context to the root,
denoted here by Θ(p):

Θ(p) ,


ε if Θ = []

B(p) ·Θ′(p) if Θ = 〈B〉Θ′

Θ′(p) if Θ = (Θ′‖Θ) or Θ = (Θ‖Θ′)

Now obtaining the latest visible value for reference p on a certain weak thread
context Θ and store S is defined as follows:

(S,Θ)(p) , last(S(p) ·Θ(p))

We will denote by Θ† the fact that there are no pending writes on any reference
in the buffers from occurrence of the hole in the context to the root of the thread
system, to be precise:

Θ† ⇔def ∀p. Θ(p) = ε

Finally, before defining the semantics we need to extend the notion of oc-
currence, defined in the previous section, to buffered thread systems. For that
purpose we will include a new symbol ↓, denoting the fact that the the occur-
rence has a buffer at this position. Then, the definition of subtree at occurrence
occ is redefined in the obvious way, that is:

〈B〉Θ/(↓ · occ) = Θ/occ

where the remaining clauses remain the same.
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We can now define the weak semantics (C
a
↪−→
o
C ′) of our language in Fig-

ures 2.6 and 2.7 on the previous page, where we have:

(∗) =



a ∈ {β,↙,↘} ⇒ S′ = S & L′ = L

a = νp,v ⇒ p /∈ dom(S) & S′ = S ∪ {p 7→ v} & L′ = L

a = rdp,v ⇒ (S,Θ)(p) = v & S′ = S & L′ = L

a =
y
` ⇒ ` /∈ L & S′ = S & L′ = L ∪ {`}

a =
x
` ⇒ Θ† & S′ = S & L′ = L/{`}

Some of the transition rules change w.r.t. the interleaving semantics pre-
sented in Figure 2.3. Let us develop the most salient changes:

1. the write action (wrp,v) does not modify directly the store S but rather
creates a new buffer that is immediately visible only to the thread perform-
ing the write. Thus, the write is delayed for the other threads. We give in
Figure 2.7 the rules that allow such pending writes to propagate through
the thread system hierarchy and eventually modify the store (which we
will also call commit the write).

2. the read operation (rdp,v) inspects the contents of the buffers that affect
the thread performing the action, and retrieves the latest pending write,
if there is one. In case there is no such write the value is retrieved from
the store. The function (S,Θ)(p) takes care of retrieving the latest value
for p that affects the issuing thread.

3. the unlock operation (
x
` ) requires that buffers that directly affect the

thread performing it to be empty. This can be interpreted as a memory
barrier, or a flush instruction that proceeds until all previously delayed
effects (in this case pending writes) have been globally committed, and
affect all other threads. This is the intended meaning of the notation Θ†.
Notice however, that actions to acquire and release locks are atomic, in
the sense that they cannot be interrupted. Also, these instructions are
possibly blocking: locking requires that the lock be free and unlocking
requires that the buffers be empty. Nevertheless, unlocking cannot be
indefinitely blocked, since (as we will soon see) flushing the buffers cannot
be blocked by other actions, and one can always choose to update the
pending buffers to release the corresponding lock.

Now we present the rules related to updating the buffers. To do so we need
to introduce some notations. We will represent by W(B) the set of references
included in the buffer B, i.e. :

W(B) ,

{
∅ if B = ε

{p} ∪W(B′) if B = B′ / [p 7→ v]

To remove pending updates from the buffer when committing them into the
memory, we will adopt the notation B↓p which stands for the buffer resulting
from removing the oldest, i.e. first-in, pending write on the reference p in buffer
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B(p) = v · s
(S,L, 〈B〉Θ) ↪−→

ε
(S[p← v], L, 〈B↓p〉Θ) (S,L,Θ[〈ε〉Θ]) ↪−→

@Θ
(S,L,Θ[Θ)]

B1(p) = v · s
(S,L,Θ[〈B0〉〈B1〉Θ]) ↪−→

@Θ
(S,L,Θ[〈B0 / [p 7→ v]〉〈B1↓p〉Θ])

B(p) = v · s
(S,L,Θ[(〈B〉Θ0‖Θ1)]) ↪−→

@Θ
(S,L,Θ[〈ε / [p 7→ v]〉(〈B↓p〉Θ0‖Θ1)])

B(p) = v · s
(S,L,Θ[(Θ0‖〈B〉Θ1)]) ↪−→

@Θ
(S,L,Θ[〈ε / [p 7→ v]〉(Θ0‖〈B↓p〉Θ1)])

Figure 2.7: Relaxed Semantics: Buffer Update Rules

B :

B↓p ,


ε if B = ε

B′ if B = B′ / [p 7→ w] & p /∈W(B′)

(B′↓p) / [q 7→ w] if B = B′ / [q 7→ w] & (p 6= q or p ∈W(B′))

The rules for updating pending writes into the memory are presented in Fig-
ure 2.7. It is important to note here that these rules are nondeterministically
triggered whenever they are enabled. Thus, buffers get lazily updated by means
of these rules. Note also that the update rules do not include an action label,
for that reason we can call them generically silent steps. Let us comment on
each of these rules:

1. the first rule, describes the behavior of updating the memory by commit-
ting a pending write in the upper-most buffer (w.r.t. the thread system);

2. the second rule simply allows to eliminate buffers from the system when
they are empty;

3. the third rule propagates pending writes in a buffer to its parent buffer;

4. and finally, the two last rules propagate pending writes upwards on a
parallel composition node, the rules consider the left and right subtrees of
the parallel node.

It is important to notice that the buffer update rules, propagate writes in a
manner that respects the data dependencies of threads. In other words, write
accesses issued by a single thread to a certain reference reach the memory (and
for that matter, the intermediate buffers) in the same order as they were issued
by the program. However, writes to different references can reach the store in
different order (cf. jockeying in [Dubois et al., 1998]). By these means we can
now explain the behavior presented in Example 1.3 in the introduction where
we have omitted the steps that remove empty buffers as well as β reductions,
and we have simplified the example by removing the local variables r0 and r1:
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(
{p 7→ 0, q 7→ 0}, p := 1 ; q := 1 ‖ (!q) ; (!p)

) wrp,1
↪−−−→
�(

{p 7→ 0, q 7→ 0}, 〈ε / [p 7→ 1]〉(q := 1) ‖ (!q) ; (!p)
) wrq,1

↪−−−→
� · ↓(

{p 7→ 0, q 7→ 0}, 〈ε / [p 7→ 1]〉(〈ε / [q 7→ 1]〉()) ‖ (!q) ; (!p)
)

↪−→
�(

{p 7→ 0, q 7→ 0}, 〈ε / [p 7→ 1] / [q 7→ 1]〉() ‖ (!q) ; (!p)
)

↪−→
�(

{p 7→ 0, q 7→ 0}, 〈ε / [q 7→ 1]〉(〈ε / [p 7→ 1]〉()) ‖ (!q) ; (!p)
) ∗

↪−→
ε(

{p 7→ 0, q 7→ 1}, 〈ε / [p 7→ 1]〉() ‖ (!q) ; (!p)
) rdq,1

↪−−−→
�(

{p 7→ 0, q 7→ 1}, 〈ε / [p 7→ 1]〉() ‖ 1 ; (!p)
) rdp,0

↪−−−→
�(

{p 7→ 0, q 7→ 1}, 〈ε / [p 7→ 1]〉() ‖ 0
) ∗

↪−→(
{p 7→ 1, q 7→ 1}, () ‖ 0

)
We can see here that the update to q is propagated to the store before the one
of p, thus the reading thread can obtain a value of 1 for the read of q and a
value 0 for the read of p.

Let us consider another classical example of relaxed memory models; namely,
the IRIW example of [Boehm and Adve, 2008]:

Example 2.24.(
[p := 1] ‖

[
r0 := (!p) ;
r1 := (!q)

] )
‖
(

[q := 1] ‖
[
r2 := (!q) ;
r3 := (!p)

] )

It is easy to check that with this configuration we could obtain as a result
r0 = r2 = 1 and r1 = r3 = 0, which is impossible if we analyze sequential
consistent behaviors of the program. However, notice that the threads systems
we consider in this work are somewhat rigid, in the sense that if the threads
where placed differently in the thread system, the set of behaviors are different
too. For instance, one might naively consider that the previous thread system
is equivalent to:

(
[p := 1] ‖ [q := 1]

)
‖
( [

r0 := (!p) ;
r1 := (!q)

]
‖
[
r2 := (!q) ;
r3 := (!p)

] )
but in this last one the behavior in question is no longer feasible. These two
thread systems are actually reachable from different programs; the first one is
reachable from the expression:

e = (thread
(
(thread p := 1) ; r0 := (!p) ; r1 := (!q)

)
) ;

(thread q := 1) ;

r2 := (!p) ;

r3 := (!q)
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whereas the second one is only reachable from the expression:

e′ = (thread
(
(thread p := 1) ; q := 1

)
) ;

(thread
(
r0 := (!p) ; r1 := (!q)

)
) ;

r2 := (!q) ;

r3 := (!p)

It is only in that sense that that our formalization allows the IRIW example.
Therefore we cannot say that IRIW is allowed in general. Actually this is due to
the semantics of thread creation. To preserve the dependencies of the sequential
program, when a thread is spawned it must necessarily be aware of all previous
writes of the parent thread. This means that, in some sense, thread creation
implies some synchronization between the parent and the child threads. A
possibility we considered, but we did not pursue, for modeling thread creation is
to flush the buffers (actually require that they be empty) at the time of creating
a new thread. It should be straightforward to see that this semantics would be
more restrictive than the one we are considering here. On the other hand to
have the two threads, the parent and the child, sharing buffers created up to
the thread creation, but not necessarily the updates that will be subsequently
buffered, requires a hierarchical structure as the one we have considered. Indeed,
this explains why our thread systems are not associative. In Chapter 4 we
will consider a formalization, by means of the semantics this chapter, of the
memory models of Sparc [SPARC, 1994], and the constraint regarding the lack
of associativity and commutativity will be removed. It is left as an excercise
to the reader to verify that if we remove dynamic thread creation, and have a
single (nonshared) buffer per processor, we obtain a semantics that does not
allow the IRIW example. We will consider such semantics in Chapter 4 when
modelling the PSO and TSO memory models. This observation is exploited
in [Owens et al., 2009; Sewell et al., 2010] to model the semantics of x86 .

It should be intuitively clear that by means of the buffer update rules one
can reduce weak configurations to standard ones by first updating every buffer,
and then removing the empty ones. This is what we now prove. To this end let
us denote by (S,L,Θ)� (S′, L′,Θ′) the transition relation defined as follows:

C � C ′ ⇐⇒ ∃o ∈ Occ, C ↪−→
o
C ′

and let Θ//occ denote the buffer present at the node whose index is occ in Θ, if
such buffer exists:

〈B〉Θ//ε = B

〈B〉Θ// ↓ · occ = Θ//occ

(Θ‖Θ′)// � · occ = Θ//occ

(Θ‖Θ′)// � · occ = Θ′//occ

To prove that buffer updates eventually converge to a buffer free (i.e. strong)
configuration it is useful to define the size |Θ| of the buffered thread systems Θ
as follows:

|T | = 0

|〈B〉Θ| = 2 + |Θ|+ ‖Θ‖+ |B|

|(Θ0‖Θ1)| = 2 +
(|Θ0|+ |Θ1|)(|Θ0|+ |Θ1|+ 3)

2
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where |B| denotes the number of pending updates in buffer B and similarly ‖Θ‖
for the thread system Θ. They are defined by:

|B| =
∑
p∈W(B) |B(p)|

‖Θ‖ =
∑
{ o|∃B. Θ//o=B } |Θ//o|

A property that should be obvious is that the number of buffer update rules
required to flush the buffers in a thread system is greater than the number of
pending writes in it:

Lemma 2.25. For all thread system with buffers Θ we have ‖Θ‖ ≤ |Θ|

Proof. The proof is trivial by induction on Θ.

Another property that is useful at this point is that if the measure of a certain
thread system Θ0 is lower than that of another thread system Θ1, then any
thread system context composed with Θ0 also has a lower measure than the
same context composed Θ1.

Lemma 2.26. For all buffered thread context Θ and thread systems Θ0 and Θ1

where |Θ0| ≤ |Θ1| we have |Θ[Θ0]| ≤ |Θ[Θ1]|.

Proof. Again the proof is trivial by induction on Θ.

Then we can prove that performing a buffer update decreases the number of
updates required to reach a strong configuration:

Lemma 2.27 (Termination). (S,L,Θ)� (S′, L,Θ′) ⇒ |Θ| > |Θ′|.

Proof. Provided with Lemma 2.26 we need to perform case analysis only in the
thread sub-system where the buffer update rule takes place, i.e. in Θ//o if the
rule considered is (S,L,Θ) ↪−→

o
(S′, L,Θ′). Let us then proceed by cases:

• Consider the case where Θ = Θ[〈ε〉Θ0] and Θ′ = Θ[Θ0]. We need to see
that |〈ε〉Θ0| > |Θ0|. Unfolding the definition of |〈ε〉Θ0| we have that:

|〈ε〉Θ0| = 2 + |ε|+ |Θ0|+ ‖Θ0‖ = 2 + |Θ0|+ ‖Θ0‖ > |Θ0|

• Let us now consider the case where Θ = Θ[〈B0〉〈B1〉Θ0] and
Θ′ = Θ[〈B0 / [p 7→ v]〉〈B1 ↓ p〉Θ0]. Again, applying the definitions and
the induction hypothesis we have:

|〈B0〉〈B1〉Θ0| = 2 + |B0|+ ‖〈B1〉Θ0‖+ |〈B1〉Θ0|
= 2 + |B0|+ |B1|+ ‖Θ0‖+ |〈B1〉Θ0|
= 2 + |B0 / [p 7→ v]|+ |B1↓p|+ ‖Θ0‖+ |〈B1〉Θ0|
= 2 + |B0 / [p 7→ v]|+ ‖〈B1↓p〉Θ0‖+ |〈B1〉Θ0|
= 2 + |B0 / [p 7→ v]|+ ‖〈B1↓p〉Θ0‖+ 2 + |B1|+ |Θ0|+ ‖Θ0‖
= 2 + |B0 / [p 7→ v]|+ ‖〈B1↓p〉Θ0‖

+ 2 + |B1↓p|+ |Θ0|+ ‖Θ0‖+ 1

= 2 + |B0 / [p 7→ v]|+ ‖〈B1↓p〉Θ0‖+ |〈B1↓p〉Θ0|+ 1

= |〈B0 / [p 7→ v]〉〈B1↓p〉Θ0|+ 1

> |〈B0 / [p 7→ v]〉〈B1↓p〉Θ0|
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• Then we have the case of Θ = Θ[(Θ0‖〈B〉Θ1)] and
Θ′ = Θ[〈ε / [p 7→ v]〉(Θ0‖〈B ↓ p〉Θ1)]. Using Lemma 2.25 we have
that:

|(Θ0‖〈B〉Θ1)| = 2 +
(|Θ0|+ |〈B〉Θ1|)(|Θ0|+ |〈B〉Θ1|+ 3)

2

= 2 +
(|Θ0|+ |〈B↓p〉Θ1|+ 1)(|Θ0|+ |〈B↓p〉Θ1|+ 3 + 1)

2
= 2 + |(Θ0‖〈B↓p〉Θ1)|+ |Θ0|+ |〈B↓p〉Θ1|
= 2 + |(Θ0‖〈B↓p〉Θ1)|+ |Θ0|+ 2 + |B↓p|+ |Θ1|+ ‖Θ1‖
= 2 + |(Θ0‖〈B↓p〉Θ1)|+ |Θ0|+ 1 + |B|+ |Θ1|+ ‖Θ1‖
≥ 2 + |(Θ0‖〈B↓p〉Θ1)|+ ‖Θ0‖+ 1 + |B|+ ‖Θ1‖+ ‖Θ1‖
> 2 + |(Θ0‖〈B↓p〉Θ1)|+ ‖Θ0‖+ |B|+ ‖Θ1‖
= 2 + |ε / [p 7→ v]|+ |(Θ0‖〈B↓p〉Θ1)|+ ‖(Θ0‖〈B↓p〉Θ1)‖
= |〈ε / [p 7→ v]〉(Θ0‖〈B↓p〉Θ1)|

The case where Θ = Θ[(〈B〉Θ0‖Θ1)] is symmetric.
• Finally the case where Θ = 〈B〉Θ0 and Θ′ = 〈B↓p〉Θ0 is trivial.

One can also check that if |Θ| > 0 then there is (S′, L,Θ′) and o such that
(S,L,Θ) ↪−→

o
(S′, L,Θ′), and therefore we have:

Corollary 2.28. For any weak configuration (S,L,Θ) there exists a strong

configuration (S′, L, T ) such that (S,L,Θ)
∗
� (S′, L, T ).

A consequence is that unlock operations are actually never deadlocked, in the
sense that buffers affecting the operation can always be flushed to reach a con-
figuration where the unlock operation can succeed.

We can now define a relation between weak and strong configurations stating
that the strong configuration can be reached from the weak one performing only
buffer update rules:

Definition 2.29 (Flattening).

(S,L,Θ) ⇓ (S′, L, T ) ⇔def (S,L,Θ)
∗
� (S′, L, T )

Notice that the flattening relation (⇓) is not deterministic in general. There
are configurations C = (S,L,Θ) for which several possible stores S′ satisfy
C ⇓ (S′, L, T ). In particular this can result from configurations in which two
branches contain pending writes to the same reference with different values. In
this case, the order in which buffer updates are applied determines the final
configuration. We will call this kind of configurations noncoherent in the next
section.

2.5 Proof of the DRF Guarantee

In this section we will prove that for data-race free programs, the relaxed seman-
tics introduced in the previous section coincides with the reference semantics.
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Notice that the meaning of “coincides” here is that the flat configurations (once
all the buffers have been updated in the relaxed semantics) are identical. To
prove this property we will state a relation between configurations of the weak
and strong semantics, which we will prove then to be a bisimulation.

Let us first define a simple property on weak configurations stating that no
two branches of the same buffered thread system contain pending writes on the
same reference.

Definition 2.30 (Coherence). A buffered thread system Θ is coherent if and
only if

o ^ o′ ⇒ ∀p ∈ Ref . W(Θ//o) ∩W(Θ//o′) = ∅

In other words, Θ is coherent if for any given reference p the set

{ o | p ∈W(Θ//o) }

is totally ordered by the prefix order ≤. This property obviously holds for any
standard configuration (S,L, T ), hence in particular for initial configurations of
the form (∅, ∅, e). It should be intuitively clear that the relation ⇓ is determin-
istic for coherent configurations. This is what we now prove. First we observe
that silent transitions preserve coherence:

Lemma 2.31. If Θ is coherent and (S,L,Θ)� (S′, L′,Θ′) then Θ′ is coherent.

Proof. We will check that for any reference q, if q ∈W(Θ′//o) and q ∈W(Θ′//o′)
then o 6^ o′, or equivalently o ≤ o′ or o′ ≤ o. The proof proceeds by cases on
the transition (S,L,Θ) ↪−→

occ
(S′, L′,Θ′):

• Suppose that Θ = Θ[(〈B〉Θ0‖Θ1)] and Θ′ = Θ[〈ε / [p 7→ v]〉(〈B ↓
p〉Θ0‖Θ1)]. The case where p 6= q is uninteresting, since the properties of
q would not change by this transition. Let us assume then, that p = q.
Since Θ is coherent, by the hypotheses, we have that o ≤ @Θ = occ, or
o = @Θ · ↓ · o′ where p ∈ W(〈B↓p〉Θ0//o

′, and therefore the occurrences
of writes for p in Θ′ are totally ordered w.r.t. the prefix ordering.

• then we have the case where Θ = Θ[(Θ0‖〈B〉Θ1)] and
Θ′ = Θ[〈ε / [p 7→ v]〉(Θ0‖〈B↓p〉Θ1)] which is similar to the previous
one.

• Notice that for the other cases, the prefix ordering of the propagated write
only decreases, which means that occurrences that where related continue
to be so. We will not develop these cases since they are immediate.

Now we show that silent transitions on coherent configurations are locally
confluent up to buffer equivalence. To that end we need to lift the definitions of
equivalent buffers to weak thread systems, and weak configurations. Two weak
thread systems Θ and Θ′ are equivalent up to buffer equivalence (which abusing
the notation we denote by Θ ≡ Θ′) if for all occurrence o such that Θ/o =
〈B〉Θ0 then we have that Θ′/o = 〈B′〉Θ′0 where B ≡ B′ and Θ0 ≡ Θ′0. The
extension to configuration simply requires the thread systems to be equivalent.
Not surprisingly we will denote C ≡ C ′ the fact that C and C ′ are equivalent
up to the equivalence of buffers.
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C ≡ Ĉ

C0

�

o 0

⊃

C1

⊂

o
1

-

C ′

∗

�

≡ Ĉ ′
�

∗

Figure 2.8: Diagram of Lemma 2.33

Notice that flat configurations contain no buffers, and therefore we have
equality rather that the weaker equivalence of buffers.

Remark 2.32. Given C and C ′ two strong configurations we have

C ≡ C ′ ⇐⇒ C = C ′

We can now prove a confluence lemma similar to the asynchrony lemma 2.15
up to the buffer equivalence (≡). A diagram representing the lemma can be seen
in Figure 2.8.

Lemma 2.33 (Local Confluence Modulo ≡). If C and Ĉ are equivalent coherent

weak configurations (i.e. C ≡ Ĉ), and C ↪−→
o0
C0 and Ĉ ↪−→

o1
C1 then either C0 ≡ C1

or there are C ′ and Ĉ ′ such that C0
∗
� C ′ and C1

∗
� Ĉ ′ with C ′ ≡ Ĉ ′.

Proof. There are many cases to consider, which are all easy, and therefore
we only examine a few of them. For instance, we may have, if the tran-
sitions C ↪−→

o0
C0 and C ↪−→

o1
C1 are performed at disjoint occurrences, C =

(S,L,Θ[(〈B0〉Θ0‖〈B1〉Θ1)] and

C0 = (S,L,Θ[〈ε / [p 7→ v]〉(〈B↓p〉Θ0‖〈B1〉Θ1)])

C1 = (S,L,Θ[〈ε / [q 7→ v′]〉(〈B0〉Θ0‖〈B1↓q〉Θ1)])

Since C is coherent, we have p 6= q, and in this case we let

C ′ = (S,L,Θ[〈ε / [p 7→ v] / [q 7→ v′]〉(〈B0↓p〉Θ0‖〈B1↓q〉Θ1)])

and we have C0
∗
� C ′ and C1

∗
� C ′ in three steps. Notice that here we consider

buffers up to the ≡ equivalence (or to put it differently, as functions).
When the two transitions C ↪−→

o0
C0 and C ↪−→

o1
C1 are performed at oc-

currences that are related by the prefix order, we may have for instance
C = (S,L,Θ[〈B0〉〈B1〉〈B2〉Θ]) with

C0 = (S,L,Θ[〈B0 / [p 7→ v]〉〈B1↓p〉〈B2〉Θ])

C1 = (S,L,Θ[〈B0〉〈B2 / [q 7→ v′]〉〈B2↓q〉Θ])
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(where possibly p = q). In this case we let

C ′ = (S,L,Θ[〈B0 / [p 7→ v]〉〈(B1↓p) / [q 7→ v′]〉〈B2↓q〉Θ])

and we have C0
∗
� C ′ and C1

∗
� C ′ in one step.

It has been proved in [Huet, 1980] that as a consequence of the lemmas 2.27,
2.31, 2.33 and the remark 2.32, the relation � is confluent up to the buffer
equivalence relation (≡) on coherent configurations, and therefore we have the
following corollary.

Corollary 2.34. If C is a coherent configuration and

C ⇓ C0 & C ⇓ C1 ⇒ C0 = C1

To establish our main result, that is the “fundamental property” for our
weak memory model, we need a technical definition. We denote by π(o) the
projection of the (weak) occurrence o, given as follows:

π(ε) = ε

π(↓ · o) = π(o)

π(� · o) = � · π(o)

π(� · o) = � · π(o)

Definition 2.35 (The Bisimulation Relation). For any given (strong) configu-
ration C, we define the relation R(C) between weak and strong configurations
as follows: C ′R(C)C ′′ if and only if there exists a sequence of weak transitions

C0 = C
∗
�

a0
↪−→
o0

C1 · · ·
∗
�

an
↪−→
on

Cn = C ′

such that
C ′0 = C

a0−−−→
π(o0)

C ′1 · · ·
an−−−→

π(on)
C ′n = C ′′

is a valid sequence of (strong) transitions, with Ci ⇓ C ′i for all i.

(Notice that since C is a standard configuration, we actually have, with the no-

tations of the definition, C
a0
↪−→
o0

C1.) We show that, if C is a DRF configuration,

the relation R(C) is indeed a bisimulation. First, we observe that the weak
semantics simulates the reference one:

Proposition 2.36. If C ′R(C)C ′′ and C ′′
a−→
o
C ′′ then there exist C ′ and o′

such that C ′
∗
�

a
↪−→
o′
C ′ with o = π(o′) and C ′R(C)C ′′.

Proof. This is immediate, because if

C0 = C
∗
�

a0
↪−→
o0

C1 · · ·
∗
�

an
↪−→
on

Cn = C ′

is such that
C

a0−−−→
π(o0)

C ′1 · · ·
an−−−→

π(on)
C ′n = C ′′

with Ci⇓C ′i for all i, hence in particular C ′⇓C ′′, then we have C ′
∗
� C ′′

a
↪−→
o
C ′′′,

and in all cases except a = wrp,v we have C ′′′ = C ′′, hence obviously C ′′′ ⇓ C ′′.
It is easy to see that C ′′′⇓C ′′ also holds in the case where a = wrp,v, since there
is only one buffered write (on p) in C ′′′.
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To prove that conversely, the weak semantics does not deviate from the reference
semantics as regards data-race free programs, we need to introduce the following
notation that generalizes the definition of pending writes on buffers to thread
systems in the obvious way:

W(Θ) ,


∅ if Θ = T

W(B) ∪W(Θ′) if Θ = 〈B〉Θ′

W(Θ′) ∪W(Θ′′) if Θ = (Θ′‖Θ′′)

And we can now prove the following lemma.

Lemma 2.37. Let C be a strong regular configuration such that

C = C0
∗
�

a0
↪−→
o0

C1 · · ·
∗
�

an
↪−→
on

Cn = (S,L,Θ)

with p ∈ W(Θ//o). Then there exists i such that ai = wrp,v with π(o) ≤ π(oi),

and for all i < j 6 n if π(oi) ≤ π(oj) then aj 6=
x
` .

Proof. The proof is by induction on n. First we observe that, due to the hy-
pothesis W(Θ) 6= ∅, we must have n 6= 0, since C is a standard configuration. If
n = 1, then it is easy to see that the only possibility, in order to have W(Θ) 6= ∅,
is a1 = wrp,v with W(Θ) = {p} (and o = o1).

Otherwise (n > 1), we proceed by cases on an. We notice that if an =
x
`

then o 6≤ on. The lemma is obvious in the case where an = wrp,v and o = on.

Otherwise, we have Cn−1
∗
�

an
↪−→
on

Cn, and if Cn−1 = (S′, L′,Θ′) we have p ∈
W(Θ′) with

p ∈W(Θ//o) ⇒ ∃o′. π(o′) ≤ π(o) & p ∈W(Θ′//o′)

and we conclude using the induction hypothesis.

Now we show that, for data-race free regular configurations, the second half
of our bisimulation result holds. Moreover, we show that in the bisimulation
scenario, the coherence property is preserved by the weak semantics (not just
the silent transitions as in Lemma 2.31):

Proposition 2.38. If C is a DRF regular configuration, C ′R(C)C ′′ where C ′

is coherent and C ′
∗
�

a
↪−→
o
C ′ then C ′ is coherent and there exists C ′′ such that

C ′′
a−−−→

π(o)
C ′′ and C ′R(C)C ′′.

Proof. We have

C0 = C
∗
�

a0
↪−→
o0

C1 · · ·
∗
�

an
↪−→
on

Cn = C ′

and
C

a0−−−→
π(o0)

C ′1 · · ·
an−−−→

π(on)
C ′n = C ′′

with Ci⇓C ′i for all i. Let D be such that C ′
∗
� D

a
↪−→
o
C ′. Then D is coherent by

Lemma 2.31. By Corollary 2.28 there exists D such that D ⇓D, hence C ′ ⇓D,
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and therefore D = C ′′ by Corollary 2.34. We proceed by induction on the
length of the sequence of � -transitions from D to C ′′. If this length is 0, that
is, D = C ′′, we have π(o) = o since C ′′ is a strong configuration, and either

a 6= wrp,v and D
a−→
o
C ′, or a = wrp,v. In the first case, we may let C ′′ = C ′.

In the second case there obviously exists C ′′ such that D
a−→
o
C ′′ and C ′ ⇓ C ′′.

Since there is exactly one write buffered in C ′, this configuration is coherent,
and clearly C ′R(C)C ′′.

Otherwise let D′ be such that D ↪−→
o′
D′

∗
� C ′′. We show that there exist D

and u such that D is coherent and D′
a
↪−→
u
D with π(u) = π(o) (we shall then

conclude using the induction hypothesis regarding D′). We proceed by cases on

the transitions D
a
↪−→
o
C ′ and D ↪−→

o′
D′. There are many cases to consider, most

of which are immediate. We only examine the ones where a = wrp,v or rdp,v,
that is D = (S,L,Θ) with Θ = Θ[E[r]] where r = (p := v) or r = (! p) and
o = @Θ.

• r = (p := v). We have C ′ = (S,L,Θ[〈ε / [p 7→ v]〉E[()]]). If o ^ o′, let us
consider the case where Θ = Θ′[Θ0[〈B0〉〈B1〉Θ′]‖Θ1] with

D′ = (S,L,Θ′[Θ0[〈B0 / [q 7→ v′]〉〈B1↓q〉Θ′]‖Θ1[E[r]]])

and o = @Θ′· � ·@Θ1. Assume that q = p. Then p ∈W(Θ//o′· ↓) with

o′ = @Θ′· � ·@Θ0

and by Lemma 2.37 there exists i such that ai = wrp,v and π(o′· ↓) ≤ π(oi),

with aj 6=
x
` for i < j 6 n if π(oi) ≤ π(oj). Then π(oi) ^ π(o), but

this contradicts Proposition 2.22 since ai # a and C is data-race free and
regular. Then it must be the case that q 6= p, and if we let D = (S,L,Θ′′)
where

Θ′′ = Θ′[Θ0[〈B0 / [q 7→ v′]〉〈B1↓q〉Θ′]‖Θ1[〈ε / [p 7→ v]〉E[()]]]

then we have D′
a
↪−→
o
D. It remains to see that D is coherent. Assume that

p ∈ Θ′′//o′′ with o′′ ^ o. Then by Lemma 2.37 there exists i such that

ai = wrp,v and π(o′′) ≤ π(oi), with aj 6=
x
` for i < j 6 n if π(oi) ≤ π(oj),

but, as above, this contradicts Proposition 2.22.

Still assuming o ^ o′, let us consider the case where Θ = Θ′[(〈B〉Θ′‖Θ1)]
with o = @Θ′· � ·@Θ1 and

D′ = (S,L,Θ′[〈ε / [p 7→ v′]〉(〈B↓q〉Θ′‖Θ1[E[r]])])

and o′ = @Θ′· �. Since q ∈ W(Θ//o′), we can show, using as in the pre-
vious case Lemma 2.37 and Proposition 2.22, that q 6= p (since otherwise
this would contradict the assumption that C is DRF). Then we let in this
case D = (S,L,Θ′′) where

Θ′′ = Θ′[〈ε / [q 7→ v′]〉(〈B↓q〉Θ′‖Θ1[〈ε / [p 7→ v]〉E[()]])]
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We have D
a−→
u

D where u = @Θ′· ↓ · � ·@Θ1, and we conclude as in

the previous case. All the other cases (with o ^ o′ or o′ ≤ o) are easy.
As indicated above, we conclude the proof of the Proposition in the case
where r = (p := v) using the induction hypothesis regarding D′.

• r = (! p). We have C ′ = (S,L,Θ[E[v]]) where v = (S,Θ)(p). We only
examine the case where Θ = Θ′[(〈B〉Θ′‖Θ0)] with o = @Θ′· � ·@Θ0,
o′ = @Θ′· � and

D′ = (S,L,Θ′[〈ε / [q 7→ v′]〉(〈B↓q〉Θ′‖Θ0[E[r]])]

(all the other cases are easy). Assume that q = p. Then p ∈ W(Θ//o′),
and therefore by Lemma 2.37 there exists i such that ai = wrp,w with
Dπ(oi) ^ π(o) and ai # a. Then we must have q 6= p in this case, and it
is easy to see that we then have (S,Θ′′)(p) = v = (S,Θ)(p) where

Θ′′ = Θ′[〈ε / [q 7→ v′]〉(〈B↓q〉Θ′‖Θ0)]

Therefore if we let u = @Θ′′ and D = (S,L,Θ′′[E[v]]) we have D′
a
↪−→
u
D

and π(u) = π(o). By Lemma 2.31 D′ is coherent, hence so is D. We
conclude the proof, as above, using the induction hypothesis for D′.

As an obvious consequence of the propositions 2.36 and 2.38 (and of Corol-
lary 2.34), we finally obtain the correctness result:

Theorem 2.39 (Correctness). The weak memory model implements the ref-
erence semantics for data-race free programs. More precisely, the strong con-
figurations reachable from a (strong) DRF regular configuration C in the weak
semantics coincide with the configurations reachable from the same configuration
C in the reference semantics.

Notice that in particular the weak semantics correctly implements sequential
programs, that do not use the (thread e) construct.

2.6 Conclusion

In this chapter we have considered an operational formalization of the seman-
tics of write-buffering architectures. Since most relaxed memory architectures
provide this kind of relaxation, we believe our formalization can be adapted
to describe the memory models present in several existing commercial speci-
fications. We will develop the case of the TSO and PSO memory models of
Sparc [SPARC, 1994] in Chapter 4. Sewell et. al. consider in [Owens et al.,
2009; Sewell et al., 2010] a formalization that is very similar to ours for the x86
architecture, where the hierarchy of the thread systems is flat (since there is no
dynamic thread creation).

Since our formalization is sustained by standard programming languages
techniques it is on one hand, simple to understand, and on the other hand ade-
quate for developing language-based techniques. Interesting research directions
are providing thread-safe programming models that are robust with respect



54 CHAPTER 2. WRITE BUFFERS

to write-buffering architectures, and also considering the problem of program
transformations, like in the works [Ševč́ık, 2009; Saraswat et al., 2007] from the
point of view of this semantics.

To summarize, from the point of view of relaxed memory models, the for-
malization of this chapter is sufficient to model a thread “reading its own writes
early” as shown in example 2.3, and the effects of reordering a write followed
by a read on a different location (W→ R), and of a write followed by another
write on a different location (W→ R), as described in [Adve and Gharachor-
loo, 1996]. The attentive reader might have observed that we did not consider
relaxations such as the reordering of a read followed by a write (R→W) from
example 1.4, or the reordering of a read followed by a read (R→ R) which
can be observed in the following example, a slight variation of Example 1.3,
where a barrier (denoted by 〈wr|wr〉) is added between the writes to avoid their
reordering.

Example 2.40 (Read Read Reordering). p := 1 ;
〈wr|wr〉 ;
q := 1

 ‖
[
r0 := (!q) ;
r1 := (!p)

]

In the program above, assuming that the initial stores satisfies that p = q = 0,
we can only obtain r0 = 1 and r1 = 0 as a final result if the reads of the thread
on the right are performed in a reverse order, or “delayed”. This reordering,
however, is not possible with the write buffers we consider here since read actions
are performed immediately (as opposed to the buffered writes). Indeed, adding
this kind of behaviors will be the subject of the following chapter, in which we
consider an operational formalization of speculative computation, which among
other effects, allows these reorderings.



Chapter 3

A Formalization of
Speculative Computation

Speculative computation [Burton, 1985; Knight, 1986] is an implementation
technique that leverages the high cost of accessing the memory by computing
pieces of sequential code in advance, or in parallel. The formal semantics of spec-
ulative computations is the main topic of this chapter. Some of these speculative
techniques are: pipelining [Hennessy and Patterson, 1996], instruction level par-
allelism [Fisher, 1981], out-of-order execution, branch prediction [Smith, 1981]
and thread level speculation [Burton, 1985] just to mention a few. In this work
we will define a general framework for speculative computation, rather than
considering each of these particular mechanisms in detail. In some sense, our
investigations are independent of any implementation technique. More precisely
we will only focus on the effects that the reordering of memory actions can have
in the execution of parallel programs disregarding other important effects like
performance.

As with the optimizations discussed in the previous chapter, most specula-
tive computation techniques preserve the data and control dependencies present
in each of the sequential components of a parallel programs. This means that
for purely sequential programs, speculative computations are indistinguishable
from the normal – that is program order preserving – computations. For par-
allel programs however, reordering the execution of individual instructions of a
thread can have visible effects for other threads, and thus, executions that do
not correspond with the standard interleaving semantics of the program are to
be expected.

We said before that the goal of this chapter is to provide a semantic frame-
work to deal with speculative computations, but actually one of the main moti-
vations to formalize speculative computations is that they also provide a frame-
work to describe many of the behaviors present in relaxed memory models. We
will see that by means of speculative computations we are able to express many
of the examples of possible “noninterleaving” behaviors of parallel programs in
the literature of relaxed memory models – the so called litmus tests. We will
show that our framework of speculative computations enables to express a wide
range of execution relaxations – in particular extending the relaxations allowed
by the semantics with write buffers of the previous chapter. This claim will be

55



56 CHAPTER 3. SPECULATIVE COMPUTATION

later justified by the formalization of some existing commercial specifications
of memory models in the following chapter (4). In particular we will consider
the family of memory models of the Sparc [SPARC, 1994] architecture, and we
will see that the framework of the previous chapter is enough to characterize
the TSO and PSO flavors of Sparc, but it is somewhat restrictive to capture
the behaviors of RMO; whereas the framework of this chapter is also capable of
modeling the RMO memory model. Notwithstanding, the developments of this
chapter are independent of any memory model.

An interesting consequence of our formalization of speculative computation
is that it allows us to characterize which speculations are “intuitively” desirable
and which are not. In a nutshell, computing speculatively consists in making a
certain prediction; for example the return value of a future read, or the result
of a complex condition in a branching construct; computing according to this
prediction and finally validating the prediction. Clearly, not all predictions will
be correct and, possibly, a speculated execution should not be considered as a
valid execution of the program. We will provide a formal definition of what we
consider to be a valid speculation. The intuition here is that a speculation can
be regarded as valid if there is an “equivalent” sequential execution for each of
the parallel components of the program. We shall use a very precise definition
of equivalent execution, which is a variant of the equivalence by permutations of
Lévy and Berry [Berry and Lévy, 1979] that we have already used in the pre-
vious chapter. This intuition seems to be the common interpretation of what
is considered to be a desirable valid speculations in the literature. It might be
important to clarify here that we consider a certain type of speculative tech-
niques and their validity conditions. We do not claim to provide an exhaustive
definition of speculative computation, nor the ultimate definition of what should
be considered valid or not. More modestly, ours in an attempt to formalize the
intuitive notions commonly found in the literature on speculative computation
and relaxed memory models.

3.1 The Language & Semantics

In this chapter we will consider a slight variation of the language of Chapter 2.
Specifically, we will devote the first part of this chapter to results regarding a
language with locks similar to the ones presented in the previous chapter, and
we will devote a second part of the chapter to a language without locks, but
with barriers as the only mechanism to restrict the reorderings allowed by the
underlying speculative semantics. To simplify the developments, factoring many
common results, we will introduce the language with both locks and barriers,
and we will consider two sublanguages for the main results of this chapter.

Let us concentrate now on the technical aspects of the language. The source
language that we discuss here varies from the one in Chapter 2 in that it is given
in Administrative Normal Form [Flanagan et al., 1993] (ANF). This means that
only values can be applied as functions to an argument. In fact, the ANF of our
language is not exactly the same as in [Flanagan et al., 1993] since the language
in that work contains a primitive let construct, whereas in our language it is
just a syntactic sugar form. An important remark regarding the use of an
ANF instead of the standard syntax is that it does not impose constraints on
the expressive power of the language. Since there is a trivial translation of
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programs in the language of Chapter 2 to the language we are considering here,
the use of this ANF does not impose restrictions regarding the syntax either.
Obviously this translation – which we will present shortly – preserves the exact
semantics of the original program, and allows us to develop our technical results
by considering this simpler and technically more convenient syntax.

Let us now present the concrete syntax of the language:

e ::= v | (ve) | (if v then e0 else e1) expressions

| (ref v) | (! v) | (v0 := v1)

| (thread e) | (with ` do e) | (cas v)

| 〈rd|rd〉 | 〈rd|wr〉 | 〈wr|rd〉 | 〈wr|wr〉 barriers

v ::= x | λxe | tt | ff | () values

where we make the same assumptions of the previous chapter; that is: variables
are sampled from the set Var of variable names, constants tt and ff correspond
to the boolean values, λxe stands for a function with parameter x bound in
e; expressions are considered up to α-conversion, and the notation {x 7→ e′}e
stands for the capture avoiding substitution of the free occurrences of variable x
by the expression e′ in the expression e. Again we adopt the standard syntactic
forms (let x = e0 in e1) and (e0 ; e1) to denote (λxe1e0), where x is not free in
e1 for the latter one.

Most of the constructs of this language have already been introduced in
Chapter 2. Indeed, the only difference is that here we have incorporated barri-
ers and a compare-and-swap (cas v) instruction to the language. Barriers will be
used later to restrict the reordering of actions according to their kind. Clearly
the kind of actions we consider here are reads (denoted by rd) and writes (de-
noted by wr); thus a barrier with the shape 〈µ|µ′〉 prevents actions of kind µ′

from being executed before previous actions (in the sense of the program text)
of kind µ. For instance, the barrier 〈wr|rd〉 requires that all writes that come
before the barrier in the program text be performed before any read that fol-
lows the barrier (again in the program order) be performed. Let us postpone
the treatment of barriers for the moment. The (cas p) instruction is provided
for atomicity purposes only. This expression checks a memory location p and if
it contains the value ff it atomically sets it to tt while returning tt , whereas if
it contains tt it does nothing, returning ff . We say that (cas p) is only provided
for atomicity because, unlike the read-modify-write instructions of the x86 ar-
chitecture [Intel Corporation, 2007; Owens et al., 2009], our compare-and-swap
construct does not provide barrier semantics. This approach is in accordance
with architectures like Sparc [SPARC, 1994] for example. For explanations on
the other constructs of the language the reader is invited to review the discussion
of the language of Chapter 2.

Two Sublanguages The main results of this chapter are robustness guar-
antees stating that for programs satisfying a certain property – one for each
sublanguage – the speculative semantics and the interleaving semantics coin-
cide. Not surprisingly, these properties involve the use of the synchronization
mechanisms present in the sublanguages to which the property corresponds.

As we said before we will consider two sublanguages of the language we have
just introduced. The motivation for having these two sublanguages is based
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on the level of abstraction at which synchronization is considered. On the one
hand, for a high-level programming language a synchronization mechanism such
as locks (or monitors, etc.) is to be expected, and in their presence, barriers and
compare-and-swap instructions are not a requirement1. On the other hand, a
low-level programming language, as it could be the instruction set architecture
(ISA) of a machine architecture, is unlikely to have sophisticated synchroniza-
tion mechanisms such as locks. At this programming level it is more common
to have only barriers and some atomic read/write instruction such as compare-
and-swap. This difference is the main motivation for the two different languages
we will consider here. However, most of the intermediate results (in particu-
lar the formalization framework) are common to both these sublanguages, and
hence, we state them for the richer language including both locks and barri-
ers. It should be clear that the synchronization discipline (or synchronization
model according to [Adve and Hill, 1990]) varies significantly between these two
sublanguages.

It is useful to have names for the sublanguages we consider in the chapter, so
let us now present the two sublanguages which we call λ-lock for the high-level
language with locks, as indicated by the name, and λ-barrier for the low-level
language with barriers and the compare-and-swap construct.

Definition 3.1 (Two Sub-languages). The high-level sublanguage λ-lock is
given by the following syntax:

e ::= v | (ve) | (if v then e0 else e1) λ-lock

| (ref v) | (! v) | (v0 := v1)

| (thread e) | (with ` do e)

And the low-level sublanguage λ-barrier by the following one:

e ::= v | (ve) | (if v then e0 else e1) λ-barrier

| (ref v) | (! v) | (v0 := v1)

| (thread e) | (cas v)

| 〈rd|rd〉 | 〈rd|wr〉 | 〈wr|rd〉 | 〈wr|wr〉 barriers

As we said before, most of the definitions and intermediate results of the chapter
are general (sometimes parametric over the synchronization mechanism) and
not for a particular sublanguage. Whenever a particular sublanguage is to be
considered we will acknowledge this fact carefully. Whenever we do not clarify
the sublanguage we are considering it must be assumed that the most general
language, with both barriers and locks, is targeted.

As we mentioned earlier, there is a direct translation, which we denote here
by T , from the language of Chapter 2 to the high-level sublanguage, λ-lock of
this chapter.

We present the translation in Figure 3.1. This translation is very simple,
and it should be easy to see that the semantics of expressions on the left is
preserved by the transformation. For perspicuity in the rest of this chapter
we will state most of our examples in their nonANF form, since it makes them
clearer and more concise; thus the translation will be left implicit in general. We

1Actually from the point of view of the synchronization model (as in [Adve and Hill, 1990])
these are almost undesirable since they complicate the definition.
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T (λxe) ⇒ (λx T (e))

T (v) ⇒ v v 6= (λxe)

T (e0e1) ⇒ (let x = T (e0) in x /∈ FV (e1)

(x (T (e1))))

T (if e0 then e1 else e2) ⇒ (let x = T (e0) in

(if x then T (e1) else T (e2)))

x /∈ FV (e1) ∪ FV (e2)

T (ref e) ⇒ (let x = e in (ref x))

T (! e) ⇒ (let x = e in (! x))

T (e0 := e1) ⇒ (let x = T (e0) in

(let y = T (e1) in x := y)

x, y /∈ FV (e0) ∪ FV (e1)

T (thread e) ⇒ (thread (T (e)))

T (with ` do e) ⇒ (with ` do T (e))

Figure 3.1: Administrative Normal Form transformation T

will formally justify the use of the translation by a simple lemma establishing the
correspondence between the semantics of expressions before and after applying
T ; but to do so, we need to introduce the semantics of the language first.

A few aspects of the semantics are different from the one presented previously
in Figure 2.3 of Chapter 2. We will include in a box the elements that are novel
to the formalization of this chapter (and also with respect to [Boudol and Petri,
2010]), these boxes are not part of the syntax of the language. The runtime
language includes:

e ::= . . . | λv?e0 e1 | (e\`) expressions

v ::= . . . | p | λv?e values

with the following evaluation contexts and redexes:

E ::= [] | (vE) | (E\`) evaluation contexts

r ::= (λxev) | (λv?ev) | (if v then e0 else e1) redexes

| (ref v) | (! p) | (p := v1)

| (thread e) | (with ` do e) | (v\`) | (cas p)

| 〈rd|rd〉 | 〈rd|wr〉 | 〈wr|rd〉 | 〈wr|wr〉

Notice that we have incorporated a new kind of λ-expressions in the runtime
expressions, namely (λv?e0e1) which is marked inside a box, and accordingly
a new kind of value λv?e which corresponds to the functional element of the
application. These expressions contain a tagged value v? in the place of the
binder of the lambda expression; its intention is to signal that the function
argument has been predicted (or speculated) to be v and this value has already
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been substituted in the body of the λ-abstraction for the corresponding variable.
The idea here is to decouple the substitution resulting from an application, from
the actual application that happens once a value is produced for the argument.
This decoupling will later allow us to avoid some artificial dependencies (due
to redex creation) that are inherent to the λ-calculus that we use. We will
shortly come back to this issue once we introduce the speculative semantics.
The exact usage of this technique will be given with the semantics, but we
anticipate that the usual β-reduction of the standard λ-calculus takes two steps
here. For example, if we consider the expression (λxev) we have to first reduce
it by predicting the argument:

(λxev)
βv−→ (λv?{x 7→ v}ev) = (λv?e′v)

and only after this step we can reduce it once more to obtain the result of a
normal β reduction:

(λv?e′v)
β−→ e′

We will refer to this second step as the validation or commitment of the first
one.

Notice that since values of the form λv?e do not appear in the source language
they can only result after reducing an application of the form (λxe0e1), which
guarantees that the resulting value λv?e is placed in a functional position of an
application, and the only possible use for that value is to apply it. Therefore, a
value of this kind can never appear as an argument, and cannot appear in the
store either. Simply said, this new value acts as a function that is applied to
an argument, and thus it cannot constitute a value to be manipulated by other
constructs of the language, for which it deserves no special attention.

As usual, we denote by E[e] the expression resulting from filling the hole
in E by e. We can establish a standard lemma, which justifies the use of
evaluation contexts, stating that every runtime expression can be decomposed
into a unique evaluation context and redex, or it is faulty. The notion of faulty
expression changes slightly from that presented in Chapter 2 to account for
(λv?ew) expressions. The extended definition of faulty expressions becomes:

Definition 3.2 (Faulty expression). We say an expression e is faulty if it sat-
isfies any of the conditions of Definition 2.4 of Chapter 2 or:

• e = (λv?ew) and v 6= w.

We now establish the standard property for the decomposition of runtime ex-
pressions into a unique evaluation contexts and redex:

Lemma 3.3. For any expression e of the run-time language, either e is a value,
or there are unique E, an evaluation context, and e′, a redex or a faulty expres-
sion, such that e = E[e′].

As we did previously we introduce the semantics in two stages by considering
first the semantics of single expressions, or threads, with a label indicating
the corresponding action; and then, composing threads together with the store
and the state of locks in a single configuration. Let us present the actions for
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individual reductions:

a ∈ Act ::= β | βv | ↙ | ↘ | νp,v | wrp,v | rdp,v | rdop,v

| casp,v | casop,v |
y
` | s | b

s ∈ Sync ::= spwe |
x
`

b ∈ Bar ::= rr | rw | wr | ww

where v is a closed value, e is a closed expression and p ∈ Ref is a reference.
The actions are almost the same as in the previous chapter, the new ones are
marked inside a box and these are βv, the barrier actions (rr, wr, wr and
ww), the casp,v and casop,v actions for compare-and-swap, and rdop,v. We remark
that the actions βv, rd

o
p,v and casop,v and barriers where not considered in our

previous work [Boudol and Petri, 2010]. The βv action stands for the first
reduction in the example above, by which the anticipated argument of a function
application is substituted in the body of the λ-abstraction without consuming
the argument. Later, in the speculative semantics, the value of the argument
will be “predicted”, justifying the fact that the β reduction needs to validate
the prediction. Barrier actions do not deserve much introduction, since their
only effect is to constraint the reordering of actions in the computation of the
thread. The casp,v action attempts to set to tt the reference p in case this one
contains a ff value and signals in the action whether it succeeded in doing so
or not. A casp,tt action represents a successful compare-and-swap, whereas a
casp,ff stands for a failure.

Perhaps the most intriguing new actions are rdop,v and casop,v which we will
use as a read, and respectively a compare-and-swap, with a different semantics
to that of the standard read rdp,v and compare-and-swap casp,v. Indeed, the
rdop,v action is intended to model the behavior of a read that possibly sees a
past or future value, as it is in the case of a thread that “reads its own writes
early” in the previous chapter. The same reasoning applies to casop,v, except that
it is only the read that is speculated, the compare-and-swap succeeds or fails
according to the predicted reading. Behaviors other than reading own writes
early are possible, for instance reading outdated (or old) values as could result
from adding a noncoherent cache structure in the architecture. But let us now
move on with the semantics to better understand these actions.

We present the semantics of single expressions in Figure 3.2. These rules
bear a great resemblance to those of Figure 2.2 of the previous chapter. Indeed,
only a few rules are different: the rule for β-reduction which simply consumes
the argument that has already been substituted by means of the new rule βv;
obviously the βv rule which we have already discussed; the rules for the new
language constructs: barriers and the compare-and-swap; and finally an extra
rule for dereferencing (rdop,v). Notice that both rules for dereferencing have
the exact same semantics at this point. However, they are not the same when
considering execution of parallel programs. The difference in the semantics of
these two read actions will become apparent in the parallel semantics that we
will present shortly.

Notice that in the Figure 3.2 we have separated the transitions of the two
sublanguages we will consider later. In the part 3.3a we have the rules of the
common part of both sublanguages. The synchronization rules for the high-level
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E[(λxev)]
βv−→ E[(λv? {x 7→ v}e v)]

E[(λv?ev)]
β−→ E[e]

E[(if tt then e0 else e1)]
↙
−→ E[e0]

E[(if ff then e0 else e1)]
↘
−→ E[e1]

E[(ref v)]
νp,v−−→ E[p]

E[(p := v)]
wrp,v−−−→ E[()]

E[(! p)]
rdp,v−−−→ E[v]

E[(! p)]
rdop,v−−−→ E[v]

E[(thread e)]
spwe−−−→ E[()]

(a) Common Sublanguage

E[(v\`)]
x
`−→ E[v]

E[(with ` do e)]
y
`−→ E[(e\`)]

(b) High-level Language Synchronization

E[(cas p)]
casp,v−−−→ E[v]

E[(cas p)]
casop,v−−−→ E[v]

E[〈rd|rd〉] rr−→ E[()]

E[〈rd|wr〉] rw−→ E[()]

E[〈wr|rd〉] wr−→ E[()]

E[〈wr|wr〉] ww−→ E[()]

(c) Low-level Language Synchro-
nization

Figure 3.2: Semantics of Single Expressions: ANF-Language

language with locks are presented in subfigure 3.3b and the ones for the low-level
language with barriers and compare-and-swap are presented in subfigure 3.3c.

A property that should be intuitively obvious is that an expression in ANF
when reduced by means of these rules (of Figure 3.2) produces an ANF ex-
pression as well. The following remark provides a formal statement for that
observation.

Remark 3.4. If e is an expression of the language (that is, in ANF), and e −→ e′

by the rules of Figure 3.2, then e′ is well-defined, that is, e′ also in ANF.

We can now justify the fact that the transformation T does not affect the
semantics of the expression language in the following lemma.

Lemma 3.5. Let e be an expression of the language of Chapter 2, and suppose
that e

∗−→ e′ by the semantics of Figure 2.2, then we have that T (e)
∗−→ T (e′) by

the semantics of Figure 3.2 (where we disregard rdop,v actions).

We spare the reader of the proof of this evident fact, and we simply observe that
the equivalent of a β reduction on the calculus of Figure 2.2 is composed of two
reductions in the transitions of Figure 3.2; namely a βv reduction immediately



3.1. THE LANGUAGE & SEMANTICS 63

followed by a β reduction. For instance, coming back to the previous example
for the expression (λxev), where the full reduction was:

(λxev)
βv−→ (λv? {x 7→ v}e v)

β−→ {x 7→ v}e

we can clearly see that this is equivalence to a single β reduction in the standard
λ-calculus.

3.1.1 Speculative Semantics

The key ingredient of the semantics of speculations is the speculation context,
which is a generalization of the traditional evaluation context:

Σ ::= [] | (vΣ) | (Σ\`) speculation contexts

| (λxΣe) | (λv?Σe)

It is straightforward to see that speculation contexts are more general than
the typical evaluation contexts, since there are two extra productions here –
included inside a box. The idea of these additional contexts is that they al-
low us to compute within the body of a function before the actual application
takes place. Notice that these contexts require the function to be applied, oth-
erwise a λ-abstraction has to be considered as a value, and computing inside
it should be avoided as we seek to model a call-by-value imperative λ-calculus.
Let us now see how we achieve computing in advance by means of these new
contexts. For instance consider the expression (!p) ;(q := tt) where p and q are
arbitrary references. As we said earlier this is syntactic sugar for the expression
(λx (q := tt) (!p)). Using the speculative context (λx[](!p)) we can see that the
redex (q := tt) is capable of being reduced, achieving thus an effective reorder-
ing of the reading of p and the writing of q. In particular with an expression
of the form (let x = e0 in e1) we can start by reducing within e1, before or in
parallel with the reduction of e0. This is in some sense similar to the construct
(let x = future e0 in e1) of [Flanagan and Felleisen, 1995].

Despite the simplicity of this technique, we will shortly see how the inter-
action of speculation contexts with the prediction of arguments in applications
renders powerful speculation behaviors, like computing inside a branching con-
struct (let x = e0 in (if x then e1 else e2)) before actually evaluating its condi-
tion for example. A similar formalization of speculative contexts was presented
in [Boudol and Petri, 2010], in which additional speculation contexts where
added for speculating within a conditional branch. Here we will use a different,
and perhaps simpler, approach to achieve the same result. The main difference
between our work and that of [Boudol and Petri, 2010], is the novel βv reduction
jointly with the adoption of a language in ANF, which proved to be crucial for
the results of Chapter 4.

As we anticipated in the introduction we will define which speculations are
valid, and which are not. To that end, we need not only to know which action
is being performed (which we already included in the semantics by means of
the action label) but also where in the expression the action is being produced;
in other words, the exact position of the redex being reduced in the “global”
expression. To achieve it, we will also annotate the transitions rules with that
information by incorporating the notion of occurrences – which shall not be
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confused with the occurrences of the previous chapter. Occurrences here are
sequences over a set of symbols denoting a path from the root of the expression
to the redex that is to be evaluated in the next step. Since the occurrence of
an event is derived from the context (either evaluation context or speculation
context) in which it is produced, it should be intuitive that we will have two
sets of occurrence symbols as well. Symbols generated by evaluation contexts
are sampled from the set Occ, and symbols generated by speculative contexts
are sampled from the set SOcc, both of them being defined below. Naturally
SOcc includes Occ. Then an occurrence is a sequence occ over the set SOcc:

Occ = {( []), ([]\`)}
SOcc = Occ ∪ {(λ [] )}

Notice that these symbols correspond with the contexts defined above. In par-
ticular we can recover the path @Σ to the hole in a speculation context Σ by
means of the following inductive definition:

@[] = ε

@(vΣ) = ( []) · @Σ

@(λxΣe) = (λ [] ) · @Σ

@(λv?Σe) = (λ [] ) · @Σ

@(Σ\`) = ([]\`) · @Σ

The occurrences occ ∈ Occ∗ are called normal in contrast with occurrences
that strictly belong to the set SOcc∗ that we will name speculative. Normal
computations – that is computations that do not speculate – involve only normal
occurrences in their labels. We will use the symbols o and occ to range over the
set of occurrences (i.e. SOcc∗).

Before presenting the full semantics we have to augment the definition of
redexes to include a new case of function application generalizing (λxev). Since
we allow the speculation of argument values – we recall that this is the purpose
of the βv reduction – we will let a function application perform the substitution
of the bound variable with a predicted value at any point in the computation.
Later the β reduction will only succeed if the predicted value for the argument
coincides with the value resulting from reducing the argument. Importantly, to
reduce any function application we have to extend the notion of redex to include
applications that do not necessarily have a value in the argument position as
follows:

r ::= . . . | (λxe0e1)

We have now all the notions required to present local speculations in Fig-
ure 3.3. Local speculations are defined as a small step semantics, as we did
many times already, but we add to the transitions (e

a−→
o
e′) a label o represent-

ing the occurrence where the reduction takes place. We need not give detailed
explanations on these transitions as they are the similar to the ones of Figure 3.2.

We can then establish the following standard property:

Lemma 3.6. If e
a−→
o
e′ then {x 7→ v}e a−→

o
{x 7→ v}e′ for any v.
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Σ[(λxe0e1)]
βv−−→
@Σ

Σ[(λv? {x 7→ v}e0 e1)]

Σ[(λv?ev)]
β−−→

@Σ
Σ[e]

Σ[(if tt then e0 else e1)]
↙
−−→
@Σ

Σ[e0]

Σ[(if ff then e0 else e1)]
↘
−−→
@Σ

Σ[e1]

Σ[(ref v)]
νp,v−−→
@Σ

Σ[p]

Σ[(p := v)]
wrp,v−−−→
@Σ

Σ[()]

Σ[(! p)]
rdp,v−−−→
@Σ

Σ[v]

Σ[(! p)]
rdop,v−−−→
@Σ

Σ[v]

Σ[(thread e)]
spwe−−−→
@Σ

Σ[()]

(a) Common Sublanguage

Σ[(v\`)]
x
`−−→

@Σ
Σ[v]

Σ[(with ` do e)]
y
`−−→

@Σ
Σ[(e\`)]

(b) High-level Language Synchronization

Σ[(cas p)]
casp,v−−−→
@Σ

Σ[v]

Σ[(cas p)]
casop,v−−−→
@Σ

Σ[v]

Σ[〈rd|rd〉] rr−−→
@Σ

Σ[()]

Σ[〈rd|wr〉] rw−−→
@Σ

Σ[()]

Σ[〈wr|rd〉] wr−−→
@Σ

Σ[()]

Σ[〈wr|wr〉] ww−−→
@Σ

Σ[()]

(c) Low-level Language Synchro-
nization

Figure 3.3: Speculative Semantics of Single Expressions
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Sequences of speculative computations are going to be named speculations here-
after, as defined below.

Definition 3.7 (Speculations). A speculation from an expression e to an ex-

pression e′ is a (possibly empty) sequence σ =
(
ei

oi−→
ai

ei+1

)
06i6n

of speculation

steps such that e0 = e and en = e′. This is written σ : e
∗−→ e′. The empty

speculation (with e′ = e) is denoted ε. The sequence σ is normal iff for all i the

occurrence oi is normal. The concatenation σ · σ′ : e
∗−→ e′ of σ and σ′ is only

defined (in the obvious way) if σ ends on the expression e′′ where σ′ originates.

Notice that a normal speculation proceeds in program order up to the reordering
of βv actions (which is of no consequence), evaluating redexes inside evaluation
contexts – not speculation contexts. Let us see two examples of speculations –
omitting some labels, just mentioning the actions2:

Example 3.8.

r := (! p) ; q := tt
wrq,tt−−−→ r := (! p) ;()

rdp,tt−−−→ r := tt ;()
wrr,tt−−−→ () ;()

β−→ ()

Here we speculate by reducing first the assignment q := tt , which would normally
take place after reading p and updating r; we can say that the assignment is
issued out of order. Moreover, even though the second step is normal, we guess
the value read from memory location p, since at this stage of the semantics there
is no store to retrieve the value of the read.

An interesting consequence of the added speculative contexts and the pre-
diction of argument values is that we can now “fabricate” redexes, reduce them,
and later validate them. This would be typically the case of a branch predic-
tion [Smith, 1981]. To illustrate this we consider the expression:

p := tt ; (let x = (!q) in (if x then (r := ff ) else (r := tt)))

where, assuming that every reference is initially set to ff , we want to perform
the assignment r := ff , before evaluating the condition and before reducing
the assignment to p. Then we can apply the following reduction to obtain the
desired result:

Example 3.9.

p := tt ; (let x = (!q) in (if x then (r := ff ) else (r := tt)))
βff−−→

p := tt ; (let ff ? = (!q) in (if ff then (r := ff ) else (r := tt)))
↘
−→

p := tt ; (let ff ? = (!q) in (r := tt))
wrr,tt−−−→

p := tt ; (let ff ? = (!q) in ())
rdq,ff−−−→

p := tt ; (let ff ? = ff in ())
β−→

p := tt ; ()
wrp,tt−−−→ (); ()

∗−→ ()

2We recall that the translation to ANF is implicit here.
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Importantly, the combination of a language in ANF, with argument speculation
enables us to eliminate some dependencies present in the λ-calculus related to
redex creation. Let us consider the following simple example to clarify this issue:

(λx (!x) (q := ff ; p)

where we have a function that expects a memory location as its argument to
dereference it, and this function is applied to an expression that firstly updates
the reference q with value ff and then simply returns the reference p (to be
consumed by the function). It is clear that in the normal semantics this expres-
sion first assigns to the reference q and then dereferences p. However we would
like to reorder these memory accesses – which is a common relaxation present
in many relaxed memory models – since p and q are different references. If we
consider the standard λ-calculus, it is not possible perform the dereferencing of
p first since (!x) is not a redex. On the other hand, by means of the βv action we
are allowed to “predict” that the reference that the λ-abstraction receives as its
argument will be p and we can substitute it in the body of the function. Then
later we can compute inside the function, dereferencing p and finally validating
the prediction. The transitions taken, where we omit the occurrences, are:

λx (!x) (q := ff ; p)
βp−→ λp? (!p) (q := ff ; p)

rdp,ff−−−→

λp? ff (q := ff ; p)
wrq,ff−−−→ λp? ff (() ; p)

∗−→ λp? ff p
β−→ ff

Notice that by means of this simple technique we have actually achieved reorder-
ing the actions. This behavior can be compared to the effects of write-buffering
discussed in the previous chapter. In the case of a write-buffering architecture,
one can think that the write to q is actually performed first, but its contents
remain in the buffer until after the read of p has finished. Thus, one could
imagine that the actions of writing q and reading p have been reordered in the
sense of the speculations of this chapter. We will see in Chapter 4 that this
technique turns out to be fundamental to capture the specific behavior of some
existing relaxed memory models.

To conclude our presentation of the single thread semantics let us briefly
discuss the semantics of the locking construct. One might observe that locks
here do not enforce an ordering among the actions that precede the locking
construct and those that follow it3. In fact we can observe that in an expression
of the form (with ` do (!p)) ;(!q) one can reduce the first the redex (!q) and then
continue by acquiring the lock and so on and so forth. This kind of “speculation”
can be surprising to common programmers, but it is not new in the literature of
relaxed memory models. The term roach motel semantics for synchronization
has been used for Java in [Manson et al., 2005; Ševč́ık and Aspinall, 2008] to
describe this kind of behavior, and a similar account for C++ with Pthreads
is discussed in [Boehm, 2007]. Notice, however, in the example above that
the redex (!p) cannot be reduced before acquiring the lock ` since there is no
speculation or evaluation context that inspects the contents inside of a mutual
exclusion construct. Indeed, this guarantees that these locks implement the
correct mutual exclusion of the critical sections using the same lock.

3However they impose an order among the actions included in the critical section and the
acquisition and release of the lock.
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Perhaps it would be more natural, from a sequentially consistent point of
view, to disallow this kind of speculation but it would make our calculus less
general with no added benefit. It is easy to see that all the results that we will
present in the sequel still hold if we add this extra restriction. We will discuss
this choice again when considering the semantics of parallel threads in the next
subsection.

3.1.2 The Global Semantics

Once more, we will begin by presenting the configurations that amalgamate
threads and allow them to communicate. These configurations have the follow-
ing shape:

C = (S,L, T )

where the store S and the lock context L are similar to those of the presented
previously in Section 2.2. Obviously the lock context L is of no use for λ-barrier
programs and could be omitted in that case. We assume an infinite set T id
of thread identifiers. Then, the thread system T is a mapping from a finite
set dom(T ) of thread names (or thread identifiers), a proper subset of T id , to
expressions representing the threads. If dom(T ) = {t1, . . . , tn} and T (ti) = ei
we also write T as

(t1, e1) ‖ · · · ‖ (tn, en)

That is, in contrast to the thread systems of the previous chapter, here we
consider the standard assumption that thread systems are commutative and
associative.

As usual, we shall consider only well-formed configurations, meaning that
any reference that occurs somewhere in the configuration belongs to the domain
of the store, that is, it is bound to a value in the memory – we shall not define
this property, which is preserved in the operational semantics, more formally.
For instance, if e is an expression of the source language, any initial configuration
(∅, ∅, (t, e)) is well-formed. The speculative computations are made of transitions
that have the form

C
a−−→
t,o

C ′

indicating the action a ∈ Act that is performed, the thread t ∈ T id that per-
forms it, and the occurrence o ∈ SOcc signaling where it is performed within
the thread (again, these labels are just annotations, introduced for technical
convenience, but they do not entail any constraint on the semantics). At each
step, a speculation issued by one thread is recorded, provided that the global
state agrees with the action that is performed. For instance the value guessed
by a read for a reference must be the value on the store for that reference, and
similarly acquiring a lock can only be done if the lock is free. In the semantics
of the global configuration we use the notation FRef(e) that stands for the set
of references appearing in the expression e.

The semantics is presented in Figure 3.4 where we distinguish two cases,
depending on whether the action spawns a new thread or not. The condition
(∗) of the upper rule is given below, where the omission of the new store S′

and/or the new lock pool L′ means that these remain unchanged (i.e. S′ = S
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e
a−→
o
e′

(S,L, (t, e)‖T )
a−−→
t,o

(S′, L′, (t, e′)‖T )
(∗)

e
spwe′′−−−−→
o

e′

(S,L, (t, e)‖T )
a−−→
t,o

(S,L, (t, e′)‖(t′′, e′′)‖T )
t′′ /∈ dom(T )

Figure 3.4: Global Speculative Semantics

and/or L′ = L):

(∗)



a ∈

{
β,↙,↘, casop,ff
rr, rw, wr, ww

}
⇒ S′ = S & L′ = L

a ∈ {βv, rdop,v} ⇒ FRef(v) ⊆ dom(S)

a = νp,v ⇒ p /∈ dom(S) & S′ = S ∪ {p 7→ v}
a = rdp,v ⇒ v = S(p)

a = wrp,v ⇒ p ∈ dom(S) & S′ = S{p← v}

a =
y
` ⇒ L′ = L ∪ {`}

a =
x
` ⇒ L′ = L− {`}

a = casp,tt ⇒ S(p) = ff & S′ = S{p← tt}
a = casp,ff ⇒ S(p) = tt

a = casop,tt ⇒ S′ = S{p← tt}

Up to now the predictions performed by the βv reductions were unrestricted.
However some of them should not be considered as valid predictions. Consider
for instance the following expression:

(λx (!x) (q := ff ;(ref ff ))

Indeed, we cannot speculate the value of the reference to be created before
actually creating it, by the condition FRef(v) ⊆ dom(S) in the condition (∗).
This is a reasonable assumption, since it does not affect the set of behaviors of
the semantics, and the well-formedness of configurations would be compromised
if we did not adopt it here.

An important feature of this global semantics is that the value obtained for
a read of the form rdop,v does not need to coincide with the value in the store
for that reference. In that sense it is not constrainted by the configuration.
Indeed, as it is now, any value (that does not contain new references) can be
returned by these “speculative” reads. Some constraints regarding these actions
will be added in the definition of validity later. Consequently, different validity
criteria can provide different semantics for these reads; for instance, we could
consider reads that obtain their value from a write buffer, as we will do in the
next chapter, or reads that obtain their value in a noncoherent cache, etc.

We can finally provide a formal definition of speculative computations that
includes all the threads in coordination with the store and the lock pool in a
single configuration.
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Definition 3.10 (Speculative Computations). A speculative computation from
a configuration C to a configuration C ′ is a (possibly empty) sequence γ of steps(
Ci

ti,oi−−−→
ai

Ci+1

)
06i6n

in the speculative operational semantics such that C0 = C

and Cn = C ′. This is written γ : C
∗−→ C ′. The empty computation is denoted

ε. The concatenation γ · γ′ : C
∗−→ C ′ is only defined (in the obvious way) if

γ ends on the configuration C ′′ where γ′ originates, that is γ : C
∗−→ C ′′ and

γ′ : C ′′
∗−→ C ′. The computation γ =

(
Ci

ai−−−→
ti,oi

Ci+1

)
06i6n

is normal if for all i

the occurrence oi is normal.

In particular we will be interested in discussing about speculative compu-
tations whose behaviors correspond to sequentially consistent executions of the
program, that is the speculative semantics coincides with the interleaving se-
mantics. To achieve that we need to define coherent computations in which
all read actions return the latest value written to the same reference in the
computation (i.e. the value in the store).

Definition 3.11 (Coherent Speculative Computation). A speculative compu-

tation γ is qualified as coherent if whenever γ = γ′ · (C a−−→
t,o

C ′) · γ′′ with

C = (S,L, T ) then a = rdop,v ⇒ S(p) = v, a = casop,tt ⇒ S(p) = ff and
a = casop,ff ⇒ S(p) = tt.

As an obvious consequence of the above definition, we can replace every rdop,v
and casop,v action in a coherent speculative computation with its rdp,v or casp,v
counterpart to get an equally legitimate computation.

Notice that for normal coherent computations of the λ-lock language if we
replace the speculation contexts Σ by standard evaluation contexts E (recall
that we are considering normal computations) in the semantics of Figure 3.4
we obtain the interleaving semantics of the previous Chapter 2.3 considering
βv steps as a silent steps. Once more, we regard semantics of normal coherent
computations as the reference semantics from the programmer’s view point.

Even though our definition of speculative computations ensures that the
values read from the memory are correctly guessed, some speculation sequences
are still wrong, like – omitting the occurrences:

({p 7→ ff }, ∅, (!p) ;(p := tt))
wrp,tt−−−→

({p 7→ tt}, ∅, (!p) ;())
rdp,tt−−−→ ({p 7→ tt}, ∅, tt ;())

∗−→ ()

where the read and write actions are clearly conflicting, since they access the
same reference p. Obviously, this speculation violates the sequential semantics
of the program, since in the normal execution of this program the read always
obtains the initial value of p in the store, in this case ff . It is obvious that this
reordering of conflicting actions should be disallowed to preserve the sequential
semantics of the program (and of each thread in the case of a parallel program).

Precluding the kind of behavior considered above is the purpose of the def-
inition of validity that we present in the next section. To that end, we shall
need the following technical definition, which formalizes the contribution of each
thread to a speculative computation:
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Definition 3.12 (Projection). Given a thread identifier t, the projection γ|t of
a speculative computation γ on thread t is defined as follows, by induction on γ:

γ|t ,



ε if γ = ε

e
a−→
o
e′ · (γ′|t) if γ = (C

a−−→
t′,o

C ′) · γ′ & t′ = t

& C = (S,L, (t, e)‖T ) & C ′ = (S′, L′, (t, e′)‖T )

γ′|t if γ = (C
a−−→
t′,o

C ′) · γ′ & t′ 6= t

It is easy to check that this is indeed well-defined, that is:

Remark 3.13. For any speculative computation γ and name t, the projection
γ|t is a speculation.

3.1.3 Valid Speculations

We shall qualify a speculative computation as valid in the case where each of its
projections is equivalent in some sense to a normal evaluation. That is, a specu-
lative computation is valid if it only involves thread speculations that correctly
predict the values read from the memory (for normal reads, i.e. rdp,v actions),
and preserves, up to some equivalence, the normal program order. Moreover, for
the case of rdop,v actions (self-fulfilled reads) we will require an extra condition
on the speculation, guaranteeing that actually there is no synchronization in
the speculation that could hinder that kind of read. In other words, the validity
criterion is purely local to each thread, namely, each thread’s speculation should
be “equivalent” to a sequential execution of the thread4. We will use a relation
that is similar to the permutation of transitions equivalence introduced by Berry
and Lévy [Berry and Lévy, 1979; Lévy, 1980] that we have already discussed in
the previous chapter. Intuitively, this relation says that permuting independent
steps in a speculation results in “the same” speculation, and that such indepen-
dent steps could actually be performed in parallel. It is clear, for instance, that
actions performed at disjoint occurrences can be done in any order, provided
that they are not conflicting accesses to the same memory location (the conflict
relation will be defined below). This applies for instance to

r := (!p) ; q := tt
wrq,tt−−−→ r := (!p) ;()

rdp,tt−−−→ r := tt ;()
∗−→ ()

from Example 3.8, which as we will see is equivalent to the computation

r := (!p) ; q := tt
rdp,tt−−−→ r := tt ; q := tt

wrq,tt−−−→ r := tt ;()
∗−→ ()

However, in order to do so we need to “identify” the first step in the first
speculation with the second one in the latter, and vice versa. To this end, given
a speculation step e

a−→
o
e′ and an occurrence o′ in e, we define the residual of o′

after this step, that is the occurrence, if any, that points to the same subterm
(if any) as o′ pointed to in e. The notion of a residual here is much simpler than
in the λ-calculus (see [Lévy, 1980]), because an occurrence is never duplicated,
since we do not compute inside a value (except in a function applied to an

4This appears to be the standard – though implicit – validity criterion in the literature on
speculative execution of sequential programs.
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Figure 3.5: Diagram of Lemma 3.15

argument). Here the residual of an occurrence after a speculation step will be
either undefined, or a single occurrence.

We actually need to know the action a that is performed, the occurrence
o where it is performed and the expression e to which the occurrences belong
in order to define the residual of o′ after such a step. Notice that in [Boudol
and Petri, 2010] we did not parameterize the relation with the expression e.
The reason why we need it here, is that speculating the argument of functions
can create new redexes (precisely its intention) in the body of the function,
that are not present in the original expression. For example in the transition

(λx(!x)(!q))
βp−→ (λp?(!p)(!q)) the redex (!p) is created by the action βp.

We will use the notation e@o to retrieve the subexpression of e at location
o. This is defined in the obvious way:

e@o ,


e if o = []

e1@o′ if e = (e0e1) & o = ( []) · o′

e′@o′ if e = (e′\`) & o = ([]\`) · o′

e0@o′ if e ∈ {(λxe0e1), (λv?e0e1)} & o = (λ [] ) · o′

And we can then define o′/e(a, o) as follows:

Definition 3.14 (Residual of an occurrence after a step).

o′/e(a, o) ,



o′ if o � o′, or

o′ = o · (λ [] ) · o′′ & a = βv & e@o′ is a redex, or

o′ = o · ( []) · o′′ & a = βv

o · o′′ if o′ = o · (λ [] ) · o′′ & a = β

undef otherwise

In the following we write o′/e(a, o) ≡ o′′ to mean that the residual of o′ after
(a, o) is defined, and is o′′. Notice that if o′/e(a, o) ≡ o′′ with o′ ∈ Occ∗ then
o′′ = o′ and o 6≤ o′.

We can now prove a property that is the core of the reordering relation
(cf. the equivalence by permutations of Chapter 2) that we will use later to
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define valid computations. The following lemma states that if two consecutive
actions are not related by redex creation (meaning that they have corresponding
residuals), then reordering the reductions in the computation leads to the same
result as shown in Figure 3.5:

Lemma 3.15 (Reordering Lemma). If e0
a0−→
o0

e
a1−→
o1

e1 with o1 ≡ o′1/e0(a0, o0)

and o′0 ≡ o0/e0(a1, o
′
1), then there exists e′ (unique up to α-conversion) such

that
e0

a1−→
o′1

e′
a0−→
o′0

e1

Proof. By cases on the respective positions of o0 and o′1. Notice first that if
o0 � o′1 and o′1 � o0 (that is the occurrences are disjoint), then o1 = o′1 ≡
o1/e0(a0, o0) and o′0 = o0 ≡ o0/e0(a1, o

′
1), and it is easy to see that the two

speculations can be done in any order.
Let us assume that o0 < o′1. Since o1 is well defined, according to the

definition of o′1/e(a0, o0) we have three possibilities:

• o′1 = o0 · (λ [] ) · o′′1 and a0 = βv and e@o′1 is a redex. In this
case we have e0 = Σ0[(λxe′0ē)] and e = Σ0[(λv?({x 7→ v}e′0)ē)].

From the hypotheses we have e′0
a1−→
o′′1

e′′0 , and using Lemma 3.6

we have that {x 7→ v}e′0
a1−→
o′′1

{x 7→ v}e′′0 . We conclude then with

e′ = Σ0[(λx({x 7→ v}e′′0)ē)] where verifying that the steps can be com-
muted is trivial.

• o′1 = o0 · (λ [] ) · o′′1 and a0 = β. Then we have that e0 = Σ0[(λv?e′0v)]

and e = Σ0[e′0]. But from the hypotheses we also have e′0
a1−→
o′′1

e′′0 . Then

we have e′ = Σ0[(λv?e′′0v)] and the conclusion is obvious.
• o′1 = o0 · ( []) · o′′1 and a0 = βv. Then we know that e0 = Σ0[(λxe′0ē)] and

from the hypotheses ē
a1−→
o′′1

ē′. The candidate for e′ is then Σ0[(λxe′0ē
′)]

and the verification that the transitions commute is immediate.

The case of o′1 < o0 is symmetric, and o0 = o′1 is impossible since o1 is well
defined.

This commutation property is the basis for the definition of the reorder-
ing relation between computing steps: with the hypotheses of the Reordering
Lemma, we shall regard the two speculations

e0
a0−→
o0

e
a1−→
o′1

e1 and e0
a1−→
o1

e′
a0−→
o′0

e1

as equivalent. However, this will not be so simple, since we have to ensure that
the program order is preserved as regards accesses to a given memory location
(unless these accesses are all reads). For instance, the speculation – again,
omitting the occurrences:

p := tt ; r := (!p)
rdp,ff−−−→ p := tt ; r := ff

wrp,tt−−−→ () ; r := ff −→ . . .

should not be considered as valid, because it breaks the data dependency be-
tween the write and the read on p. As in the previous chapter, we need a



74 CHAPTER 3. SPECULATIVE COMPUTATION

definition of conflicting actions. However, unlike the definition of the previous
chapter, here we consider only conflicts that relate to read and write actions,
disregarding synchronization related actions (i.e. locks). The constraints on re-
orderings imposed by synchronization actions will be considered in the definition
of dependency which was not needed in the previous chapter, but will play a
fundamental role in this one.

Let us define the set MRdp of actions on reference p with read semantics
that act on the memory (thus the M):

MRdp , {rdp,v, casp,v | v ∈ Val}

and a similar definition for the actions with write semantics on p:

MWrp , {wrp,v | v ∈ Val} ∪ {casp,tt , casop,tt}

We repeat that this definition regards actions that read or write the contents
of the store. We can see for example that the action rdop,v even if it is a read
action, does not concern the memory, and so it is not included in MRdp. The
same applies to casop,v for the case of reads. That is because as regards the
conflict relation, events that do not affect or are not affected by the contents of
the store cannot be involved in conflicts.

And now we can present the definition of conflict

Definition 3.16 (Conflicting Actions). We define the conflict relation, denoted
by #, to be the following binary relation on actions:

# ,
⋃

p∈Ref

(MWrp ×MWrp) ∪ (MWrp ×MRdp) ∪ (MRdp ×MWrp)

In this definition we can see that the actions rdop,v and casop,ff are not involved,
since their values are “guessed”, and they do not access the store.

To cope with the particular reorderings of relaxed memory models we need to
add constraints stating which actions cannot be reordered w.r.t. other actions.
This is the purpose of the dependency relation.

We have seen in previous examples that reordering conflicting actions in a
speculation in general violates the sequential semantics of the program. In-
deed, we can also observe, from the definition of Data-Race 2.9 of Chapter 2
and the Asynchrony Lemma (2.15) of the same chapter, that conflicting actions
also have implications on the global reordering of actions of different threads –
similar definitions and results will be given for the speculative calculus of this
chapter. On the other hand, the dependency relation only poses local restric-
tions on the reorderings of speculations. The moral difference between conflict
and dependency resides in the fact that conflicting actions have not only a local
meaning, but also an intrinsic global one, precisely captured by the hypotheses
of the Asynchrony Lemma below, stating that conflicting actions of different
threads when commuted generally lead to different results. The dependency
relation, however, imposes restrictions that are only local to a thread, and it
can greatly vary without breaking the soundness of the framework.

In fact, rather than defining a concrete dependency relation for the specu-
lative calculus, let us leave it abstract by parameterizing our definitions with
an arbitrary dependency relation. Actually the dependency relation cannot be
totally arbitrary, some restrictions have to be imposed to it. It suffices to say,
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for the moment that the conflict relation has to be included in the dependency
relation. Let us make this intuition more formal by providing a definition of
acceptable dependency relations. Let us denote by Casp the set of compare-
and-swap actions on reference p and by Memp the set of memory accesses to
reference p:

Casp , {casp,v, casop,v | v ∈ Val}

Memp , Casp ∪ {rdp,v,wrp,v | v ∈ Val}

Definition 3.17 (Dependency Relation). A dependency relation D is a binary
relation on actions satisfying

./ ⊆ D

where
./ , # ∪

⋃
p∈Ref

(Casp ×Memp) ∪ (Memp × Casp)

Intuitively x D y means that if the action x precedes the action y in a normal
speculation, this execution should not be rearranged into a speculative one in
which y precedes x. If D ⊆ D′ we say that D is weaker than D′. Notice that we
do not require the dependency relation to be symmetric. In particular, when
considering the language with λ-barrier, we will see that the dependency relation
is the key semantical aspect to model the behavior of barriers. We will soon
provide further restrictions imposed to acceptable dependency relations for the
two versions of the language we are considering, but let us now move on to the
definition of validity using such a general notion of dependency.

We based the results of the previous chapter on the permutation equivalence
between computations. Likewise, we will define a reordering relation between
speculative computations here to capture the same intuition. However, we need
to incorporate the concept of dependency that we have just introduced in our
relation. Notice that since D is not assumed to be symmetric, we can no longer
use an equivalence, we will have to content ourselves with a preorder, which
fortunately is enough to draw all of our subsequent results.

Definition 3.18 (Reordering Relation). Given a dependency relation D we de-
fine a reordering relation between speculations, called D-reordering, to be the
least preorder ∝D such that if e0

a0−→
o0

e
a1−→
o1

e1 with o′0 ≡ o0/e(a1, o
′
1) and

o′1/e(a0, o0) ≡ o1, and ¬(a0Da1), then

σ0 · e0
a1−→
o′1

e′
a0−→
o′0

e1 · σ1 ∝
D σ0 · e0

a0−→
o0

e
a1−→
o1

e1 · σ1

where e′ is determined as in the Reordering Lemma 3.15.

Notice that the important clause of this definition is ¬(a0Da1). The moral
here is that the computation to the right of the ∝D relation is more normal
than the one on the left, since the one on the left can be obtained by reordering
nondependent (according to D) actions. Let us consider an example to illustrate
why this relation is not an equivalence, as it was the case in the previous chapter.
To that end let us anticipate that barrier actions are not symmetric as regards
their dependencies. Then, recalling that wr is the action that prevents a write
action from being delayed past a read action, or conversely, prevents a read
action from being speculated before a write action, we might have for example
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that (wrp,v D wr) but ¬(wr D wrp,v). We have according to the reordering
definition above

e0
wrp,v−−−→
o′1

e′
wrp,v−−−→
o′1

e1 ∝
D e0

wr−→
o0

e
wrp,v−−−→
o1

e1

but on the other hand we cannot reestablish the left-hand side computation
from the right-hand side one, since we have (wrp,v D wr).

If σ′ ∝D σ we say that σ′ is a D-reordering of σ. We adopt the notation∞D
for the symmetric closure of the ∝D relation. That is:

σ∞D σ′ ⇐⇒ σ ∝D σ′ or σ′ ∝D σ

Notice that two speculations related by reordering have the same length. One
can now verify that actually the speculation of Example 3.8 is a ./-reordering
of the “more normal” speculation:

r := ! p ; q := tt
rdp,tt−−−→ r := tt ; q := tt

wrq,tt−−−→ r := tt ;()
∗−→ ()

Indeed, to have an entirely normal computation we should perform the write of
r between the read of p and the following write of q. Similarly the speculation
of Example 3.9 is a ./-reordering of the normal speculation:

p := tt ; (let x = (!q) in (if x then (r := ff ) else (r := tt)))
wrp,tt−−−→ ∗−→

(let x = (!q) in (if x then (r := ff ) else (r := tt)))
rdq,ff−−−→ ∗−→

(if ff then (r := ff ) else (r := tt))
↘
−→ (r := tt)

wrr,tt−−−→ ()

Before presenting the definition of the validity condition let us briefly con-
sider the rdop,v and casop,v actions in more detail. We give a particular inter-
pretation to these actions in our calculus; namely that of a read that obtains
the latest written value to the same reference by the same thread. Indeed, this
is similar to reading the contents of a buffer in the semantics of the previous
chapter. In particular, this interpretation stands for the common relaxation
present in many relaxed memory models sometimes known as the capability of
a thread to read its own writes early [Adve and Gharachorloo, 1996]. Notice
that this kind of relaxation actually adds behaviors that are not possible by sim-
ply considering the reordering of normal actions (that is, if we disallow rdop,v and
casop,v actions, relying only on normal the rdp,v and casp,v actions). To see this
consider the following example (cf. Example 2.3 enhanced with barriers), where
we assume a dependency relation D such that (rdp,v D rr) and (rr D rdp,v) as
it is the case of the Sparc memory models (see Chapter 4).

Example 3.19. 
p := tt ;
r0 := (!p) ;
〈rd|rd〉 ;
r1 := (!q)

 ‖


q := tt ;
r2 := (!q) ;
〈rd|rd〉 ;
r3 := (!p)





3.1. THE LANGUAGE & SEMANTICS 77

Assuming the initial store contains the value ff for both references p and q
it might be surprising to learn that a possible final result for this program is
r0 = r2 = tt and r1 = r3 = ff . One should observe, however, that this is a
possible outcome with the buffering techniques of Chapter 2. Notice that the
first and second instruction of each thread are conflicting, and thus cannot be
reordered, as it would violate a data dependency. Notice as well that the reads
cannot be reordered either, since we have separated them by a 〈rd|rd〉 barrier
for exactly that purpose. One can easily verify that if we do not consider the
possibility of self-fulfilled reads (rdop,v actions) this behavior is not possible. On
the other hand, when considering them we notice that a action rdop,v is not in
conflict with the wrp,v action that precedes it in the program order, and so they
can be reordered in the speculation. This reordering opens the possibility to the
above final result – where we notice that the barrier 〈rd|rd〉 does not prevent
the reordering of the read of q and the write of p in the leftmost thread once
the read of p has been permuted to the front of the speculation. However, the
question now is: which are the values a rdop,v action can possibly return? Indeed,
this will be answered in the validity condition later, but let us anticipate that
the only possible value a read of that kind can obtain is the latest write of
the same reference performed by the same thread according to the order of the
program text.

But then: is it always possible for a read to see its “own write early”?
The answer to that question must necessarily be on the negative. Otherwise
it would be impossible to write programs such that their speculative semantics
coincides with the interleaving one – precisely the result we are seeking. To avoid
this kind of “self-fulfilling” reads the language has to provide synchronization
mechanisms – in particular λ-lock provides locks and λ-barrier provides barriers
for that purpose. Indeed we have seen in the previous chapter that the unlock
action required buffers to be empty before continuing, and a similar condition
will be imposed here for λ-lock.

We can now give a precise definition for what we consider to be valid spec-
ulations.

Definition 3.20 (Valid Speculative Computations). For a dependency rela-
tion D, a speculation σ is D-valid if it is a D-reordering of a normal com-
putation σ′ which satisfies the following condition: if σ′ = σ′0 ·

a−→
o
· σ′1 where

a ∈ {rdop,v, casop,v | v ∈ Val} then there exist δ0 and δ1 such that σ′0 = δ0 ·
a′−→
o′
· δ1

with a′ ∈ {wrp,v, casp,tt , casop,tt} (where if a′ = casp,tt or a′ = casop,tt then
a = rdop,tt or a = casop,ff ), and such that if there is an action a′′ in δ1 sat-
isfying (a′ D a′′) and (a′′ D a) then a′′ = casop,ff . We say that the pair
[δ0, (a

′, o′)] is the matching write of the pair [σ′0, (a, o)] and we denote it by
match([σ′0, (a, o)]) = [δ0, (a

′, o′)].
A speculative computation γ is D-valid if all its projections γ|t are D-valid

speculations.

As a side note, we will actually consider the function match up to the step
equivalence ∼ that we should define shortly.

It is only here that we add a constraint on the possible values returned by
rdop,v and casop,v actions. The requirement is that the value returned must be
exactly the last value written to that reference by the same thread, where last is
w.r.t. the program order. In particular, there must be one such write, otherwise
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the speculation, and thus the entire speculative computation, cannot be qualified
as valid. Moreover, we add constraint that there should be no synchronization
action between the write and the speculated read; if there is a synchronization
action in between them, we require the write action to be globally visible when
the read is performed, and thus the read is necessarily from the memory, and
not local, or “early”. Through this definition we make formal our claim that
rdop,v actions were placed to allow a thread to read its own writes early.

It is clear for instance that the speculations given above that do not preserve
the normal data dependencies are not valid according to this definition. (Notice
that obviously a normal speculation that uses no rdop,v actions is valid.) Then
the reader can observe that from the thread system (from Example 1.4)– where
we omit the thread identifiers[

r := (!p) ;
q := tt

]
‖
[
r′ := (!q) ;
p := tt

]

and an initial store S such that S(p) = ff = S(q), we can, by a ./-valid specula-
tive computation, get as an outcome a state where the memory S′ is such that
S′(r) = tt = S′(r′), something that cannot be obtained with the standard, non-
speculative interleaving semantics. This is a typical behavior of relaxed memory
models where the reads can be reordered with respect to subsequent memory op-
erations – a property symbolically called R→RW, according to the terminology
of [Adve and Gharachorloo, 1996]. We could not model this behavior by means
of the semantics of Chapter 2. Indeed, we will see in the following chapter that
for static thread systems the operational model for speculative computations is
more general than the operational model for write-buffers of the previous chap-
ter, in the sense that for any configuration, there are more outcomes following
(valid) speculative computations than with write buffering. We also believe,
although this would have to be more formally stated, that speculative compu-
tations are more general than most hardware memory models, which deal with
memory accesses, but do not transform programs using semantical reasoning
as optimizing compilers do. For instance, let us examine the case of the IRIW
example (given in Example 2.24 and taken from [Adve and Boehm, 2010]), that
is:

[
p := tt

]
‖
[
q := tt

]
‖
[
r0 := (!p) ;
r1 := (!q)

]
‖
[
r2 := (!q) ;
r3 := (!p)

]

where r0 := (!p) stands for (let x = (!p) in r0 := x) and so on. If we start from
a configuration where the memory S is such that S(p) = ff = S(q), we may
speculate in the third thread that ! q returns ff (which is indeed the initial value
of q), and similarly in the fourth thread that ! p returns ff , and then proceed
with the assignments p := tt and q := tt , and continue to the end. Then we
can reach, by a ./-valid speculative computation, a state where the memory S′

is such that S′(r0) = tt = S′(r2) and S′(r1) = ff = S′(r3), an outcome which
cannot be obtained with the interleaving semantics.

Another unusual example, which is based on [Manson et al., 2005] where it
is used to illustrate an “out of thin air” read, it is given by the following system
made of two threads (with the obvious abbreviations).
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Example 3.21.[
p := ff ;
(if ! p then q := tt else ())

] ∥∥ [ q := ff ;
(if ! q then p := tt else ())

]

Then by a valid speculative computation we can reach, after having per-
formed the two initial assignments, a state where S(p) = tt = S(q). What
is unusual with this example, with respect to what is generally expected from
relaxed memory models for instance [Adve and Hill, 1990; Gharachorloo et al.,
1990], is that this is, with respect to the interleaving semantics, a data race
free thread system, which still has an “unwanted” outcome in the optimizing
framework of speculative computations (see [Boehm and Adve, 2008] for a sim-
ilar example). This indicates that we have to assume a stronger property than
DRF (data-race freeness) to ensure that a program is “robust” with respect to
speculations.

The speculative semantics of robust expressions coincides with their inter-
leaving semantics. In other words the robust programs are the ones for which
the speculative semantics is correct (with respect to the interleaving semantics).

Definition 3.22 (Robust Programs). A closed expression e is D-robust iff for

any t and γ such that γ : (∅, ∅, (t, e)) ∗−→ (S,L, T ) is a D-valid computation there

exists a normal coherent computation γ such that γ : (∅, ∅, (t, e)) ∗−→ (S,L, T ).

We shall give sufficient conditions for robustness in the following sections,
but we first establish general results regarding the speculative semantics.

3.1.4 Properties of Speculations

First, we extend the notion of residual by defining o/eσ where o is an occurrence
and σ a speculation. This is defined by induction on the length of σ, where the
notation o′ ≡ o/eσ means that o/eσ is defined in e and is o′.

o/eε = o

o/e(e
a−→
o′

e′) · σ = (o/e(a, o
′))/e′σ

The following lemma states that the residual of a given occurrence along
equivalent speculations are the same. This property which is depicted in Fig-
ure 3.6 was called the “Cube Lemma” in [Boudol, 1986] and was introduced in
the “parallel moves lemma” of Lévy [1980].

Lemma 3.23 (The Cube Lemma). Let σ = e0
a0−→
o0

e
a1−→
o1

e1 and

σ′ = e0
a1−→
o′1

e′
a0−→
o′0

e1 and σ∞D σ′, then for all o we have o/eσ ≡ o/eσ′.

Proof. Straightforward (but tedious) case analysis. Refer to the proof of
Lemma 3.15 for a similar proof.

The Figure 3.6 presents three cases of the lemma (one for each nondashed
square) and we include as well the expression e′ which exists as justified by
lemma 2.15.
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Figure 3.6: Diagram of the Cube Lemma 3.23: the occurrences oji stand for the

residual of oi after the action aj , that is oji ≡ oi/e(aj , oj). The occurrences o′i
are given by the statement of the lemma.

In the following we shall often omit the expressions in a speculation, writing
σ0 ·

a−→
o
· σ1 instead of σ0 · (e0

a−→
o
e1) · σ1 and similarly for the residuals, written

o/(a, o′) instead of o/e(a, o
′). Indeed, e0 is determined by σ0, and, given e0, the

expression e1 is determined by the pair (a, o). Now we introduce the notion of
a step, called “redex-with-history” in [Berry and Lévy, 1979; Lévy, 1980], and
of steps being in the same family, a property introduced in [Berry and Lévy,
1979].

Definition 3.24 (Steps). A step is a pair [σ, (a, o)] of a speculation σ : e
∗−→ e′

and an action a at occurrence o such that e′
a−→
o
e′′ for some expression e′′. Given

a speculation σ, the set Step(σ) is the set of steps [ς, (a, o)] such that ς · a−→
o
≤ σ.

The binary relation ∼D on steps, meaning that two steps are in the same family,
is the equivalence relation generated by the rule

∃σ′′. σ′∞D σ · σ′′ & o′ ≡ o/σ′′

[σ, (a, o)] ∼D [σ′, (a, o′)]

Speculations that are related by the reordering relation have similar steps:

Lemma 3.25. If [ς, (a, o)] ∈ Step(σ) and σ ∞D σ′, then there exists
[ς ′, (a, o′)] ∈ Step(σ′) with [ς, (a, o)] ∼D [ς ′, (a, o′)]

Proof. The proof is obvious by induction on the definition of ∝D.
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A property that should be intuitively clear is that if a step in a speculation is
in the same family as the initial step of an equivalent speculation, then it can
be commuted with all the steps that precede it:

Lemma 3.26. Let σ = ς0 ·
ā−→̄
o
· ς1 ·

a−→
o
· ς2 and σ ∞D a−→

o′
· σ′ with

[ς0 ·
ā−→̄
o
· ς1, (a, o)] ∼D [ε, (a, o′)], then there exists o′′, e′′, ō′ and σ′′ such that

σ∞D ς0 · (e
a−→
o′′

e′′
ā−→̄
o′

ē) · σ′′ where o ≡ o′′/( ā−→̄
o′
· σ′′) and ō′ ≡ ō/(a, o′′).

Proof. The proof is by induction on the inference of σ∞D a−→
o′
· σ′. Let us

consider the case where σ ∝D
a−→
o′
· σ′. The case where σ =

a−→
o′
· σ′, meaning

that σ0 = ε, is trivial. Otherwise there exists a speculation σ̂ with σ̂ ∝D
a−→
o′
· σ′

(with a shorter inference) and σ̂ results from σ by replacing two consecutive

steps. If the transposition occurs in ς2 or commutes the last step of σ0 ·
a−→
o

with the first step of ς2 we apply the induction hypothesis. If the transposition
commutes the last step of σ0 with the step [σ0, (a, o)] we have the required
conclusion for the case where ς1 = ε, and we have the conclusion by the induction
hypothesis otherwise. Finally, if the transposition occurs within σ0 we use the
Cube Lemma 3.23 and the induction hypothesis to conclude.

The proof in the case where
a−→
o′
· σ′ ∝D σ is similar to the one just considered

taking
â−→̂
o′
· σ′ ∝D σ̂ with σ̂ reaching σ by permuting only two steps.

3.1.5 Properties of Speculative Computations

The properties of speculative computations that we develop here state that if
actions of different threads are not conflicting, then reordering them is of no
consequence in the overall computation. Moreover, if the actions are of the
same thread, and they are not dependent, they can also be reordered reaching
the same final configuration. We will present these results now.

From now on, we shall consider regular configurations, where at most one
thread can hold a given lock, and where a lock held by some thread is indeed
in the lock context. This is defined as follows:

Definition 3.27 (Regular Configuration). A configuration C = (S,L, T ) is
regular if and only if it satisfies

i) if T = (ti,Σi[(ei\`)])‖Ti for i = 0, 1 then t0 = t1 & Σ0 = Σ1 &
e0 = e1 & T0 = T1

ii) T = (t,Σ[(e\`)])‖T ′ ⇒ ` ∈ L

For instance, any configuration of the form (∅, ∅, (t, e)) where e is an expres-
sion is regular. The following should be obvious:

Remark 3.28. If C is regular and C
a−−→
t,o

C ′ then C ′ is regular.

The following lemma (for a different notion of computation) was called the
“Asynchrony Lemma” in the previous chapter. Previously we used it as the
basis to define the equivalence by permutation of computations. We could also
introduce a similar relation here, generalizing the reordering of speculations,
but this is actually not necessary.
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Lemma 3.29. Let C be a (well-formed) regular configuration. If

C
a0−−−→
t0,o0

C0
a1−−−→
t1,o1

C ′ with t0 6= t1, ¬(a0 # a1) and a0 =
x
` ⇒ a1 6=

y
` and

a0 = spwe′ ⇒ t1 ∈ dom(T ) if C = (S,L, T ), then there exists C1 such that

C
a1−−−→
t1,o1

C1
a0−−−→
t0,o0

C ′.

Proof (Sketch). The proof is by a case analysis on the actions a0 and a1:

• If a0 ∈ {β, βv,↙,↘, rdop,v, casop,ff , ww, wr, rw, rr} then this action has no
side effect (i.e., it does not modify the components S, L and T of the
configuration), and therefore such an action commutes with any other
action a1.

• If a0 = νp,v then it cannot be the case that a1 is rdp,w or wrp,w, by the
well-formedness of the configurations. Also, a1 6= νp,w, and it is therefore
easy to see that a1 commutes with a0 in this case.

• If a0 = rdp,v then we have a1 /∈ {wrp,w, casp,tt , casop,tt} (otherwise a0 # a1)
and a1 6= νp,w by well-formedness. Again it is easy to see that in any pos-
sible case for a1, the two actions commute, producing the same resulting
configuration.

• If a0 = casp,ff then the case is identical to the previous one.
• If a0 = wrp,v then we have a1 /∈ {rdp,w,wrp,w, casp,w, casop,tt} and
a1 6= νp,w. As in the previous case, we easily conclude.

• If a0 = casp,tt or a0 = casop,tt then the case is identical to the previous one.

• If a0 =
y
` or a = µ then a1 6=

y
` since two different threads cannot

acquire the same lock (we are using the regularity of C when a0 = µ).

Also, a1 6=
x
` because this would mean that C0 is not regular. If a0 =

x
`

then a1 6=
x
` , since otherwise C0 would not be regular, and a1 6=

y
` by

hypothesis. Again in these cases it is easy to conclude that the lemma
holds.

• The case where a0 = spwe is immediate.

And a similar lemma holds for transitions of the same thread:

Lemma 3.30. Let C be a (well-formed) regular configuration.

If C
a0−−→
t,o0

C0
a1−−→
t,o′1

C ′ with C = (S,L, (t, e)‖T ), C0 = (S0, L0, (t, e0)‖T0),

C ′ = (S′, L′, (t, e′)‖T ′) and e
a0−→
o0

e0
a1−→
o′1

e′ ∝D e
a1−→
o1

e1
a0−→
o′o

e′ then

C
a1−−→
t,o1

(S1, L1, (t, e1)‖T1)
a0−−→
t,o′0

C ′ for some S1, L1 and T1.

Proof (Sketch). We distinguish three cases, according to the respective position
of the occurrences o0 and o1.

• If o0 ≤ o1, we can only have a0 ∈ {β, βv}, and therefore S0 = S, L0 = L
and T0 = T , and it is easy to conclude with S1 = S′, L1 = L′ and T1 = T ′.

• If o1 < o0, then a1 ∈ {β, βv}, hence S′ = S0, L′ = L0 and T ′ = T0, and
we conclude, as in the previous case, with S1 = S, L1 = L and T1 = T .

• If o0 and o1 are disjoint, that is o0 6≤ o1 and o1 6≤ o0, we proceed by
cases on (a0, o0) and (a1, o1), as in the previous proof. The hypothesis
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e
a0−→
o0

e0
a1−→
o′1

e′ ∝D e
a1−→
o1

e1
a0−→
o′o

e′ requires that ¬(a0Da1) which in

particular implies that ¬(a0 # a1). Notice also that a0 /∈ Sync, because it
would contradict this hypothesis.

3.2 Robustness for λ-lock

In this section we consider the problem of providing a property to guarantee the
robustness for the high-level language with locks. Let us begin our discussion
of this high-level language by defining the actual constraints of the dependency
relation.

We define a dependency relation nL that contains the minimal set of de-
pendencies that are enough to guarantee our robustness result for λ-lock. In
fact, the only additional requirement is that actions that come before (in the
program order) synchronization actions must not be reordered with respect to
these. Notice the similarity with the unlock action of the previous chapter. Let
us recall the definition of Sync:

b ∈ Sync ::= spwe |
x
`

and let us give the formal definition for feasible dependency relations for λ-lock.

Definition 3.31 (Dependency Relation for λ-lock). An L-dependency relation
D for the λ-lock language, is a binary relation on actions that satisfies nL ⊆ D
where:

nL , ./ ∪ (Act × Sync)

Notice here, that many of the requirements of the definition 3.17 are trivially
satisfied by λ-lock, since there is no compare-and-swap construct in it. Until the
end of this section we will completely disregard compare-and-swap and barriers.

We have chosen a rather minimal set of dependencies for the nL relation.
In particular the only additional constraint to those included in the dependency
relation (./) is that every action that comes in the program order “before” a
synchronization action has to happen before the synchronization action in the
speculation as well. In that sense, performing the action of an unlock or a spawn
depends on any action that precedes it in the program order. In relation with
the previous chapter, we can also think that synchronization actions require
the pending buffers to be empty, since they constraint the use of rdop,v actions.
One can make a parallel with a flush action in an architecture with buffers.
This approach is also slightly different from the one taken in [Boudol and Petri,
2010] where instead of considering this dependency relation, these actions were
only allowed to happen within evaluation contexts (rather than speculation
contexts). In essence, this has the same effect as disallowing the execution of
a thread creation and unlock actions if there are pending actions that should
come before them in the program order.

The motivation for having such liberal definition of dependency is that it
is sufficient for proving our safety results, while being very general. In par-
ticular, we are interested here in providing a framework to describe different
speculative techniques, which we shall relate to relaxed memory models as well.
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Thus we prefer to have the minimal set of restrictions that are enough to prove
our results. Further restrictions only strengthen the results derived here. We
will later comment on how variations of the dependency relation provide differ-
ent, and perhaps more intuitive, semantics for locks corresponding to common
programming practice.

With this instantiation of the dependency relation we have a sufficient valid-
ity definition to prove the main result in this section, that is that speculatively
data-race free programs are robust.

3.2.1 Robustness Condition: SDRF

The following definition, which should be familiar from the previous chapter, is
the lifting of the Data Race Free definition to the speculative calculus.

Definition 3.32 (Speculative DRF Program). A configuration C has a specu-

lative data race iff there exist ti, oi, ai and Ci (i = 0, 1) such that C
a0−−−→
t0,o0

C0

and C
a1−−−→
t1,o1

C1 with t0 6= t1 & a0 # a1. A D-valid speculative computation(
Ci

ai−−−→
ti,oi

Ci+1

)
06i6n

is speculatively date race free iff for all i, Ci has no spec-

ulative data race. A configuration C is speculatively date race free (speculatively
DRF, or SDRF) w.r.t. the dependency relation D iff any D-valid speculative
computation originating in C is data race free. An expression e is speculatively
DRF w.r.t. the dependency relation D iff for any t the configuration (∅, ∅, (t, e))
is speculatively DRF w.r.t. the relation D.

It is obvious that this is a safety property, in the sense that if C is spec-
ulatively DRF and C ′ is reachable from C by a normal computation, then C ′

is speculatively DRF w.r.t. the nL dependency relation. We could have for-
mulated this property directly, without resorting to the conflict relation, saying
that there are no reachable concurrent accesses to the same location in the mem-
ory. In this way we could deal with optimizing architectures (such as the Alpha
memory model, see [Compaq, 2002]) that allow to reorder such accesses, by in-
cluding the case where these concurrent accesses can occur (in the speculative
semantics) from within the same thread, like for instance in p := ff ; r := ! p.
We do not follow this way here, since such a model requires unnatural synchro-
nizations from the programmer.
Notice that if we have two consecutive conflicting steps from different threads
in a computation, then the computation is not free of data races:

Remark 3.33. Let C
a0−−−→
t0,o0

C0
a1−−−→
t1,o1

C ′ with t0 6= t1 and a0 # a1, then C

contains a data race. That is, there exists C ′′ such that C
a1−−−→
t1,o1

C ′′.

In order to establish our main result, we need some preliminary lemmas,
regarding both speculations and speculative computations.

Provided with Lemma 3.26 we now show that in a speculation, unlock and
spawning actions act as barriers with respect to other actions that occur in an
evaluation context: these actions cannot be permuted with unlock (or spawn)
actions. This is expressed by the following lemma:
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Lemma 3.34. If σ is a D-valid speculation, justified by the normal execution
σ̂, that is σ ∝D σ̂; where σ̂ = σ̂0 ·

a−→
o
· σ̂1 with a ∈ Sync, then σ = σ0 ·

a−→̄
o
· σ1

with [σ̂0, (a, o)] ∼D [σ0, (a, ō)], and for any step [ς̂ , (a′, o′)] ∈ Step(σ̂0) there is a
step [ς, (a′, o′′)] ∈ Step(σ0) such that [ς̂ , (a′, o′)] ∼D [ς, (a′, o′′)].

Proof. The proof is by induction on the inference of σ ∝D σ̂. Let us consider the
case where σ̂ is obtained from σ by a single transposition; and let σ = σ0 · (e

a1−→
o1

e0
a0−→
o0

e′) · σ1 with ¬(a0Da1) and σ̂ = σ0 · (e
a0−→
o′0

e1
a1−→
o′1

e′) · σ1. Clearly in this

case a1 /∈ Sync, for a1 ∈ Sync implies that a0 nL a1 and then a0Da1. Then
a1 6= a and the conclusion is obvious.

Let us consider now the case where σ ∝D σ′ ∝D σ̂ where σ′ is obtained
from σ by a single transposition and σ′ ∝D σ̂ is a shorter inference. Suppose
none of the steps being permuted is in the family of [σ̂0, (a, o)], then we can
simply conclude by the induction hypothesis. Otherwise suppose that σ =
σ0 · (e

a1−→
o1

e0
a−→
o0

e′) · σ1 and σ′ = σ0 · (e
a−→
o′0

e1
a1−→
o′1

e′) · σ1 with ¬(a1Da). Then

we conclude by the induction hypothesis, since the steps in Step(σ0) remain

unchanged. Finally, the case where σ = σ0 · (e
a−→
o1

e0
a0−→
o0

e′) · σ1 needs not be

considered since we necessarily have that a0 nL a for a ∈ Sync; otherwise we
would have a contradiction to the validity hypothesis.

In order for a speculation to be valid, all the operations that normally (i.e.
in the program order) precede a Sync action, and in particular an unlock, must
be performed before this action in the speculation. In some sense, Sync actions
considered here act as a barrier disallowing preceding actions from being delayed
across them.

We now prove that given a speculatively data race free configuration C every
two conflicting actions by different threads in any nL-valid computation starting
from C must be separated by an unlock action performed by the first thread.

Lemma 3.35. Let C be a well-formed, closed regular configuration such that
C is SDRF. If γ : C

∗−→ C ′ is a nL-valid speculative computation such that

γ = γ0 ·
a0−−−→
t0,o0

· γ1 ·
wrp,v−−−→
t1,o1

· γ2 with t0 6= t1 and a0 #wrp,v we can conclude that

γ1 = γ′1 ·
a−−→
t0,o
· γ′′1 for some γ′1, γ′′1 , o and a where a ∈ Sync.

Proof. The proof proceeds by induction on the length of γ1. The base case
is trivial, since the hypothesis a0 # wrp,v implies that we have a configuration
with a data race, contradicting the hypothesis stating that C is SDRF. Let us
concentrate on the inductive case now.

Let us assume by contradiction that there are no
x
` or spwe actions by thread

t0 in γ1. Let us now consider the following cases for a0:

• if a0 = wrp,w we have the following cases: If γ1|t = σ1 ·
a2−−−→
t2,o2

· σ′1 with

a0 #a2 then a2 #wrp,v as well, and we can apply the induction hypothesis
with a2 in the place of a0. In the case that there is no such conflicting event
in γ1|t it must be the case that for all action a′ appearing in γ1|t it holds

¬(a0nLa′). Assuming now that γ1 =
a3−−−→
t3,o3

· γ̂1 it must be that t0 6= t3 and

then ¬(a0 # a3), otherwise we would have a data race contradicting the
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SDRF hypothesis, and in this case we conclude applying the lemma 3.29
and the induction hypothesis; otherwise if t0 = t3 we have ¬(a0 nL a3)
and we conclude applying lemma 3.30 and the induction hypothesis. This

contradicts the assumption that there is no
x
` or spwe action by t0 in γ1.

• if a0 = rdp,w then, as previously, all actions in γ1|t are nonconflicting with
rdp,w or we conclude by the induction hypothesis using any conflicting

action occurring in a later position. So again, if γ1 =
a3−−−→
t3,o3

· γ̂1 we know

that if t0 6= t3 then ¬(a0 #a3) and conclude as before. On the other hand
t0 6= t3 implies that ¬(a0 nL a3) and we conclude applying lemma 3.30
and the induction hypothesis.

Notice that this particular proof is not given in its most general form. This
is so because we assume that if actions are not dependent according to the
nL relation, then we can reorder them as provided by the lemma 3.30. This
needs not be the case for dependency relations that extend the nL relation
(i.e. any relation D such that nL ⊂ D). Indeed, the claim remains true if we
take any dependency relation that extends this one, but the argument is more
sophisticated, so we prefer to present this simpler lemma, and continue with our
results for this particular dependency relation.

Proposition 3.36. Let C be a well-formed, closed, regular configuration. If
γ : C

∗−→ C ′ is a nL-valid speculatively data race free computation, then there
exists a normal computation γ from C to C ′.

Proof. We proceed by induction on the length of γ. This is trivial if γ = ε.
Otherwise, let γ =

(
Ci

ai−−−→
ti,oi

Ci+1

)
06i6n

with n > 0. Notice that for any i, the

configuration Ci is well-formed, regular and has no data race. The set { t | γ|t 6=
ε } is nonempty. For any t there exists a normal (up to rdop,v actions) nL-valid
speculation σt such that γ|t ∝nL σt. Let j be the first index (0 6 j < n) such

that γ|tj = σ0 ·
aj−→
oj
· σ1 and σtj =

aj−→
o
· σ′ with [ε, (o, aj)] ∼nL [σ0, (aj , oj)].

Now we proceed by induction on j. If j = 0 then o = oj ∈ Occ∗, and we use
the induction hypothesis (on the length n) to conclude. Otherwise, we have

Cj−1
aj−1−−−−−−→

tj−1,oj−1

Cj
aj−−−→
tj ,oj

Cj+1. We distinguish two cases.

• If tj−1 6= tj then we have ¬(aj−1 # aj) by remark 3.33 and since γ is
speculatively data-race free. We show that i < j ⇒ ai 6∈ Sync. Assume
the contrary, that is ai ∈ Sync for some i < j. Then γ|ti = ς0 ·

ai−→
oi
· ς1, and

by Lemma 3.25 we have σti = ς0 ·
ai−→
o′
· ς1 with [ς0, (oi, ai)] ∼ [ς0, (o

′, ai)].

Then by Corollary 3.34 the first step of ς0 ·
ai−→
o′

is in the family of a step

in ς0 ·
ai−→
oi

, contradicting the minimality of j. We therefore have aj−1 6=
x
`

in particular. By Lemma 3.29 we can commute the two steps
aj−1−−−→
oj−1

and

aj−→
oj

, and we conclude using the induction hypothesis (on j).

• If tj−1 = tj , we have σ0 = ς0 ·
aj−1−−−→
oj−1

, and by Lemma 3.26 there exist o′, o′′

and σ′1 such that γ|tj∞nL ς0 ·
aj−→
o′
· aj−1−−−→

o′′
·σ′1 (where we recall that ∞nL is
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the symmetric closure of the ∝nL relation) with o ≡ o′/(aj−1, oj−1). We
conclude using Lemma 3.30 and the induction hypothesis (on j).

We have proved a property that is actually more precise than stated in the
proposition, since the γ that is constructed is a reordering of γ – but we decided
not to introduce explicitly this notion as regards speculative computations.

A final remark we need to establish our robustness result is that any specu-
lative read (i.e. an action of the form rdop,v) sees exactly the value currently in
the store in the computation γ̄ as provided by the Proposition above.

Remark 3.37. With the hypothesis of the Proposition 3.36, if γ̄ is the resulting

normal computation and γ̄ = γ′ · (C
rdop,v−−−→
t0,o0

C ′) · γ′ where C = (S,L, T ), then

S(p) = v.

Proof. The proof considers the last write to p previous to the read (rdop,v). Sup-

pose that γ̄ = γ0 ·
wrp,v−−−→
t0,o0

· γ1 ·
wrp,w−−−→
t1,o1

· γ2 · (C
rdop,v−−−→
t0,o0

C ′) · γ′ and t0 6= t1 and

(γ1 ·
wrp,w−−−→
t1,o1

· γ2)|t contains no wrp,v action, meaning that according to the def-

inition of speculation validity the write wrp,v highlighted in the computation
is the one satisfying the read rdop,v in thread t0. We have by lemma 3.35 that

there must be an unlock or a thread spawn in (γ1 ·
wrp,w−−−→
t1,o1

· γ2)|t, which by the

validity condition contradicts the fact that there is a rdop,v action later.

An immediate consequence of the property 3.36 and the remark above (3.37) is
the announced robustness result:

Theorem 3.38 (Robustness). Any speculatively data race free closed expression
is nL-robust

We observe that if an expression is purely sequential, that is, it does not
spawn any thread, then it is speculatively data race free, and therefore robust,
that is, all the valid speculations for it are correct with respect to its standard
semantics.

Let us conclude the treatment of the λ-lock language by reconsidering the
synchronization mechanisms, and more precisely the relaxations allowed in it.
We have mentioned that speculating bypassing synchronization can be surpris-
ing for the programmer. To see why, consider the following example, a lock
proctected variation of Example 1.6, assuming that initially flag = tt and
where we assume a simple while construct.

Example 3.39.[
p := tt ;
(with ` do flag := ff )

]
‖
[

while (with ` do (!flag)) do () ;
r0 := (!p)

]
It is not hard to see that this example is free of data races in the interleaving

semantics, since there is no data race on reference p, and the reference flag
is protected by the lock `. However, when we consider nL-valid speculative
computations we have a data race in p, since we can speculate in the second
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thread on the redex (!p) at any time. Importantly, this means that this program,
commonly known as the safe publication idiom, is not safe under the relaxations
we consider in this chapter. We could simply avoid this kind of speculations by
adding the following condition on nL:⋃

`∈Locks

{
y
` } × Act ⊆ nL

in which case we get the standard roach motel semantics for locks. However,
since our results hold for the more general case where this constraint is not
added, we do not include them a priori. It is easy to see that this additional
constraint does not invalidate our previous theorem, and furthermore, the same
proofs are still valid under this extra assumption.

3.3 Robustness for λ-barrier

Part of the motivation for the formalization of speculative computations in this
chapter is to describe, in an operational way, the semantics of relaxed memory
models. However, λ-lock stands at a higher level than most of the languages
that we find in low-level architectures. Indeed, the lock construct of the previous
section is not common in instruction sets of a machine architectures5. On the
other hand, one would typically find some kind of barrier instruction, whose
effect is to prevent the reordering of instructions, or to guarantee the termination
of instructions previous to the barrier before issuing the ones following it. But
barriers alone are not enough to provide atomicity of memory accesses, needed to
implement higher level synchronization mechanisms such as locks. Hence these
architectures must provide some kind of atomicity construct, which they achieve
by instructions like compare-and-swap or variants of it. Let us concentrate in
this section on the language λ-barrier that we regard as a prototypical low-level
language.

A natural question to ask here is: How do the standard DRF, or the pre-
viously discussed SDRF results apply in this case? Indeed, in the absence of
locks, or other mutual exclusion mechanisms, it is unclear that the DRF guar-
antee can be applied. What is more, often times avoiding data races entirely
is not possible at this low level. In particular, for implementing mutual exclu-
sion algorithms – or any other synchronization mechanisms for that matter –
with such a language one might have to resort to data races. So a question
that follows is: How can one be sure that the implementation of a higher level
synchronization mechanism in this architecture is sound (for the proper defini-
tion of soundness according to the mechanism)? And finally: can we identify
properties that guarantee that programs written in this language are sequen-
tially consistent? The first and last questions are highly related and we will
provide an answer for them here. In particular, we will identify a property sim-
ilar to the one identified in [Shasha and Snir, 1988], that guarantees that the
behavior of speculative computations coincide with the behavior of sequentally
consistent computations for programs satisfying it. We shall call this property
POSMA (Preserving the Order of Shared Memory Accesses). To answer the

5Some architectures like x86 support locks, of a different kind, to provide atomicity for
single instructions.
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second question one would then reason about the POSMA property. We are
currently conducting research in that direction.

This choice of the language constructs of λ-barrier is partly inspired by the
Sparc memory models [SPARC, 1994] that we will consider in more detail in
the following chapter.

Despite being at odds with much of the relaxed memory models litera-
ture [Ledgard, 1983; Adve and Boehm, 2010], we consider that providing guaran-
tees for programs containing data races (that is, other than the DRF guarantee
which does not consider them at all) is a requirement for low-level languages.
We think this as a necessary step towards an end-to-end view of relaxed memory
models [Gao and Sarkar, 1997], in which the guarantees provided at a higher
programming language level are provably reflected by the intermediate stages
of the compilation down to the execution of the program in the actual marchine
architecture. The lack of such guarantees in lower level languages, or interme-
diate level compilations, requires an act of faith towards the implementation of
these mechanisms. Actually, several recent works have pointed out that the cur-
rent state of affairs as regards the specification of memory models is somewhat
unsatisfactory [Sewell et al., 2010; Adve and Boehm, 2010; Ševč́ık and Aspinall,
2008] and therefore new, or perhaps more formal approaches need to be consid-
ered. We regard our formalization as a step towards more reliable guarantees
for parallel programs running on machines with relaxed memory models.

Let us now characterize which are the speculative computations of this lan-
guage that we shall consider as valid.

3.3.1 Valid Speculations

The most significant change, apart from the syntax, from the semantics of λ-
lock is the definition of the dependency relation. Before showing the dependency
relation let us introduce some abbreviations that will simplify our definitions.
Let us define the set Rdp of actions on reference p with read semantics (Notice
that this definition is different from MRdp in that rdop,v actions are included,
since they are reads):

Rdp , {rdp,v, rdop,v, casp,v, casop,v | v ∈ Val}

and a similar definition for the actions with write semantics on p:

Wrp , {wrp,v, casp,v, casop,v | v ∈ Val}

and their obvious generalizations to any reference:

Rd ,
⋃

p∈Ref

Rdp and Wr ,
⋃

p∈Ref

Wrp

Notice here that we consider casp,v actions to have write semantics whether
they succeed or not. This is because we wish to disallow reordering actions
that potentially depend on such actions. In particular this is in agreement with
the semantics of the Sparc memory models which we will consider in the next
chapter.

We can now define dependency relations for this language:
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Definition 3.40 (Dependency Relation for λ-barrier). A B-dependency relation
D for the λ-barrier language, is a binary relation on actions that satisfies nB ⊆
D where:

nB , ./ ∪ Act × {spwe}
∪

⋃
p∈Ref ,v∈Val

({(spwe} × {rd
o
p,v, cas

o
p,v})

We can observe that once more, we consider the action of spawning a new thread
as imposing synchronization.

The reader might find surprising not to see barrier actions in the nB re-
lation, after all these are the only way in which reorderings can be avoided
(other than spawns) in this section. Actually, this is because we use the nB
relation to prove our results, which are based on the nB-POSMA property, and
therefore assume that actions involved in data races happen as in the program
order. Our theorems and intermediate results vacuously hold for computations
not satisfying nB-POSMA. However, we acknowledge that the task of writting
nB-POSMA programs is almost impossible (unless there is no communication
whatsoever) if the expected dependencies of barriers are not included. So maybe
a more reasonable dependency relation should be the n′B relation given below.

n′B , nB ∪ (Rd × {rr, rw}) ∪ ({rr, wr} ×Rd)
∪ (Wr × {ww, wr}) ∪ ({ww, rw} ×Wr)

Importantly our results still hold for the n′B strengthening of nB in a trivial
way.

Provided with the n′B dependency relation we notice that a trivial way to
make speculations coherent – that means that all reads and compare-and-swap
see the current value in the memory, as opposed to rdop,v and casop,v actions – and
moreover, to entirely disallow the use of rdop,v and casop,v actions, is to require
that writes and reads on the same reference be always separated by a 〈wr|rd〉
barrier in every thread.

A simple observation that we will use later is that there is a single normal
speculation for any D-valid speculation.

Remark 3.41. If σ0 ∝D σ1 where σ0 and σ1 are both normal, then σ0 = σ1.

If σ = (ei
ai−→
oi

ei+1)06 i <n and σ′ = (ei
a′i−→
oi

ei+1)06 i <n with σ ∝D σ′, then

there exists a permutation h of {0, . . . , n−1} such that ai = a′h(i). We shall use
explicitly this permutation, introducing the notation:

h : σ ∝D σ′

Notice that, with the previous notations, if h(i) < h(j) and a′h(i)D a
′
h(j) then

i < j (this is easy to check, by induction on the definition of ∝D).

3.3.2 Robustness Condition: POSMA

Our robustness condition for λ-barrier states that if a thread engages in more
than one conflict with another (one or many) threads, then the events that give
rise to these conflicts should happen as prescribed by their order in the program:
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Definition 3.42 (POSMA). A configuration C is preserving the order of shared
memory accesses (POSMA) w.r.t. D (D−posma for short), iff for any D-valid

speculative computation γ : (C
∗−→ C ′) such that

γ = γ0 ·
a−−→
t,o
· a0−−−→
t0,o0

· γ1 ·
a1−−−→
t1,o1

· a′−−→
t,o′
· γ2

(where
a0−−−→
t0,o0

· γ1 ·
a1−−−→
t1,o1

is possibly of length one) with t0 6= t 6= t1, γ1|t = ε,

a 6= a′ and a#a0 and a′#a1, and if γ0|t is of length j (i.e. a and a′ are jth and
j+1th actions in γ|t) and h : γ|t ∝D σ where σ is normal, then h(j) < h(j+1).

Moreover, with the hypotheses above, whenever σ = σ0 ·
a′−→̄
o
· σ1 ·

a−→̄
o′

· σ2 with a ∈ {rdop,v, casop,v} and match([σ0 ·
a′−→̄
o
· σ1, (a, ō′)]) = [σ0, (a

′, ō)]

and the length of σ0 is n and the length of σ0 ·
a′−→̄
o
· σ1 is m then

n 6 h(j)⇒ h(j + 1) 66 m.

The POSMA property is similar to the acyclicity condition discovered by Shasha
and Snir in their pioneering work [Shasha and Snir, 1988]. However, their con-
dition deals with graphs of memory accesses, whereas ours directly relies on the
operational semantics of the programming language (our condition would be
exactly the same with recursive programs).

Some examples might clarify the POSMA property. In the following program
(the same as in the example 1.3) we consider a program that does not satisfy
the POSMA property when assuming a dependency relation where every kind
of memory access (reads or writes) on different references can be reordered, and
we adopt the usual assumption about the initial memory, i.e. p = q = ff .[

p := tt ;
q := tt

]
‖
[
r0 := (!q) ;
r1 := (!p)

]
A simple computation that proves that the POSMA property is not satisfied by
this example is the following one, where we omit the occurrences, the configu-
rations and we assume that the thread on the left is t0 and the one on the right
is t1:

γ =
wrq,tt−−−→
t0
· rdq,tt−−−→

t1
· rdp,ff−−−→

t1
· wrp,tt−−−→

t0

it is obvious that this computation is not sequentially consistent, but moreover,
it does not respect the POSMA property, since the writes of thread t0 are not
in their program order, and are involved in data races. In fact, each thread is
involved in two data races in this computation, but only t0 can instantiate the
thread t required by the POSMA property.

It is not hard to see that adding the appropriate barriers to the example
we can make it satisfy the nB′ -POSMA property, and it is not hard to see as
well that then we can only have sequentially consistent computations. The final
program would be: p := tt ;

〈wr|wr〉 ;
q := tt

 ‖

r0 := (!q) ;
〈rd|rd〉 ;
r1 := (!p)


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Moreover, the example above illustrates a second interesting point about
the POSMA property, and it is that we need to have at least two data races
to deviate from sequentially consistent computations. But this fact is easier to
illustrate with a simpler example.[

p := tt ;
]
‖
[

(!p) ;
(!p)

]
Here the only possible nonsequentially consistent computation is the one in
which the reads of the second thread are reordered:

γ =
rdp,ff−−−−−−−−→

t1,((λ [] )·[])
· wrp,tt−−−→
t0,[]

· rdp,tt−−−−−→
t1,( [])·[]

it is obvious in this case that if we had only one read in thread t1 there is no
possible nonsequentially consistent behavior.

To conclude with the examples we remark that compare-and-swap commands
are not a substitute for barriers as can be seen in the following example, where we
make the standard assumptions regarding the initial state of memory locations
p and q: [

(cas p) ;
(cas q)

]
‖

r0 := (!q) ;
〈rd|rd〉 ;
r1 := (!p)


there is nothing in this example that forbids r0 = tt and r1 = ff as a final result,
since the actions generated by compare-and-swap instructions can be reordered
as in the first example above. A correct (that is sequentially consistent) im-
plementation of this example requires a barrier between the compare-and-swap
expressions. (cas p) ;

〈wr|wr〉 ;
(cas q)

 ‖

r0 := (!q) ;
〈rd|rd〉 ;
r1 := (!p)


We notice that this kind of behavior is possible in architectures like
Sparc [SPARC, 1994].

Let us move on now with the technical development to prove that POSMA
is a sufficient condition on programs to guarantee robust computations. Let us
prove the following lemma stating that if in a computation we have that a thread
performs two consecutive equal actions, then these actions can be reordered in
the computation:

Lemma 3.43. Let γ = (C
a−−→
t,o
· δ · a−−→

t,o′
C ′) be a speculative computation

such that δ|t = ε, C = (S, (t, e)‖T ) and
a−→
o
· a−→
o′
∝D

a−→̄
o′
· a−→̄
o

with o′ ≡ ō′/e(a, o)

and ō ≡ o/e(a, ō′). Then there exists δ′ such that δ′|t′ = δ|t′ for any t′, and

γ = (C
a−−→
t,ō′
· δ′ · a−−→

t,ō
C ′) is a speculative computation.

Proof. Let γ = (Ci
ai−−−→
ti,oi

Ci+1)06 i6n, where n > 1, t0 = tn = t, a0 = an =

a, o0 = o, on = o′ and C0 = C, Cn+1 = C ′. If Ci = (Si, Ti, Pi) where
Ti = (t, ei)‖T ′i , we have ei = e1 for 1 6 i 6 n, and there exists e′1 such

that e0
a−→̄
o′

e′1
a−→̄
o
en+1. For 1 6 i < n we let C ′i = (Si, (t, e

′
1)‖T ′i , Pi). Clearly
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C ′i
ai−−−→
ti,oi

C ′i+1 for 1 6 i < n, and therefore we just have to check that C0
a−−→
t,ō′

C ′1

and C ′n
a−−→
t,ō

Cn+1, which is trivial since these transitions are determined by the

action a (notice that a cannot be νp,v, nor spwt′,e, since a given pointer or thread
name cannot be fresh twice).

Now we prove that the D-posma property is indeed a correct criterion for
sequential consistency for speculative computations. A crucial property of D-
posma configurations is the following:

Lemma 3.44. Let C be a configuration that is D-posma, and let γ : C
∗−→ C ′

be a D-valid speculative computation such that γ = γ0 ·
a0−−→
t,o0
· γ1·

a1−−→
t,o1
· γ2 with

a0 6= a1, γ1|t = ε and h : γ|t ∝D σ where σ is normal. If the length of γ0|t is j
and h(j) > h(j + 1) then γ1 = δ0 · δ1 for some δ0 and δ1 such that ¬(a0 # δ0)
and ¬(a1 # δ1).

Proof. if ¬(a0 # γ1) we are done (with δ0 = γ1 and δ1 = ε), so let us assume

that γ1 = δ0 ·
a−−→
t′,o
· γ′ with a0 # a and ¬(a0 # δ0), where t′ 6= t since γ1|t = ε.

Now we show that a1#
a−−→
t′,o
· γ′ is not possible. Assume the contrary, that is

a−−→
t′,o
· γ′ = γ′′ · a′−−−→

t′′,o′
· δ1 with a′ # a1 and ¬(a1 # δ1). By Lemma 3.29 we can

commute a0 with δ0 and a1 with δ1 (if a thread is spawned with some name in
δ1 then this name is distinct from t since t was known before δ1), obtaining a
D-valid computation

δ = γ0 · δ′0 ·
a0−−→
t,o0
· a−−→
t′,o
· γ′′ · a′−−−→

t′′,o′
· a1−−→
t,o1
· δ′1 · γ2

with δ|t = γ|t. Then, since C is D-posma, and δ′0|t = ε = γ′′|t = δ′1|t, we should
have h(j) > h(j + 1), a contradiction.

Let us prove an intermediate result stating that a D-posma speculative com-
putation necessarily has a normal speculative computation that corresponds to
it. This will later be used to show that D-posma speculative computations
have a corresponding normal coherent computation, and thus are sequentially
consistent.

Proposition 3.45. Let C be a well-formed, closed configuration. If C is D-
posma and γ : C

∗−→ C ′ is a D-valid speculative computation, then there exists a
normal computation γ from C to C ′.

Proof. For any t there exists a normal speculation ςt such that γ|t ∝D ςt. We
proceed by induction on the total number of transpositions used to transform
the speculations γ|t into ςt. If this number is 0, γ is a normal computation.
Otherwise, let

γ = γ0 ·
a−−→
t,o
· γ1 ·

a′−−→
t,o′
· γ2

where γ1|t = ε and h : γ|t ∝D ςt, with h(j) > h(j + 1) where j is the length of
γ0|t. Notice that ¬(a′D a). There are two cases.

• If a = a′, we conclude using Lemma 3.43, and the induction hypothesis.
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• Otherwise (a 6= a′), since C is D-posma, by Lemma 3.44 there exist δ0
and δ1 such that γ1 = δ0 · δ1, with ¬(a#δ0) and ¬(a′#δ1). If a = spwt′,e
we have ¬(a′ # γ1) since ¬(a′D a), and we may let δ0 = ε and δ1 = γ1

in this case. Then, possibly using repeatedly Lemma 3.29, we can build a
speculative computation of the form

γ0 · δ′0 ·
a−−→
t,o
· a′−−→
t,o′
· δ′1 · γ2

and by Lemma 3.30 we get a computation of the form

γ0 · δ′0 ·
a′−−→
t,ō′
· a−−→
t,ō
· δ′1 · γ2

We conclude using the induction hypothesis.

The following lemmas are auxiliary results that are required to prove that a
normal computation starting from a D-posma configuration has a corresponding
normal speculative computation.

Lemma 3.46. Given a speculative computation γ : C
∗−→ C ′ such that γ =

γ|t·
a−−→
t′,o

with t 6= t′ and ¬(γ|t # a) then there is a speculative computation

γ′ : C
∗−→ C ′ such that γ′ =

a−−→
t′,o
· γ|t.

Proof. This is actually a trivial consequence of Lemma 3.29.

Let us now extend the definition of conflict to an action and a speculation
in the obvious way, that is:

γ # a ⇐⇒ ∃ γ0, γ1, a
′, t, o . γ = γ0 ·

a′−−→
t,o
· γ1 & a# a′

We can now state the following lemma.

Lemma 3.47. Given a speculative computation γ : C
∗−→ C ′ and a thread t such

that for all γ0, γ1, a, o and t′ 6= t we have γ = γ0 ·
a−−→
t,o
· γ1 ⇒ ¬(γ0|t′ # a).

Then there exists a speculative computation γ′ : C
∗−→ C ′ such that γ′ = γ′|t · γ′′

for some γ′′ such that γ′′|t = ε and γ′′|t′′ = γt′′ for all thread t′′ 6= t.

Proof. The proof a simple induction on the length of γ|t where we reorder the
first action of thread t using Lemma 3.46.

Lemma 3.48. Given a speculative computation γ : C
∗−→ C ′ such that

γ = γ0 ·
a−−→
t,o
· γ1 ·

a′−−−→
t′,o′

· γ2 with a # a′ and t 6= t′ then there exists a com-

putation γ′ : C
∗−→ C ′ such that γ′ = γ0 ·

a−−→
t,o
· γ′0 ·

a0−−→
t,o0

· a1−−−→
t1,o1

· γ′1 ·
a′−−−→
t′,o′

· γ2

with a0 # a1 and t 6= t1, where possibly γ′0 = ε, a0 = a and o0 = o; and also
possibly γ′1 = ε with a1 = a′ and o′ = o1. Moreover for all thread t ∈ T id we
have γ|t = γ′|t.
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Proof. The proof if by induction on the length of γ1. The base case is trivial
with γ′0 = ε and γ′1 = ε, o0 = o, o1 = o′ and obviously a0 = a and a1 = a′. For

the induction case let us assume that γ1 =
a2−−−→
t2,o2

· γ′1 and consider the following

cases:

• if t 6= t2 and a0 # a2 we have the conclusion. Otherwise (¬a0 # a2), we
apply the Lemma 3.29 and conclude by the induction hypothesis.

• if t = t2 we consider the following cases:
• if γ1|t = γ1 we can apply the Lemma 3.49 to conclude.

• if γ1|t 6= γ1 then let γ1 = γ′2 ·
a2−−−→
t2,o2

· γ′′2 with γ′2|t = γ′2 (i.e. γ′2 only

contains actions of thread t) and t 6= t2. Then if (
a−−→
t,o
· γ′2 # a2) we

can conclude applying Lemma 3.49. Else we apply Lemma 3.46 to get
a2−−−→
t2,o2

· a−−→
t,o
· γ′2 · γ′′2 and conclude by the induction hypothesis.

Lemma 3.49. Given a speculative computation γ : C
∗−→ C ′ such that γ =

γ|t·
a−−→
t′,o

with t 6= t′ and γ|t#a then there is a speculative computation γ′ : C
∗−→

C ′ and there exists subcomputations γ0, γ1, an action a′ and an occurrence o′

such that γ′ = γ0 ·
a′−−→
t,o′
· a−−→
t′,o
· γ1 with a# a′ and γ|t = γ′|t.

Proof. The proof is easy by induction on the length of γ|t and the application
of the Lemma 3.29.

The following proposition is the core of our robustness result.

Proposition 3.50. Let C be a well-formed, closed configuration. If C is D-
posma and γ : C

∗−→ C ′ is a D-valid speculative computation, then there exists a
normal coherent computation γ from C to C ′.

Proof. We have that since C is D-posma, by Proposition 3.45 there is a D-valid
normal speculative computation γ′ : C

∗−→ C ′. Let us assume that γ′ is not
coherent, and let us find a coherent speculative computation departing from γ′.
If γ′ is not coherent we have γ′ = γ′0 · ((S0, L0, T0)

a−−→
t,o

C ′0) · γ′′0 such

that a = rdop,v ⇒ S0(p) 6= v and a = casop,tt ⇒ S0(p) 6= ff and finally
a = casop,ff ⇒ S0(p) 6= tt . Let us focus on the case of a = rdop,v the other

cases being similar. Then γ′0 = δ0 ·
b−−→
t,ō
· δ1 ·

b′−−−→
t′,o′

· δ2 with b, b′ ∈MWrp where

there are no further writes to p in δ2 (meaning that this is the last action
in MWrp), t 6= t′ and match[γ′0/t, (a, o)] = [δ0/t, (b, ō)]. We have that since
b # b′ and these actions from different threads happen in γ′0 we can apply the
Lemma 3.48 to obtain an equivalent γ̄0 such that there are two consecutive
conflicting actions of t in γ̄0. Now, from the definition of D-posma-coherent
there are no conflicting actions relating thread t and any other thread in δ2,
else we would get a violation of the property D-posma-coherent. Therefore
we can apply the Lemma 3.47 to conclude that there is γ′′ : C

∗−→ C ′ and

γ′′ = δ0 ·
b−−→
t,ō
· δ1 · δ2/t ·

a−−→
t,o
· b′−−−→
t′,o′

· δ′2 · γ′′0 , where δ′2 is δ2 with the actions

of t removed. In the case in which there are still writes of p by other threads in
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δ1 we repeat this argument inductively (on the number of such writes between
the speculative read and its matching write) until there is none left.

We can finally conclude with our main result which is an obvious consequence
of the above Proposition 3.50.

Theorem 3.51 (Robustness). Let e be a closed expression such that the con-
figuration (∅, (t, e)) is D-posma-coherent. Then e is D-robust.

3.4 Conclusion

In this chapter we have considered an operational formalization of speculative
computation. Moreover, we have considered the semantical effects of specula-
tions for two different synchronization models: a high-level language (λ-lock)
which provides locks for synchronizing threads, and a low-level language (λ-
barrier) that relies only on barriers and compare-and-swap constructs to impose
ordering and atomicity constraints on computations.

The semantic models we of this chapter are very permissive, in the sense
that most of the common “litmus tests” present in the relaxed memory models
literature can be captured by this formalization. Of particular interest is that we
can model the relaxation of a read with respect to a previous read (R→ R) as
shown in example 2.40, and the relaxation of a write with respect to a previous
read (R→W) as in example 1.4. These relaxations were not possible with the
semantics of write buffers of the previous chapter.

Unlike the formalization of the previous chapter, the DRF guarantee does
not hold for the sublanguages of this chapter. We have identified robustness
properties that allow the programmer to recover an interleaving semantics for
his/her programs. For the language with locks this property is a rather direct
extension of the DRF guarantee to speculative computations. On the other
hand, for the language λ-barrier we claim that in general entirely avoiding data
races is, first, very hard, and second, not necessarily desirable. Hence we propose
a property on computations (which resembles to the one proposed in [Shasha
and Snir, 1988]) for the language λ-lock.

The discussions of this chapter and Chapter 2 have remained at a rather
theoretical level, where two frameworks for describing operational semantics
of relaxed memory models are given. In the next chapter we will use both of
these frameworks to describe the semantics of the Sparc [SPARC, 1994] memory
architecture. We hope that these formalizations provide support to our claim
that operational models are feasible for relaxed memory models.



Chapter 4

Operational Specifications
for the Sparc Family of
Memory Models

In the previous chapters we have presented two general frameworks to formal-
ize the semantics of relaxed memory models. However, we have been rather
vague on how to specialize these frameworks to concrete models, that is mem-
ory models pertaining to commercially available architectures. To assess the
potential of these operational theories in describing the semantics of relaxed
memory models we formalize in this chapter the memory models of the Sparc
architecture [SPARC, 1994]. Indeed, these memory models are not among the
most complex ones, but the fact that they are well documented (see the formal
description in the Appendix D of [SPARC, 1994]), and that they are incremen-
tal, with a uniform underlying basis, makes them attractive candidates for the
kind of formalization we consider here. These models are also attractive from an
“applicability” point of view, since in recent work Owens et al. [2009] advocate
that the x86 architecture provides a memory model that belongs to the family
of models we discuss here.

Additionally, the formalization of these memory models allows us to compare
the techniques presented in the Chapters 2 and 3. As we shall see, the RMO
memory model goes beyond the formalization of write buffers of Chapter 2, in
fact the lack of reordering of read actions in the formalization of Chapter 2 makes
it unsuited for formalizing RMO. On the other hand, speculative computations
do allow this kind of reordering which makes speculations an appropriate tech-
nique to model RMO. Also, by means of these formalizations we can find and
prove how these models differ from each other. We will show many examples in
this chapter that provide support for a better understanding of the models in
consideration.

Here we provide formalizations by means of both, the framework of write
buffers, and the framework of speculations, for the TSO and PSO variants of
Sparc. These formalizations, being of the same memory models and with the
same language constructs, must be similar in some sense. We prove that our for-
malizations of PSO by means of write-buffers and by means of speculations are
equivalent. This theorem supports the claim that the technique of speculations

97



98 CHAPTER 4. SPARC MEMORY MODELS

is, to some extent, more general than the one of write buffering.

4.1 Preliminaries

The Sparc [SPARC, 1994] specification provides three different memory models
TSO, PSO and RMO in increasing order of allowed relaxations (w.r.t. sequential
consistency). One important characteristic of all the flavors of the Sparc memory
model specification is that they allow for write-buffering. This relaxation will
be present as a constant for all the models considered in this chapter. Let us
now discuss the memory models of Sparc in order, from the less relaxed to the
most relaxed:

TSO: The TSO acronym stands for Total S tore Ordering. The only relaxation
allowed by this memory model w.r.t. sequentially consistency is that reads
are allowed to bypass preceding writes on different references. Indeed, this
relaxation is very simple but is essential to capture the effects of write
buffering. As we will see, this is the only flavor of Sparc models that
imposes an order between writes, whether they are on the same reference
or not. This constraint could explain the TSO terminology. A typical
example for the relaxation allowed by TSO was considered in Example 1.2
and is reproduced in Figure 4.1a. One can see in this example, that if in
the thread on the left we allow the write to p to be performed after the read
of q, the depicted behavior becomes possible. An alternative explanation,
by means of write buffers (cf. Chapter 2), is to say that the write to p
has been issued but it is still standing in the buffers when the read of q is
performed.

As in the example, allowing for this relaxation means that in general
programs do not necessarily provide sequential consistent semantics. To
circumvent the effects of this relaxation, the Instruction Set Architecture
(ISA) of the Sparc architecture includes a barrier instruction (which we de-
note by 〈wr|rd〉 for simplicity, as we did in Chapter 3) that disallows reads
appearing after the barrier in the program order, to be executed before
the effects of any write that precedes the barrier are globally performed;
or in terms of the semantics with buffers, before the write is committed
into the main memory.

PSO Here the acronym stands for Partial S tore Ordering. In addition to the
relaxations allowed by TSO, PSO allows two writes on different references
to be performed in an order other than that of the program, thus the
“partial” terminology in the name. An example of the behaviors allowed
by PSO, but not by TSO can be seen in Figure 4.1b, which corresponds
to Example 1.3 in the introduction of this thesis. Here we can simply
perform, provided the above relaxation, the write of q before the one of
p and thus the behavior shown is possible. To put it in terms of buffers,
we can consider that writes on different references pending in a buffer can
reach the memory in a different order than the one in which they were
issued (or, equivalently, that for each processor there is one write buffer
per memory location). This is indeed the case of the formalization we
considered in Chapter 2. If we were to explain this example by means of
the semantics with buffers, we simply update the buffer of q before the
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[
p := 1 ;
r0 := (!q)

]
‖

[
q := 1 ;
r1 := (!p)

]
(a) TSO: r0 = r1 = 0

[
p := 1 ;
q := 1

]
‖

[
r0 := (!q) ;
r1 := (!p)

]
(b) PSO: r0 = 1 & r1 = 0

p := 1 ;
〈wr|wr〉 ;
q := 1

 ‖
[
r0 := (!q) ;
r1 := (!p)

]
(c) RMO: r0 = 1 & r1 = 0

[
r0 := (!q) ;
p := 1

]
‖

[
r1 := (!p) ;
q := 1

]
(d) RMO: r0 = 1 & r1 = 1

Figure 4.1: Litmus tests of Sparc memory models

one of p. It should be clear that the example of Figure 4.1a is also possible
in PSO since reads can still be reordered w.r.t. preceding writes.

As in the case of TSO, the ISA of Sparc provides an instruction to impose
ordering between writes capable of being reordered. This barrier instruc-
tion, which we will denote here by 〈wr|wr〉 disables writes following the
barrier (in the order of the program text) from being committed previously
to any write that comes before the barrier.

RMO Finally we find RMO which is the most relaxed of all the Sparc memory
models, and it stands for Relaxed M emory Ordering model. RMO adds
to the relaxations of PSO the possibility to reorder reads w.r.t. preceding
reads as well as writes w.r.t. preceding reads. Thus, in the example of
Figure 4.1c (cf. Example 2.40), which is identical to the one of Figure 4.1b
(cf. Example 1.4) with an explicit 〈wr|wr〉 barrier added on the thread on
the left to disallow the reordering for these instructions, one can reorder
the reads of the thread in the left to obtain the result in the figure. In
the example on Figure 4.1d we depict a behavior that is only possible if
we allow the reordering of reads w.r.t. subsequent writes on a different
reference.

As one can expect, there are barriers present in the ISA of Sparc to prevent
these reorderings. We will use the syntax 〈rd|wr〉 and 〈rd|rd〉 to denote
the barriers that disallow reordering a write w.r.t. a previous read, and a
read w.r.t. a previous read, respectively.

We can see the in Figure 4.2 a graphical representation of the hierarchy of
Sparc memory models. This picture is a slight modification of the Figure 41
of the Sparc manual [SPARC, 1994]. It should be clear that more relaxations
imply that more behaviors are possible. Hence, this graphic representation
could be seen as both representing the set of behaviors allowed by the different
memory models, or the set of relaxation w.r.t. sequential consistency allowed
by them. More details about these memory models can be found in [Adve and
Gharachorloo, 1996].

We could also consider the IBM 370 memory model, which is similar to
TSO but where one cannot read values from writes still pending in the write
buffers. This memory model can be easily modeled by means of the semantical
models of Chapter 2, where a flush is required before reading, and also by the
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Figure 4.2: Relations of Sparc models

formalization of Chapter 3, where the rdop,v and casop,v actions are discarded.
However, we will not discuss this model in detail, since all our arguments on
TSO apply in a rather straightforward way to the IBM 370 architecture.

4.2 The Language

Instead of introducing the full ISA of the Sparc specification we will consider
a sublanguage of the λ-barrier language of previous chapters. Indeed, from the
viewpoint of the specification of a relaxed memory model, the only significant
actions are queries and updates of memory locations, and actions related to
synchronization. Here we will consider only barriers and will discuss a simple
compare-and-swap (cas v) construct that we presented in the previous chapter,
disregarding other instructions present in the Sparc architecture, as ldstub and
casxa for example. These latter instructions can be dealt with in a way similar
to our compare-and-swap construct. Unlike the λ-lock language of Chapter 3
we will dispose of the (thread e) construct, since the specification of a machine
architecture does not consider the creation of new “threads” (a simple analogy
with processors should explain why). For the investigation of this chapter we
will always consider systems with a fixed number of threads – or processors.

Recall from the previous chapter that we take a language in ANF, which can
be seen as an intermediate language for the language of Chapter 2. Indeed it is
not hard to see that the results from that chapter still hold if we consider the
language in ANF, since the sequential semantics of both versions do not change
as justified by Lemma 3.5.

Another difference with respect to the the real architecture, that we will
consider at the language level is reference creation, induced in our language
by the expression (ref v). Of course no such instruction exist in the ISA of
Sparc, but we consider that it is a reasonable assumption to have one such
construct to describe the semantics of a programming language. In any case,
this assumption has no important implications regarding the results we will
develop in this chapter, alternatively we could have simply taken a fixed finite
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number of references.

Without further ado, the language we will consider is:

e ::= v | (ve1) | (if v then e0 else e1) expressions

| (ref v) | (! v) | (v0 := v1)

| 〈wr|rd〉 | 〈wr|wr〉 | 〈rd|wr〉 | 〈rd|rd〉 barriers

| (cas v)

v ::= x | λxe | tt | ff | () values

Let us, for similarity with the previous chapter, call this language λ-barrier.

Indeed some considerations regarding atomicity are due. The compare-and-
swap construct we present here – which is the same as in the previous chapter –
resembles (which is not necessarily a coincidence) to that of the Sparc architec-
ture in several respects. Some implementations of compare-and-swap in other
architectures [Sewell et al., 2010] impose barrier semantics to this construct, and
this fact is often taken for granted. However in the Sparc specification [SPARC,
1994], as in the semantics of the previous chapter, this is not the case. We will
assume here that the (cas v) construct does not imply ordering constraints per
se, but is subject to the ones imposed by barriers and the particular memory
model in consideration. This allows us to separate the concerns of atomicity
with that of ordering, that in general need not be bound. In particular, and
consistently with the previous chapter, the (cas v) construct will be considered
to have both read and write semantics, therefore it will be affected by barri-
ers imposing ordering on both reads and writes. Nevertheless, in the absence
of barriers, the memory model requirements for writes and reads will apply to
(cas v), meaning for example that in RMO, which allows the reordering of reads
w.r.t. subsequent writes, an event produced by a (cas v) instruction can be re-
ordered w.r.t. to a subsequent write as well. Notice that if we were to consider
a refined (cas v) instruction implying barrier semantics, as with the Intel x86
read-modify-write instructions [Intel Corporation, 2007; Owens et al., 2009], it
would be sufficient to add the proper barriers surrounding each compare-and-
swap action in the formalization of this chapter. In that sense we adopt a more
general approach here, which fortunately coincides with the Sparc specification.
It must be acknowledged that compare-and-swap is not the only instruction
Sparc provides for atomicity, some other instructions are casxa, ldstub and vari-
ants of these. However, the memory model specificities of these instructions
are very similar in essence to that of the (cas v) construct we provide here and
adding all these instructions would only clutter our definitions providing very
little (if any) additional insights on aspects related to the memory model. Fi-
nally, in this work we do not consider the atomicity aspects of accesses to a
single memory location. In fact, accessing double words in some architectures is
not atomic, and instructions are provided to guarantee atomic accesses to this
kind of locations. It would not be hard to consider an instruction that atomi-
cally reads or modifies two memory locations, but we prefer to obviate this issue
throughout this work, since it is not of great importance as regards the results
we target.

We shall not discuss our language in more detail, since we have already
done that in Chapter 3. The runtime language, the redexes and the evaluation
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contexts are given by:

e ::= . . . | (λv?e0 e1) expressions

v ::= . . . | p | (λv?e0) values

r ::= (λxev) | (λv?ev) | (if v then e0 else e1) redexes

| (ref v) | (! p) | (p := v) | (cas p)

| 〈wr|rd〉 | 〈wr|wr〉 | 〈rd|wr〉 | 〈rd|rd〉
E ::= [] | (vE) evaluation contexts

where references p are sampled from the infinite set Ref of reference names and
the expression (λv?e0 e1) is the as in the previous chapter.

As before, we need to present the actions produced by transitions in the
semantics. These are:

a ∈ Act ::= β | βv | ↙ | ↘ | νp,v | wrp,v
| rdp,v | rdop,v | casp,v | casop,v | b

b ∈ Bar ::= wr | ww | rw | rr

All of these actions have already been presented in Chapter 3. However, it
should be noticed that the semantics of the actions rdop,v and casop,v changes
slightly here to model the exact behavior of write buffers, which is slightly dif-
ferent from the one considered in the previous chapter as we shall see. Indeed,
the intended semantics of the rdop,v action will be twofold. In the case of the
formalization with write-buffers, we will use this action to differentiate reads
that are satisfied directly by the buffer from those that obtain their value from
the store. Notice that in that sense, the distinction between rdp,v and rdop,v is
almost an annotation. On the other hand, in the formalization by means of
speculations, this action takes its value from the last write by the same thread
(where last is w.r.t. the program order), which somehow has the same effect as
reading from an uncommitted write in the semantics of write-buffers. As we did
in Chapter 3 the validity definition will indeed guarantee that the last write is
read. Moreover, to model exactly the behavior of write buffers additional con-
straints will be imposed by the validity condition of this formalization. Similar
considerations apply to the casop,v construct. We will come back to these issues
when presenting the formalization by means of speculations.

We notice at this point that if a model like the IBM 370 (according to [Adve
and Gharachorloo, 1996]) was to be considered, then the rdop,v and casop,v can be
discarded. In this case, our definitions and results would be greatly simplified.

One can observe here, that since the casv and casop,v actions correspond to
read and write actions at the same time, most of the definitions and results re-
garding writes and/or reads also apply in a rather obvious way to these actions.
In particular, notice that since we consider a casp,v action to have the semantics
of a wrp,v′ and a rdp,w at the same time (with v′ and w directly determined by
v), and the casop,v action to have the semantics of a wrp,v′ and a rdop,w at the same
time, we do not need to mention the action casp,v explicitly in every definition,
since the considerations for rdp,v,rd

o
p,v and wrp,v uniquely determine similar con-

siderations for casp,v and casop,v actions. This simplification will greatly improve
the presentation of our results without making them less formal. To reassure
the reader we will provide intuitions on the implication of our definitions on
these actions whenever they are concerned.
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Finally we will adopt the following simplification as regards the languages
for the different memory models (TSO, PSO and RMO). We will consider three
different sublanguages with the appropriate barriers in each. Let us call λ-RMO
the language for RMO which is λ-barrier (without dynamic thread creation). We
will call λ-PSO the sublanguage of λ-barrier that does not include the 〈rd|wr〉
and the 〈rd|rd〉 constructs. And finally we will consider λ-TSO to be the sub-
language of λ-barrier that does not include 〈wr|wr〉, 〈rd|wr〉 and 〈rd|rd〉. We
could have alternatively observed that the additional barriers do not have any
effect when they are not concerned by the memory model in consideration, for
instance, adding a 〈wr|wr〉 in a program for TSO does not harm the program,
and the executions are identical. However this approach only adds burden to
the proofs, and this is the reason why we prefer to disregard barriers entirely
whenever they do not add any expressive power to the memory model in consid-
eration. We obviously have the following set inclusion relations between these
languages:

λ− TSO ⊂ λ− PSO ⊂ λ− RMO = λ− barrier

4.3 PSO and TSO: a Formalization with Write
Buffers

The operational semantics of write buffers that we presented in Chapter 2 does
not perform any kind of speculation. Actually, the reordering effects that we
can simulate by means of this semantics are due to the structure of buffers, and
the buffer update rules only. Observe as well that the operational semantics of
write-buffers of Chapter 2 does not support the relaxations R→ R and R→W,
that is the reordering of reads w.r.t. subsequent actions, that we have discussed
in the previous chapter. This limitation motivated in part our investigations on
speculative computation of Chapter 3. The only memory model of the Sparc
family to allow these kind of relaxations is RMO, which implies that modeling
RMO by means of the framework of write-buffers would be somewhat unnatural.
As a consequence we concentrate on TSO and PSO in this section. In the next
section we will see how we can model RMO (as well as TSO and PSO) by means
of the framework of speculative computations.

As we anticipated in Chapter 2 we will use almost the same syntactic con-
structions for buffers as defined there. However, barriers have nontrivial inter-
actions with buffers, and importantly, barriers whose intention is to constraint
the reordering of actions of a certain kind should not impose constraints on
memory accesses of a different kind. For instance in PSO, upon encountering a
〈wr|wr〉 barrier it is not realistic to require that the buffers be emptied before
proceeding – the approach we followed for the unlock action in Chapter 2 – since
that would impose restrictions upon subsequent read actions as well, which is
not the intended semantics of this barrier. In fact, flushing the buffer would
be sufficient and sound for TSO, since the only available relaxation is of reads
w.r.t. preceding writes, and the only barrier is 〈wr|rd〉 which requires writes to
be performed before the subsequent read. However we will consider a more gen-
eral formalization for these constraints by means of buffers which, additionally,
is a requirement for the modeling of PSO.

The key modification to the syntax of buffers is that we now incorporate
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barrier symbols in the buffers – we will actually use the same symbols as for the
barrier actions. Consequently, the new definition of buffers becomes:

B ::= ε | B / [p 7→ v] | B / [b]

where b ∈ Bar . In the semantics – that we shall present shortly – barrier
instructions have as their only effect adding the corresponding symbol into the
buffer. The actual constraints imposed by barriers will be reflected by the
way in which pending writes in the buffers are updated into the memory and
by the way in which one can read into the buffers. Barriers are included at
the right of the buffers (or bottom cf. Figure 2.1) and are removed only when
reaching the left end (or the top respectively). In this way, a read action that
finds a wr symbol in its corresponding buffer cannot proceed, since there are
possibly pending writes in the buffer that were issued before the barrier. That
means that a barrier symbol wr in the buffer constraints the use of rdp,v actions.
Similarly, a pending write (present in a buffer) cannot be updated if there is a
previously issued ww barrier symbol in the same buffer. Notice that since here
we only consider λ-PSO and λ-TSO (i.e. we do not consider λ-RMO) the only
meaningful barriers at this point are ww and wr.

We will denote by [p 7→ v] .B (or [b] .B) the buffer that has as first element
the update [p 7→ v] (or the barrier b respectively).

The way in which the elements of the buffer can be accessed and updated
is fundamental in describing the semantics. To formalize the semantics of reads
and buffer updates we shall use the following function which retrieves from a
given buffer B and a reference p the sequence of barriers and values on that
reference that can be found in the buffer. The returned sequence preserves the
order of the pending updates in the buffer:

B(p) ,


ε if B = ε

B′(p) · b if B = B′ / [b]

B′(p) · v if B = B′ / [p 7→ v]

B′(p) if B = B′ / [q 7→ v] & q 6= p

To be more concrete about how the barrier symbols impose constraints on
the actions concerning the barrier, we require that a read action rdop,v – we
anticipate here that reads satisfied from the buffer will generate a rdop,v action
and reads satisfied from the store will generate rdp,v actions – reading within a
buffer B can succeed only if the corresponding B(p) sequence has the following
shape: B(p) = s · v · wwn for a sequence s such that wr does not occur in s,
and where we denote by wwn the sequence of n consecutive ww symbols. These
constraints mean that there must be no wr barrier symbols in the buffer, and v
has to be the last value of a pending write for p in B. A simple example to see
why we require these constraints is the following, where configurations have the
form C = (S, T ), with S the store and the thread pool T contains threads of
the shape (B, t, e) with B being the buffer of the processor, t ∈ T id is a unique
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thread identifier and e is the program expression:

({p 7→ 0, q 7→ 0}, (ε, t, p := 1 ; 〈wr|rd〉 ; q := 1 ; r0 := (!q)))
wrp,1−−−→
t,[]

({p 7→ 0, q 7→ 0}, (ε / [p 7→ 1], t, 〈wr|rd〉 ; q := 1 ; r0 := (!q)))
wr−−→
t,[]

({p 7→ 0, q 7→ 0}, (ε / [p 7→ 1] / [wr], t, q := 1 ; r0 := (!q)))
wrq,1−−−→
t,[]

({p 7→ 0, q 7→ 0}, (ε / [p 7→ 1] / [wr] / [q 7→ 1], t, r0 := (!q)))

If we denote by B the buffer ε / [p 7→ 1] / [wr] / [q 7→ 1] we see that B(q) = wr · 1.
Indeed, if we were to perform a rdoq,1 action in the last configuration we could
read the value 1 which is the last value for reference q standing in the buffer B.
However, doing so would imply that the previous write of p has not been made
globally visible when the read returns a value; contradicting the purpose of the
〈wr|rd〉 instruction in between them. That is why we require that the sequence
s does not contain wr symbols when performing a rdop,v action. Similarly, a
read from the store, i.e. rdp,v, requires the buffer B to contain no pending write
on p as well as no pending barrier wr, thus the condition for read actions on
the store will be B(p) = wwn. Let us consider a computation of the following
simple example of a thread that has a write followed by a read with a 〈wr|rd〉
barrier in between them (in particular this is how we can make the example
of Figure 4.1a sequentially consistent). We assume here that configurations are
similar to those of the Chapter 3.

({p 7→ 0, q 7→ 0}, (ε, t, p := 1 ; 〈wr|rd〉 ; r0 := (!q)))
wrp,1−−−→
t,[]

({p 7→ 0, q 7→ 0}, (ε / [p 7→ 1], t, 〈wr|rd〉 ; r0 := (!q)))
wr−−→
t,[]

({p 7→ 0, q 7→ 0}, (ε / [p 7→ 1] / [wr], t, r0 := (!q)))

We can see that in the final configuration (ε / [p 7→ 1] / [wr])(q) = wr. This
means, as we will formalize soon, that we cannot proceed with a rdq,0 nor a
rdoq,0 action. In essence this condition requires that the wr symbol be eliminated
from the buffer before proceeding with the subsequent read of q. Moreover,
the conditions for updating the buffers will require that there be no previous
uncommitted writes before removing the wr symbol from the buffer; that is
to say that the update of p will have to be performed before the read of q
actually takes place. In this way barrier symbols impose constraints on actions.
The condition to update a pending write in PSO will require B(p) to have the
following shape: B(p) = wrn · v · s, meaning that there is a value v that can be
updated and there are no previously issued ww actions pending for update. If
there were any such ww updating the write of p could bypass a previous update
on a different reference, which would be against the intended behavior of the
barrier.

The following auxiliary function returns for a given buffer B and a reference
p, the buffer with the first-in pending write on reference p removed from B.
This function will be used for describing the buffer resulting from updating a



106 CHAPTER 4. SPARC MEMORY MODELS

E[(λxev)]
βv−→ E[λv?{x 7→ v}ev]

E[(λv?ev)]
β−→ E[e]

E[(if tt then e0 else e1)]
↙
−→ E[e0]

E[(if ff then e0 else e1)]
↘
−→ E[e1]

E[(ref v)]
νp,v−−→ E[p]

E[(p := v)]
wrp,v−−−→ E[()]

E[(! p)]
rdp,v−−−→ E[v]

E[(! p)]
rdop,v−−−→ E[v]

E[(cas p)]
casp,v−−−→ E[v]

E[(cas p)]
casop,v−−−→ E[v]

E[〈wr|rd〉] wr−→ E[()]

E[〈wr|wr〉] ww−→ E[()]

Figure 4.3: λ-PSO Semantics of Single Expressions

write to reference p from B into the store.

B↓p ,


B if B(p) contains no v ∈ Val

(B′↓p) / u if B = B′ / u & B′(p) contains a v ∈ Val

B′ if B = B′ / [p 7→ u] & B′(p) contains no v ∈ Val

4.3.1 Write buffers semantics

Once more, we present the semantics of single expressions first in Figure 4.3
which has very little variations from the rules of Figure 3.2 of the previous
chapter. Let us recall that the actions rdop,v and casop,v will be used in the se-
mantics with write-buffers to distinguish reads from the buffers from reads from
the store. In some sense we can consider that rdop,v and casop,v are speculative
since the values that they return are not yet globally visible, or “performed”.

Provided with the semantics of single expressions we proceed to define the
configurations required to describe the semantics of parallel programs. This
configurations should not surprise the reader, since they are very similar to the
ones we have considered before.

C = (S, (B, t, e)‖T )

An unimportant difference w.r.t. to the configurations we used in Chapter 2
is that, in the absence of locks, no lock pool is needed. A more interesting
difference regards the thread components of the thread system. Notice that
threads are now composed of a thread identifier t sampled from the infinite set
T id , a buffer B and finally the thread expression e. One can see that there is
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B(p) = wrn · v · s S′ = S{p← v}

(S, (B, t, e)‖T )
bup,v−−−→
t,ε

(S′, (B↓p, t, e)‖T )

B = b . B′ b ∈ Bar

(S, (B, t, e)‖T )
b−→
t,ε

(S, (B′, t, e)‖T )

e
a−→ e′

(S, (B, t, e)‖T )
a−→
t,ε

(S′, (B′, t, e′)‖T )
(∗)

Figure 4.4: PSO with Write Buffers

a single buffer per thread here. Actually, since we are considering static thread
systems (i.e. the number of threads does not change in the execution of the
program) we need not consider the hierarchical structure of buffers as presented
in Chapter 2. The reason for considering static threads systems is that in
the architectural specification one deals with processors rather than threads,
therefore creation of threads (or processors!) is not part of the specification,
this is also the reason why we have a single buffer per thread, which is here the
code running in some processor. Having a single buffer for each thread greatly
simplifies the rules for updating buffers. Of course, we will adopt the standard
well-formedness constraint for configurations.

To compare the formalization by means of write-buffers with that of specu-
lations we will be interested in identifying the actions of updating the contents
of the buffers into the memory. This actions did not have a label in the se-
mantics of write-buffers of Chapter 2, and were called “silent” actions there.
On the other hand, here we will need to identify these actions since they will
indicate how the computations of both formalizations relate. We will see these
transitions play an important role in the definition of the conflict relation, since
changing the order in which two buffer updates (of different threads) are per-
formed could result in different final configurations. For that purpose we include
in the syntax of (global) actions the buffer update actions which we shall denote
by bup,v and b for the action of removing a barrier b from the buffers. We will
refer generically to these actions as commit actions. A buffer update can be
seen as the commit of a write, since it makes it globally visible, and the removal
of a barrier symbol from the buffer means that all the constraints this barrier
imposed have already been satisfied. The exact rules governing the use of these
actions depend on the memory model in consideration. The ones for PSO are
presented below.
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PSO: Let us now concentrate on the semantics of λ-PSO, which is presented
in Figure 4.4 where the constraint (∗) is unfolded to:

(∗)



a ∈ {β,↙,↘} ⇒ S′ = S & B′ = B

a = βv ⇒ FRef(v) ⊆ dom(S)

a = νp,v ⇒ p /∈ dom(S) & S′ = S ∪ {p 7→ v}
a = wrp,v ⇒ B′ = B / [p 7→ v]

a = rdp,v ⇒ S(p) = v & B(p) = wwn

a = rdop,v ⇒ B(p) = s · v · wwn & wr does not occur in s

a = casp,ff ⇒ S(p) = tt & B(p) = wwn

a = casp,tt ⇒ S(p) = ff & B(p) = wwn & B′ = B / [p 7→ tt ]

a = casop,ff ⇒ B(p) = s · tt · wwn & wr does not occur in s

a = casop,tt ⇒ B(p) = s · ff · wwn & wr does not occur in s

& B′ = B / [p 7→ tt ]

a ∈ {ww, wr} ⇒ B′ = B / [a]

There are important changes from the constraints of the write buffering seman-
tics of Chapter 2 that deserve being observed. Most of these differences are due
to the syntax, but a significant difference can be seen in the treatment we gave
to synchronization in Chapter 2 with respect to the semantics of barriers here.
While in Chapter 2 releasing a lock required flushing the buffers, here barrier
actions just add their corresponding symbol in the buffers. Then, the presence
of barriers restricts the execution of subsequent actions that depend on them.
Notice that rdp,v directly reads into the memory provided that the buffer asso-
ciated with the thread performing the read action contains no pending writes
on p or wr barriers. The action rdop,v requires that the last value for p in the
buffer be v, and moreover, it verifies that there are no pending wr actions in
the buffers. There are several rules regarding the compare-and-swap construct,
based on the action (casp,v or casop,v) and on the possible result. The first two,
casp,ff and casp,tt directly obtain their value from the memory, and thus check
that B(p) contains no pending write on p or a wr barrier. Finally the actions
casop,tt and casop,ff read from the buffers, as the action rdop,v does. As with rdop,v
we have to verify that no pending wr barriers are pending in the buffer.

We have two rules that regard buffer updates. The rule on the right of
Figure 4.4 states that a barrier in a buffer can be eliminated from it upon
reaching the top of the buffer, that is, once all previously issued write actions
have been performed. Notice that this action produces an action symbol b. The
buffer update rule simply takes the first value in the buffer of a reference p,
nondeterministically chosen, and updates the memory provided that there are
no previously issued ww actions in the buffer. Notice that all the buffer update
rules, either the removal of a barrier, or the removal of a pending update are
nondeterministically executed both as regards the thread and the reference that
is updated.

Two simple examples that illustrate the formalization of λ-PSO are 1.2
and 1.3. Let us concentrate on the latter one, since the former one also applies
to λ-TSO, and we will treat it after presenting the formalization for λ-TSO. We
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recall the example 1.3 for clarity:[
p := 1 ;
q := 1

]
‖
[
r0 := (!q) ;
r1 := (!p)

]
The behavior in question here is whether r0 = 1 and r1 = 0 is allowed. As the
reader knows by now, the behavior is possible for our semantics of λ-PSO, and
the justifying computation has already been described in the page 43 (Chap-
ter 2). However, since in Chapter 2 the buffer structure is more complex than
here we will present the justifying computation once more, omitting the store
and the registers r0 and r1 for clarity, and assuming that the initial store has
p = q = 0.

〈ε〉(p := 1 ; q := 1) ‖ 〈ε〉((!q) ; (!p))
wrp,1−−−→
t0

〈ε / [p 7→ 1]〉(q := 1) ‖ 〈ε〉((!q) ; (!p))
wrq,1−−−→
t0

〈ε / [p 7→ 1] / [q 7→ 1]〉() ‖ 〈ε〉((!q) ; (!p))
buq,1−−−→
t0

〈ε / [p 7→ 1]〉() ‖ 〈ε〉((!q) ; (!p))
rdq,1−−−→
t1

〈ε / [p 7→ 1]〉() ‖ 〈ε〉(!p) rdp,0−−−→
t1

〈ε / [p 7→ 1]〉() ‖ 〈ε〉(0)
bup,1−−−→
t0

〈ε〉() ‖ 〈ε〉(0)

Let us now consider a slight modification of this program where we add
barriers to make the program sequentially consistent. As we can see from the
previous computation, the reason why the behavior can happen, is because the
writes can update the memory in an order other than the one in which they
where issued. To avoid such reordering we add a barrier between the two writes,
which is example 2.40. p := 1 ;

〈wr|wr〉 ;
q := 1

 ‖
[
r0 := (!q) ;
r1 := (!p)

]

Let us try to reproduce the computation above, where we omit the store for
clarity:

〈ε〉(p := 1 ; 〈wr|wr〉 ; q := 1) ‖ 〈ε〉((!q) ; (!p))
wrp,1−−−→
t0

〈ε / [p 7→ 1]〉(〈wr|wr〉 ; q := 1) ‖ 〈ε〉((!q) ; (!p))
ww−→
t0

〈ε / [p 7→ 1] / [ww]〉(q := 1) ‖ 〈ε〉((!q) ; (!p))
wrq,1−−−→
t0

〈ε / [p 7→ 1] / [ww] / [q 7→ 1]〉() ‖ 〈ε〉((!q) ; (!p))

If we want to follow the computation we considered before, the write of q has
to be updated before the one of p. However, in this configuration we cannot do
so, since we have (ε / [p 7→ 1] / [ww] / [q 7→ 1])(q) = ww · 1, and the condition for
updating the buffer in Figure 4.4 requires that there be no pending ww barriers
previous to the value to be updated. Therefore, in this example there is no
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choice but to update the write of p first, or read q in the second thread, and
both options render sequentially consistent computations. Just to finish the
example, let us choose the former option:

〈ε / [p 7→ 1] / [ww] / [q 7→ 1]〉() ‖ 〈ε〉((!q) ; (!p))
bup,1−−−→
t0

〈ε / [ww] / [q 7→ 1]〉() ‖ 〈ε〉((!q) ; (!p))
ww−→
t0

〈ε / [q 7→ 1]〉() ‖ 〈ε〉((!q) ; (!p))
buq,1−−−→
t0

〈ε〉() ‖ 〈ε〉((!q) ; (!p))
rdq,1−−−→
t1
· ∗−→ · rdp,1−−−→

t1

〈ε〉() ‖ 〈ε〉(1)

TSO: In fact, λ-TSO is easy to describe by just simplifying the rules given for
λ-PSO since its semantics is more restrictive than the one of λ-PSO. Since the
language λ-TSO does not have a 〈wr|wr〉 construct (writes cannot be reordered in
TSO) the conditions where the term wwn appear have that part of the constraint
trivially satisfied with n = 0. The only rule that changes is the one for updating
the memory by flushing the contents of the buffers. This rule is now as follows,

B = [p 7→ v] . B′ S′ = S{p← v}

(S, (B, t, e)‖T )
bup,v−−−→
t,ε

(S′, (B′, t, e)‖T )

where we can see that pending writes have to be updated in the order in which
they were added in the buffer regardless of the location. In other words, pending
writes cannot bypass other pending writes in the buffers despite the fact that
they can be on different references.

Let us reconsider the Example 1.2 which regards TSO and that we discussed
in the introduction of this chapter.[

p := 1 ;
r0 := (!q)

]
‖
[
q := 1 ;
r1 := (!p)

]
A possible computation that justifies the result r0 = r1 = 0 is the following,
where once more, we omit the store and the registers, and we assume that the
store initially holds p = q = 0:

〈ε〉(p := 1 ; (!q)) ‖ 〈ε〉(q := 1 ; (!p))
wrp,1−−−→
t0

〈ε / [p 7→ 1]〉(!q) ‖ 〈ε〉(q := 1 ; (!p))
wrq,1−−−→
t1

〈ε / [p 7→ 1]〉(!q) ‖ 〈ε / [q 7→ 1]〉(!p) rdq,0−−−→
t0

〈ε / [p 7→ 1]〉(0) ‖ 〈ε / [q 7→ 1]〉(!p) rdp,0−−−→
t1

〈ε / [p 7→ 1]〉(0) ‖ 〈ε / [q 7→ 1]〉(0)
bup,1−−−→
t0

〈ε〉(0) ‖ 〈ε / [q 7→ 1]〉(0)
buq,1−−−→
tq

〈ε〉(0) ‖ 〈ε〉(0)

It is not hard to see that if we add the appropriate barriers the example
above becomes sequentially consistent. Its modified version is then:
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Example 4.1. p := 1 ;
〈wr|rd〉 ;
r0 := (!q)

 ‖

q := 1 ;
〈wr|rd〉 ;
r1 := (!p)


And omitting all the details, one can see that if we consider a computation

like the one above we will reach a configuration of the form:

〈ε / [p 7→ 1] / [wr]〉(!q) ‖ 〈ε / [q 7→ 1] / [wr]〉(!p)

from which the only possibility is to update one of the pending buffers, since the
rule for reading demands that there be no wr barriers in (ε / [p 7→ 1] / [wr])(q)
and (ε / [q 7→ 1] / [wr])(p), a condition that does not hold.

4.4 Speculative Semantics for TSO, PSO and
RMO

Let us now see how can we formalize the TSO and PSO memory models by
means of the speculative framework of Chapter 3. Of course, we need to extend
the contexts to include the speculative ones, as well as increment the redexes
(cf. Chapter 3):

r ::= . . . | (λxe0e1) redexes

Σ ::= [] | (vΣ) | (λvΣe) | (λv?Σe) speculation contexts

As in the semantics of Chapter 3 we will label the transitions of expressions
not only with the action but also with their occurrence in the expression. We
will use indeed the same set of occurrences:

Occ = {(v[])}
SOcc = Occ ∪ {(λ [] )}

where the occurrence corresponds to the place of the hole ([]) in the speculation
context as given by:

@[] = ε

@(vΣ) = ( []) ·@Σ

@(λxΣe) = (λ [] ) ·@Σ

@(λv?Σe) = (λ [] ) ·@Σ

We shall not repeat the semantics of expressions, since it is almost the same
as the one of Figure 4.3 with evaluation contexts replaced by speculation con-
texts, and every transition labeled with its corresponding occurrence. Thus, for
instance the rule for reading from the memory is:

Σ[(! p)]
rdp,v−−−→
@Σ

Σ[v]

with the others following the same pattern.
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To define the global semantics of speculations we remove the write buffer
components from the configurations. Then the configurations are simply:

C = (S, (t, e)‖T )

We can now define the small step semantics for configurations as we did
previously. Notice that we annotate the transitions, not only with the occurrence
of the redex, but also the thread identifier cf. Chapter 3:

e
a−→
o
e′

(S, (t, e)‖T )
a−−→
t,o

(S′, (t, e′)‖T )
(∗)

where S′ is determined by the action a being produced as follows:

(∗)



a ∈

{
β,↙,↘, casop,ff

wr, ww

}
⇒ S′ = S

a ∈ {βv, rdop,v} ⇒ FRef(v) ⊆ dom(S)

a = νp,v ⇒ p /∈ dom(S) & S′ = S ∪ {p 7→ v}
a = rdp,v ⇒ v = S(p)

a = wrp,v ⇒ p ∈ dom(S) & S′ = S{p← v}
a = casp,tt ⇒ S(p) = ff & S′ = S{p← tt}
a = casp,ff ⇒ S(p) = tt

a = casop,tt ⇒ S′ = S{p← tt}

Notice at this point that the rdop,v action returns a value (v) which is possibly
different from the one in the store for the reference p. This is also the case for
the casop,v action that predicts the value of the reference p. These actions will
be used to model the effects of write buffers as the ones of Chapter 2, but the
speculative semantics of these actions has to be refined, as regards the validity
criterion, in order to correspond exactly to the write buffers of that chapter. In
fact, pending writes on the buffers are updated only once and when they happen
to be updated their value is globally visible through the store. This means for
example that if a thread observes (by a read on the store) a write performed by
other thread, then we are certain that the write must be already in the memory
and the writing thread cannot perform further reads on the buffer (i.e. rdop,v
actions) with that value. This kind of reasoning (which is of a global nature)
was not considered for the read-own actions of the previous chapter. We will
soon see that the validity requirement will impose that the value returned be the
last one written by the same thread, among other constraints which guarantee
the exact correspondence with the behaviors of buffers.

4.4.1 Validity

A crucial aspect of the framework of speculation is the validity condition. In
the case of the memory models of Sparc, that allow for write buffering, this
condition is not trivial. We anticipated that the actions rdop,v and casop,v were
introduced to model, by means of speculations, the effects of write buffers. To
that end, we will require in the validity condition for our calculus, that these
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read and compare-and-swap actions do actually see the last written value to
that reference (in this case p) by the thread performing the read. This is similar
to the treatment of the rdop,v and casop,v in Chapter 3, however here the validity
condition will include global constraints, something we did not consider thus
far. This is required because we want to faithfully model the memory models of
Sparc, which allow for write-buffering. Moreover, we want to formally prove the
correspondence of the formalizations by means of write-buffers and speculations
of PSO and TSO. Therefore, we must be consistent with respect to the semantics
of buffers, and for instance the fact that a thread reads a value produced by a
second thread means that no subsequent read of the same reference by the second
thread can be fulfilled by the buffers, and this fact can only be detected when
considering the global computation. Let us see a simple example to illustrate
this point (where we omit occurrences):

({p 7→ ff }, (t0, p := tt ;(!p) ;(!p))‖(t1, (!p)))
wrp,tt−−−→
t0

({p 7→ tt}, (t0, (!p) ;(!p))‖(t1, (!p)))
rdop,tt−−−→
t0

∗−→
t0

({p 7→ tt}, (t0, (!p))‖(t1, (!p)))
rdp,tt−−−→
t1

({p 7→ tt}, (t0, (!p))‖(t1, tt))

Here we see that the final read of thread t0 (the only remaining redex) cannot
obtain its value speculatively (or read its own write) since we know by the read
of thread t1 that the write has already been made globally visible. Otherwise
thread t1 could not have seen a value tt for its read on p. Actually, in the
semantics with write-buffers we know that between the rdop,tt action of thread
t0 and the rdp,tt action of thread t1 there must have been a buffer update. The
corresponding computation in the semantics with write-buffers is:

({p 7→ ff }, (ε, t0, p := tt ;(!p) ;(!p))‖(ε, t1, (!p)))
wrp,tt−−−→
t0

({p 7→ ff }, (ε / [p 7→ tt ], t0, (!p) ;(!p))‖(t1, (!p)))
rdop,tt−−−→
t0

∗−→
t0

({p 7→ ff }, (ε / [p 7→ tt ], t0, (!p))‖(t1, (!p)))
bup,tt−−−→
t0

({p 7→ tt}, (ε, t0, (!p))‖(t1, (!p)))
rdp,tt−−−→
t1

({p 7→ tt}, (ε, t0, (!p))‖(ε, t1, tt))

and here we can clearly see that according to the semantics with write-buffers
we cannot perform a rdop,tt action. We will shortly define when a write action is
considered as “committed” in the speculative semantics, which corresponds to
this kind of behavior.

Let us move on by defining some technical tools that will be used to define
the validity condition. We need not repeat the definitions of residuals here, the
reader is invited to consult Definition 3.14 to refresh this notion. Indeed since
the definition of the reordering relation 3.18 is parametric on the dependency
relationD we will just instantiate it with the corresponding dependency relations
for TSO, PSO and RMO to get the corresponding reordering relations for each
of these models.
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Let us recall, from Chapter 3 the setsMRdp andMWrp of reads and writes
on the memory for reference p:

MRdp , {rdp,v, casp,v | v ∈ Val}
MWrp , {wrp,v | v ∈ Val} ∪ {casp,tt , casop,tt}

that we use to define the conflict relation, that we recall here as well:

Definition 3.16 (Conflicting Actions). We define the conflict relation, denoted
by #, to be the following binary relation on actions:

# ,
⋃

p∈Ref

(MWrp ×MWrp) ∪ (MWrp ×MRdp) ∪ (MRdp ×MWrp)

Notice that we explicitly have that speculative read actions are not conflicting
with write actions on the same thread. Formally:

(wrp,v, rd
o
p,w) /∈ #

A similar observation cannot be made for the casop,ff action, that is a compare-
and-swap that does not succeed in modifying the location p, since we consider
that this action always has write semantics (regardless of its result), and thus
we would have a conflict with any other write actions on the same reference.

A fundamental ingredient of the formalization of the Sparc memory models
by means of speculations is the dependency relation. But before defining the
dependencies of Sparc let us recall, once more from Chapter 3, the notations
Rdp and Wrp of read and write actions on location p (not necessarily accessing
the memory as opposed to MRdp and MWrp):

Rdp ,MRdp ∪ {rdop,v, casop,v | v ∈ Val}
Wrp ,MWrp ∪ {casp,ff , casop,ff }

and their obvious generalizations:

Rd ,
⋃

p∈Ref

Rdp and Wr ,
⋃

p∈Ref

Wrp

Let us concentrate now on the dependencies induced by barriers. We define
by nTSO the set of dependencies that barriers impose on λ-TSO, and by nPSO
and nRMO the ones for λ-PSO and λ-RMO respectively.

Definition 4.2 (Barrier Dependencies: TSO, PSO and RMO). We define the
barrier dependencies relations for λ-TSO, λ-PSO and λ-RMO as:

nTSO , (Wr × {wr}) ∪ ({wr} ×Rd)

nPSO , nTSO ∪ (Wr × {ww}) ∪ ({ww} ×Wr)

nRMO , nPSO ∪ (Rd × {rw, rr}) ∪ ({rw} ×Wr) ∪ ({rr} ×Rd)

The nRMO relation will also be named nBar , since it includes all possible bar-
riers of the language λ-barrier
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As the reader might expect, to characterize the different memory models of
Sparc we have to simply specify the appropriate dependency relations. We will
denote by DTSO the actual dependency relation of λ-TSO, and similarly for
DPSO and DRMO, that is:

Definition 4.3 (Sparc Dependencies: TSO, PSO and RMO). We characterize
the RMO, PSO and TSO memory models by the following dependency relations:

DRMO , # ∪ nRMO

DPSO , # ∪ nPSO ∪ (Rd ×Rd) ∪ (Rd ×Wr)

DTSO , # ∪ nTSO ∪ (Rd ×Rd) ∪ (Rd ×Wr) ∪ (Wr ×Wr)

Now we can provide the final, and perhaps the most important, notion we
needed to establish a concrete formalization of the semantics of the Sparc mem-
ory models: that is the validity condition. Indeed, as in the previous chapter,
it is only in this definition that the speculative semantics of rdop,v and casop,v ac-
tions becomes clear. We consider a speculation as valid if there is an equivalent
normal computation, where speculated reads have to see the last write on the
same reference.

Definition 4.4 (Speculation validity). We say a speculation σ is valid with
respect to the dependency relation (or the memory model) D if there is a normal

speculation σ′ such that σ∝D σ′ and if σ′ = σ′0 ·
rdop,v−−−→
o
· σ′1 then there exists σ′′0 ,

σ′′′0 and o′ such that σ′0 = σ′′0 ·
wrp,v−−−→
o′
· σ′′′0 where σ′′′0 contains no wrp,w action

for any w ∈ Val. We will call the event [σ′′0 , (wrp,v, o
′)] the matching write of

the event [σ′0, (rd
o
p,v, o)], and we shall denote it by match

(
[σ′0, (rd

o
p,v, o)]

)
.

Notice that, in the definition, the constraints imposed by barriers (which must
be included in the dependency relation D) are incorporated by the condition
that requires the existence of a normal reordered computation. We will actually
consider the definition of match(α) up to step equivalence (∼). Thus we will
write match(α0) ≈ α1 to represent that given α0 and α1 two events in Step(σ),
with σ a valid speculation justified by the normal speculation σ′ (i.e. σ∝σ′), and
α′0, α

′
1 ∈ Step(σ′) with α0 ∼ α′0 and α1 ∼ α′1 then match(α′0) = α′1. Notice as

well that the validity we consider here is simpler than the one presented in 3.20
(Chapter 3), since it does not impose constraints regarding barriers (or more
generally dependencies) for rdop,v actions. These constraints will be required
later in the validity condition for speculative computations.

To faithfully characterize the behavior of write buffers with speculations we
have to consider when a write is actually made visible to all the threads involved
in the system. As we mentioned before this is easy to see in the semantics
with buffers, since it corresponds exactly with the buffer update event (bup,v).
However, with speculations this concept is more elusive. The following definition
captures the minimal conditions that imply that a write has been made visible to
the entire thread system in the speculative semantics. Obviously, this definition
has to be provided for speculative computations rather than speculations alone,
since it is of a global nature.

Definition 4.5 (Committed write). Given a speculative computation

γ = γ0 ·
wrp,v−−−→
t,o

· γ1 we say that [γ0|t, (wrp,v, o)] is committed in γ if there
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are γ′1, γ′′1 , t′, o′ and w such that γ1 = γ′1 ·
rdp,w−−−→
t′,o′

· γ′′1 , or such that

γ1 = γ′1 ·
wrq,w−−−→
t,o′

· γ′′1 with [γ0|t, (wrp,v, o)]≺γ|t [γ0 ·
wrp,v−−−→
t,o

· γ′1|t, (wrq,w, o′)] and

[γ0·
wrp,v−−−→
t,o

·γ′1, (wrp,q, o′)] is committed in γ.

The consequence, regarding writes on different references, is that if a write on q
is dependent on a previous write of p (typically because we have an intermediate
〈wr|wr〉 instruction), and the write of q is committed in γ, then so it is the one
of p. To see why we require this condition consider the following thread system
where we depict only threads:

p := tt ;
〈wr|wr〉 ;
q := tt ;
(!p)

 ‖
[
(!q)

]
wrp,tt−−−→
t0

 〈wr|wr〉 ;q := tt ;
(!p)

 ‖
[
(!q)

]
ww−−−−−→
t0

[
q := tt ;
(!p)

]
‖
[
(!q)

]
wrq,tt−−−→
t0

[
(!p)

]
‖
[
(!q)

]
rdq,tt−−−→
t1

[
(!p)

]
‖
[

tt
]

It is clear that the final read of p cannot be a rdop,v (that is a read of an uncom-
mitted write), since the write of q has already been made globally visible, and
there is a 〈wr|wr〉 between the write of p and the one of q. Therefore the write
of p must have also been made globally visible. In the case of the semantic with
write-buffers it is clear that the last read of p must obtain its value from the
memory.

Once we have the definition of committed write we can finally define the
validity condition of speculative computations.

Definition 4.6 (Valid speculative computation). A speculative computation
γ is valid iff for every thread t we have that γ|t is a valid speculation; and

additionally, if γ = γ′ ·
rdop,v−−−→
t,o′

· γ2 where γ′ = γ0 ·
wrp,v−−−→
t,o

· γ1, and

match([γ′|t, (rdop,v, o′)]) ≈ [γ0|t, (wrp,v, o)] then [γ0|t, (wrp,v, o)] is not committed
in γ′.

In this definition we have intentionally disregarded compare-and-swap actions.
If we were to include them a condition similar to the one for rdop,v should be
required for casop,v, and the matching write could in general be a casp,tt or casop,tt
action.

To illustrate the definition of valid speculative computations let us reconsider
some of the examples presented in Figure 4.1. Let us focus mainly on the ones
considering RMO, since the others are similar, and we have already considered
them in the formalization with write buffers. The example that shows the
capability of RMO to reorder reads w.r.t. subsequent writes is the following (cf.
Example 1.4). [

r0 := (!q) ;
p := 1

]
‖
[
r1 := (!p) ;
q := 1

]
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One wonders here whether r0 = r1 = 1 is a possible final result assuming that
initially p = q = 0. It is not hard to see that by means of speculations we can
obtain the following computation, where we omit the occurrences, and chose
the name t0 for the thread on the left and t1 for the one on the right.

r0 := (!q) ; p := 1 ‖ r1 := (!p) ; q := 1
wrq,1−−−→
t0

r0 := (!q) ; () ‖ r1 := (!p) ; q := 1
wrp,1−−−→
t1

r0 := (!q) ; () ‖ r1 := (!p) ; ()
rdq,1−−−→
t0

r0 := 1 ; () ‖ r1 := (!p) ; ()
rdq,1−−−→
t1

r0 := 1 ; () ‖ r1 := 1 ; ()

From here the result is obvious. However, to be certain that this computation
represents an RMO one we have to verify the validity condition. Since there are
no rdop,v or casop,v actions, the only thing to do is to reorder the speculations of
t0 and t1 to reach a normal speculations. But it is trivial to see that according
to the dependency relation DRMO we have for t0 that:

wrq,1−−−→ · rdp,1−−−→ · . . . ∝D
RMO rdp,1−−−→ · . . . · wrq,1−−−→

and similarly for t1.
If, on the other hand we add the required barriers to make this program

sequentially consistent as follows:r0 := (!q) ;
〈rd|wr〉 ;
p := 1

 ‖

r1 := (!p) ;
〈rd|wr〉 ;
q := 1


we see that the normal computation of thread t0 should have the following
shape:

rdp,1−−−→ · . . . · rw−→ · wrq,1−−−→

and since (rdp,1 DRMO rw) and (rw DRMO wrq,1) there is no possible reordering
that could render the result we had in the previous program. Therefore, the
barriers render the program sequentially consistent.

The other example that is allowed by RMO is the one involving the reorder-
ing of reads (Example 2.40), p := 1 ;

〈wr|wr〉 ;
q := 1

 ‖
[
r0 := (!q) ;
r1 := (!p)

]

where we explicitly add a barrier in the first thread, to disallow the reordering
of writes, which could be another source to obtain r0 = 1 and r1 = 0 as the
final result. We shall leave the checking of this example, which is very similar
to the previous one, as an exercise to the reader.

Perhaps a more challenging example involves checking that behaviors al-
lowed by write buffers are also allowed by the speculative formalization of these
memory models. To that end we consider the Example 2.3 in the λ-PSO case,
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where once more, we assume that initially p = q = 0. We recall here that λ-PSO
does not allow the reordering of reads with subsequent actions. p := 1 ;

r0 := (!p) ;
r1 := (!q)

 ‖

 q := 1 ;
r2 := (!q) ;
r3 := (!p)


Let us discuss first this program from the point of view of the reordering of
instructions alone. In the left thread since at the beginning we have a write on p
followed by a read on p these events cannot be reordered; and since then we have
two reads (on p and q), which are not reordered in PSO, these events cannot
be reordered either. One might think then that this program is sequentially
consistent. However, if we consider this program from the point of view of write
buffers, we immediately see that we could start by writing in both threads (that
is buffering the writes), then reading the “own” pending writes in both threads
(which does not require updating the writes), and finally reading the reference
that has not yet been updated to the memory, obtaining the initial value 0.

As we said before this is exactly the purpose of rdop,v actions in the semantics
of speculations. If instead of performing reads in the memory we speculate them,
we can have the following computation:

p := 1 ; r0 := (!p) ; r1 := (!q) ‖ q := 1 ; r2 := (!q) ; r3 := (!p)
rdop,1−−−→
t0

p := 1 ; r0 := 1 ; r1 := (!q) ‖ q := 1 ; r2 := (!q) ; r3 := (!p)
rdoq,1−−−→
t1

p := 1 ; r0 := 1 ; r1 := (!q) ‖ q := 1 ; r2 := 1 ; r3 := (!p)
rdq,0−−−→
t0

p := 1 ; r0 := 1 ; r1 := 0 ‖ q := 1 ; r2 := 1 ; r3 := (!p)
rdp,0−−−→
t1

p := 1 ; r0 := 1 ; r1 := 0 ‖ q := 1 ; r2 := 1 ; r3 := 0
wrp,1−−−→
t0

() ; r0 := 1 ; r1 := 0 ‖ q := 1 ; r2 := 1 ; r3 := 0
wrq,1−−−→
t1

() ; r0 := 1 ; r1 := 0 ‖ () ; r2 := 1 ; r3 := 0

And from this point the result r0 = r2 = 1 and r1 = r3 = 0 is obvious. We still
have to consider the validity of the example. Indeed, since we explicitly have
that ¬(wrp,1 DPSO rdop,1) and ¬(wrp,1 DPSO rdq,0), we have that for t0:

rdop,1−−−→ · rdq,0−−−→ · wrp,1−−−→ ∝D
PSO wrp,1−−−→ ·

rdop,1−−−→ · rdq,0−−−→

where we can see that the value obtained by the rdop,v action corresponds to the
last write on that reference in the speculation, and there are no intermediate wr

actions in the normal computation. To disallow this behavior it suffices to add
a 〈wr|rd〉 construct between the write and the read of the same reference (cf.
Example 3.19), as follows:

p := 1 ;
〈wr|rd〉 ;
r0 := (!p) ;
r1 := (!q)

 ‖


q := 1 ;
〈wr|rd〉 ;
r2 := (!q) ;
r3 := (!p)


The last example that we considered illustrates the need of a complex va-

lidity definition to allow the behaviors induced by write buffers. Unfortunately
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describing by means of full computations the need of a global validity defini-
tion is rather uncomfortable to present on paper. However, we can provide an
example program for PSO.

Example 4.7.  p := 1 ;
r0 := (!q) ;
r1 := (!p)

 ‖
[

let x = (!p) in
(

q := x
) ]

In this example, if r0 = 1 then the read of p is not a case of “read own”,
that is, it is not a rdop,1 action. This is due to the fact that since the read of q in
the left thread sees the write of q on the right thread, it must be the case that
the write of p in the left thread was gobally performed (or committed) at the
time of that write, and since the read of q in the thread of the left cannot be
reordered with the following read of p (as per DPSO) it must be the case that
the write of p is globally performed, and thus the read cannot produce a rdop,1
action, but has to produce a normal rdp,1 actions instead. In this particular
example, that we include because is not too complex, the final result would not
be modified if the read could be satisfied with a rdop,1 action. However, there are
examples where this choice can lead to different results, but they are complex,
and therefore we do not include them here.

4.5 A Correspondence Result

In this section we prove that the two formalizations of the semantics of PSO and
TSO actually describe the same semantics. We will prove that PSO executions
in the semantics of write buffers correspond to executions in the semantics with
speculations and vice versa. In particular, the proof also applies in a trivial way
to the formalizations of TSO, and therefore we will mainly focus on PSO, which
is more general. Since we do not have an “architectural” formalization of the
operational semantics of RMO (similar to the write-buffer semantics), we can
not draw a similar result for RMO.

To prove the correspondence of both formalizations of PSO we need means
to compare their executions. We have to show how a computation in each of
these calculus corresponds to a computation in the other. To that end, we
introduce a third calculus, which we call the merge-calculus, that includes both
write buffering and speculations. This calculus could be of interest in itself but
here we will only use it as a technical tool to prove our correspondence result.

The semantics of single expressions of the merge-calculus is the speculative
one, that is, identical to that of the speculative formalization of Figure 4.3
with E replaced by Σ and transitions annotated with the occurrences. On the
other hand, its global semantics is almost that of the write-buffer semantics
given in Figure 4.4, except that transitions are allowed to happen at speculative
occurrences, and we need to annotate the occurrence of actions. In addition,
the rule for reading in a buffer (rdop,v) will be replaced by its speculative version,
where one does not verify the contents of the buffers. Actually the only rule
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that changes from Figure 4.4 becomes:

e
a−→
o
e′

(S, (B, t, e)‖T )
a−−→
t,o

(S′, (B′, t, e′)‖T )
(∗)

where

(∗) =


. . .

a = rdop,v ⇒ S′ = S & B′ = B

. . .

with . . . standing for the conditions (∗) of the rules of Figure 4.4.
The basis of our proof will be the reordering relation, which refines the

equivalence by permutations so many times discussed in this thesis. We will
actually prove that provided with a computation in the source semantics (either
with buffers, or speculations) there is a trivially corresponding merge-calculus
computations. With this merge-calculus computation we will show that we can
reorder the events to reach a merge computation that corresponds exactly to one
of the target formalism. Of course, we will prove that the resulting speculations
are related by reordering, and in particular coincide in their initial and final
configuration.

To define the reordering relation for the merge-calculus semantics we have
to redefine the conflict and dependencies relation. Notice that in the merge-
calculus different threads do not conflict upon writing actions (wrp,v) because
the effects of writing are local to the buffer of the thread performing the write.
However, updating the buffers has a global effect. Thus we modify the global
conflict relation (#) to match this observation (recall that we are not considering
compare-and-swap actions here):

Definition 4.8. (Merge conflict)

#MG =
⋃

p∈Ref , v,w∈Val

{(bup,v, bup,w), (rdp,v, bup,w), (bup,v, rdp,w)}

On the other hand we adopt the dependency relation we defined for PSO in
the speculative case with the obvious restrictions regarding compare-and-swap
actions:

DMG , DPSO

Notice that in the definition of DPSO we considered the standard definition
of conflict # (with writes instead of buffer update actions). This is still the
case here, and moreover bup,v actions do not appear in the single expression
semantics.

Replacing the dependency relation above for the one of λ-TSO (that is
DTSO) renders the correspondence result for λ-TSO.

Once more, we base our results on the reordering relation, which is a refine-
ment of the permutations equivalence [Berry and Lévy, 1979]. Then, we need
to state the asynchrony lemma for the merge-calculus as we did in 3.15.

Lemma 4.9. (Merge Asynchrony) If e0
a0−→
o0

e
a1−→
o′1

e1 with o′1 ≡ o1/e0(a0, o0)

and o′0 ≡ o0/e0(a1, o1) then there exists e′ such that e0
a1−→
o1

e′
a0−→
o′0

e1.
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Proof. The proof is almost identical to that of 3.15.

The reordering relation we will consider here is the instantiation of the def-
inition 3.18 with the dependency relation of the merge-calculus, in notation

∝nMG

. In fact, since we will only consider this reordering relation in the rest
of this chapter the parameter will be omitted, so we will denote this reordering
relation simply by ∝MG.

4.5.1 Preliminaries: Relevant Moves

Before focusing on the proof of the correspondence, we introduce some defi-
nitions that will simplify the following developments. In particular, one can
observe that from the memory model point of view, actions of the calculus
other than reads, writes, and barriers are irrelevant. Indeed, they are not in-
volved in the laws of the model and in fact their semantics is independent of
the memory model restrictions. In essence, the only way in which these actions
matter, is in sequencing the execution by means of redex creations.

We will consider executions where irrelevant actions have been separated
from the memory related (more precisely memory model related) actions. We
can do that because we are considering an ANF calculus, where redex creation
can happen at any time, by means of the βv reduction. One can observe then,
that for any computation of the merge calculus, or the speculative one for that
matter, redex creations by means of βv reductions, reference creations (νp,v)
and conditional branchings (↙ and ↘) can be pushed to the beginning of the
computation. In some sense, all redexes are created first, and all β reductions,
whose only purpose is to match the predicted argument with the actual one,
can be pushed to the end of the computation. In between we find the relevant
events. Thus all validations of argument predictions can be performed at the
end of the execution. What is interesting about this transformation, is that we
can then consider only memory model related actions without having to analyze
all the possible combinations of cases. Let us make these intuitions more formal.

We start by defining the condition that states that a speculation has its
memory model related actions isolated. In order to do so, let us adopt the
following notation that represents the set of actions that happen in a speculation:

act(σ) =

{
∅ if σ = ε

act(σ′) ∪ {a} if σ =
a−→
o
· σ′

We can now define the Relevant Moves Normal Form (RMNF) for merge-
calculus speculations.

Definition 4.10 (Relevant Moves Normal Form). We say a speculation σ is
in Relevant Moves Normal Form (RMNF) if there are σ0, σ1 and σ2 such
that σ = σ0 · σ1 · σ2 with act(σ0) ⊆ {βv, νp,v,↙,↘ | v ∈ Val , p ∈ Ref }, also
act(σ1) ⊆ Rd ∪Wr ∪ Bar and finally σ2 ∈ β∗.

Notice in the above definition that the subspeculation σ2 contains all, and only,
the memory model related actions. This is exactly the purpose of the RMNF.

Now we show that any speculation can be transformed into RMNF.
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Lemma 4.11. Given e0
a0−→
o0

e
a1−→
o′1

e1 such that a0 /∈ {βv, νp,v,↙,↘} and a1 6= β

there exist o1, o′0 and e′ such that e0
a1−→
o1

e′
a0−→
o′0

e1 with o′0 ≡ o0/e0(a1, o1) and

o′1 ≡ o1/e0(a0, o0).

Proof. Notice that by the Asynchrony Lemma 4.9 we only need to prove that
there exist o′0 and o1 satisfying the required conditions. Let us proceed by case
analysis on the relation between o0 and o′1:

• Suppose first that (o0 ≤ o′1). Then o′1 = o0 · o′′ for some o′′ and that

exists Σ0 such that e0 = Σ0[r0]
a0−→
o0

Σ0[ē] with o0 = @Σ0. Moreover

ē contains a redex at o′′. The only cases for a0 such that e0 produces
a subexpression capable of containing a redex to be reduced in the next
step are a0 ∈ {βv,↙,↘, β} by a simple analysis on the semantic rules.
Notice that by the hypothesis the only case that remains to be analyzed
is a0 = β in which case we have r0 = (λv?ēv) for some v ∈ Val and thus
o1 = o0 · (λ [] ) · o′′ and o′0 = o0 satisfy the conditions required by the
lemma.

• if (o0 > o′1) then o0 = o′1 · o′′. If e0@o′1 = r1 (recall that this notation
has been introduced in page 72) is a redex then r1 = (λv?ēv) for some ē
and v (there is no other expression containing a redex that can be reduced
in the previous step), in which case a1 = β contradicting the hypothesis.
If e0@o′1 is not a redex then then o0 = o′1 · ( []) with again a1 = β, a
contradiction.

• if (o0 � o′1) and (o0 ≯ o′1) we conclude simply with o′0 = o0 and o1 = o′1.

Then it is not hard to see that any speculation can be reordered to obtain a
RMNF equivalent speculation. In particular none of the actions in {β, βv,↙,↘}
is involved in the dependency relation, which justifies the following corollary.

Corollary 4.12 (Relevant Moves Normal Form). For every speculation γ there
is a speculation γ′ such that γ′ ∝MG γ and γ′ is in RMNF.

Proof. The proof is trivial by reordering the actions from the left by means of
the lemma 4.11.

4.5.2 Global Relevant Moves Normal Form

In the subsequent results we will disregard the cases of actions that are “irrele-
vant”. This will simplify the following proofs. Let us now consider the obvious
extension of the dependency relation to speculations, denoted by σ DMG a, and
meaning that there exists a′ ∈ act(σ) such that a′ DMG a. Then we can prove
that steps can be reordered w.r.t. independent subspeculations.

Lemma 4.13 (Independent moves). Let γ = σ · σ′ · σ′′ be a RMNF compu-

tation such that σ′ contains no {βv, β,↙,↘} action and let σ′ = σ0 ·
a−→
o

with

¬(σ0DMGa). Then there exist σ′0 and o′ such that
a−→
o′
· σ′0 ∝MG σ′ and thus

σ · a−→
o′
· σ′0 · σ′′ ∝MG γ.
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Proof. Induction in the length of σ0. We use the lemma 4.11 for the inductive
case and conclude by the induction hypothesis.

As we did in Chapter 2 we will consider buffers up to reordering of updates
of different references. The equivalence of buffers is recalled in the following
definition:

Definition 2.23 (Buffer equivalence). The buffers equivalence relation is the
least equivalence ≡ between buffers satisfying:

p 6= q

B0 / [p← v] / [q ← w] / B1 ≡ B0 / [q ← w] / [p← v] / B1

An important consequence of adding buffers to the speculative semantics
is that now there are creations of transitions induced by the write-buffers; for
instance, a buffer update (bup,v) action cannot happen if the buffer is empty,
and a normal read rdp,v cannot happen if there is a pending update on reference
p in the buffer, in this last case it is only after the pending writes are committed
into the memory that a normal read can proceed. Simply said, there are actions
that are only enabled for buffers of a certain shape. The buffer-dependency
relation is a relation of two consecutive semantic steps, that clearly depends on
the originating configuration. The following definition captures that intuition:

Definition 4.14 (Buffer Dependency). Whenever we have C
a−−→
t,o

C ′
a′−−→
t,o′

C ′′

we say that a creates a′ from C, which we denote by (a, t) .C (a′, t), if the
following conditions hold: C = (S, (B, t, e) ‖ T ) and

B 6= [b] . B′ and a′ = b or

B(p) /∈ (ww)∗ and a′ = rdp,v or

B(p) 6= (wr)∗ · v · s′ and a′ = bup,v

We can now prove that whenever we have two consecutive events of the same
thread in a speculative computation, such that the actions they produce are not
dependent, and the events are not dependent through the buffers, then these
events can happen in the reverse order in the computation, resulting in the same
final configuration.

Lemma 4.15 (Global Reordering: Intrathread). Given a configuration C0 with
C0 = (S0, (B0, t, e0)‖T0) such that:

i) C0
a0−−→
t,o0

C
a1−−→
t,o1

C1, and

ii) a1 6= β or a0 /∈ {βv,↙,↘ | v ∈ Val}, and
iii) ¬(a0 .C0 a1), and
iv) if both a0, a1 /∈ {bup,v, wr, ww | p ∈ Ref , v ∈ Val} then ¬a0DMGa1,

then there is C ′ such that:

C0
a1−−→
t,o′1

C ′
a0−−→
t,o′0

C1

Proof. Let us consider the possible cases for a0 and a1:
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• If a0 = β we need to consider the following cases for a1. If
a1 ∈ {bup,v, wr, ww | p ∈ Ref , v ∈ Val} we have the conclusion directly with
B′ = B1 and e′ = e. In the cases where a1 ∈ Act we have by hypothesis ii)

and Lemma 4.11 that there is e′ with e0
a1−→
o′1

e′
a0−→
o′0

e1 ∝MG e0
a0−→
o0

e
a1−→
o1

e1

and clearly S′ = S1 and B′ = B1 since a0 does not modify neither the
store nor the buffers.
Almost the same reasoning applies to all the cases for a0 with a1 ∈
{βv,↙,↘ | v ∈ Val} which we will not develop in the sequel.

• If both a0, a1 /∈ {β, βv,↙,↘, bup,v, wr, ww | p ∈ Ref , v ∈ Val} we simply ap-
ply the hypothesis iv) and the Local Asynchrony Lemma 4.9 to obtain the
appropriate e′. Obviously the store does not change in any of these steps,
and it is easy to verify that the resulting buffer is the same up to the buffer
equivalence '.
• If a0 = rdp,v we have, from the semantics, that B(p) = (ww)∗ and S(p) = v.

Clearly in this case by hypothesis iii) we have a1 /∈ {wr, bup,w | w ∈ Val}
and thus the conclusion is very easy. Notice that the case where a1 = wrp,w
has already been discarded in the previous case.

• If a0 = rdop,v the conclusion is immediate since this action does not depend
nor modify in any way the buffers or the store.

• If a0 = wrp,v the conclusion is simple as well observing that if a1 = bup,w
then B(p) = (wr)∗ · [p 7→ w] · s for some s; otherwise we would violate the
hypothesis ii). Also it is clear that a1 6= ww. We obtain the conclusion
easily.
• If a0 ∈ {ww, wr} we have the that, given the condition iii), the requirement

for performing a0 is such that the reordering is guaranteed. For instance
if a0 = ww and a1 = ww then B = ww · s for some s. Similarly for wr.
• If a0 = bup,v then a1 /∈ {ww, bup,w, rdp,w | w ∈ Val}; and if a1 = wr by iii)

we know that B(p) = wr · s for some s, the conclusion is immediate in the
remaining cases.

• If a0 = ww then a1 /∈ {buq,w, wr | r ∈ Ref , w ∈ Val}. Again in this case
the conclusion is direct. The same reasoning applies to a0 = wr where we
know by iii) that a1 6= rdq,w for all q and w, nor a1 = ww .

And a similar, but simpler result can be derived for the case in which the
events occur in different threads.

Lemma 4.16 (Global Reordering). Let C0 = (S, (B0, t0, e0)‖(B1, t1, e1)‖T ) and

C0
a0−−−→
t0,o0

C
a1−−−→
t1,o1

C1 with t0 6= t1 and ¬(a0 #MG a1). Then there exists C ′

such that
C0

a1−−−→
t1,o1

C ′
a0−−−→
t0,o0

C1

Proof. We proceed by case analysis on a0 and a1. We consider only the cases
of actions that access the memory, the other being trivial (Notice that wrp,v
actions do not directly access the memory and thus are trivial too):

• a0 = rdp,v. If:
• a1 = rdq,w the conclusion is trivial, even if p = q (with w = v).
• a1 = buq,w. If p = q then a0 # a1 contradicting the hypothesis. In case
p 6= q the conclusion is immediate.
• Notice that a1 = wrq,w does not modify the memory and thus is trivial.
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• a0 = bup,v. If:
• a1 = rdq,w. If p = q we have a contradiction to the hypothesis and if
p 6= q the conclusion is immediate.
• a1 = buq,w. Then p = q ⇒ (a0 # a1) and p 6= q the conclusion is trivial.

By means of this lemma we can relate the RMNF of speculations with global
computations.

Proposition 4.17 (Global RMNF). Given a global computation γ with

γ = (Ci
ai,oi−−−→
ti

Ci+1)0≤i≤n there exists an execution γ′ starting from C0 and end-

ing in Cn+1 such that γ′|t ∝MG γ|t and γ′|t is in RMNF for all t ∈ T id.

Proof. The proof is trivial by repeatedly applying lemmas 4.16 and 4.11.

4.5.3 Step Ordering Analysis

For the results that follow we will need to identify events that are necessarily
ordered by the dependencies induced by the memory model. The reader can
observe that relevant (i.e. “nonirrelevant”) events that cannot be reordered by
the reordering relation are somehow related in a dependency chain. For that
purpose we establish the following ordering definition between steps in a com-
putation.

Definition 4.18 (Step ordering). Given a speculation σ, such that

σ = σ0 ·
a0−→
o0
· σ1 ·

a1−→
o1
· σ2, we say that the step [σ0, (a0, o0)] is or-

dered before the event [σ0 ·
a0−→
o0

·σ1, (a1, o1)], which we shall denote

[σ0, (a0, o0)]≺σ [σ0 ·
a0−→
o0
· σ1, (a1, o1)], iff for all σ′ with σ′ ∝MG σ then

σ′ = σ′0 ·
a0−→
o′0

· σ′1 ·
a1−→
o′1

· σ′2 with [σ0, (a0, o0)] ∼ [σ′0, (a0, o
′
0)] and

[σ0 ·
a0−→
o0
· σ1, (a1, o1)] ∼ [σ′0 ·

a0−→
o′0

· σ′1, (a1, o
′
1)].

Notice that here we are using the step equivalence ∼ that was defined in 3.24.
We can immediately observe that if in a computation we have two dependent

actions, in every reordering of that computation the events are in the same order.
In particular steps with conflicting actions are step ordering related.

Remark 4.19 (Dependency implies Ordering). Given a speculation γ, such

that γ = (ei
ai−→
oi

ei+1)0≤i≤n where ajDMGah with 1 ≤ j < h ≤ n we have

[σj−1, (aj , oj)]≺γ [σh−1, (ah, oh)].

Proof. The proof is trivial by induction on n and the definition of the reordering
relation ∝MG.

Conversely, an event following a write, such that they are ordered, indicates
that the second event is conflicting with the write, unless they are related by
redex creation.
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Remark 4.20 (Ordering implies Dependency). Given a speculation σ such that

σ = σ0 ·
wrp,v−−−→
o
· a1−→
o1
· σ1, if [σ0, (wrp,v, o)] ≺σ [σ0·

wrp,v−−−→
o

, (a1, o1)] with a1 6= β

then wrp,vDMGa1.

Proof. The proof is immediate by contradiction.

We can now prove that if two events in a RMNF speculation are not related,
there must be an equivalent speculation where these events are adjacent and in
the opposite order.

Lemma 4.21. Given a merge-calculus speculation σ such that
σ = σ0 ·

a0−→
o0
· σ1 ·

a1−→
o1
· σ2 and such that σ is in RMNF and

a0, a1 /∈ {β, βv, νp,v,↙,↘} and also ¬([σ0, (a0, o0)] ≺σ [σ0 ·
a0−→
o0
· σ1, (a1, o1)]),

then there exist σ′1 and σ′′1 such that:

σ0 · σ′1 ·
a1−→
o′1

· a0−→
o′0

· σ′′1 · σ2 ∝MG σ

Proof. The proof proceeds by induction on the length of σ1:

• In the base case σ1 = ε and thus σ = σ0 ·
a0−→
o0
· a1−→
o1
· σ2 and by lemma

4.19 we know ¬(a0DMGa1), and thus we can apply the lemma 2.15 to
conclude.

• In the case where σ1 =
a2−→
o2
· σ′′′1 we proceed by cases:

• If ¬(a0DMGa2) we can simply apply the asynchrony lemma (2.15) to

obtain
a2−→
o′2

· a0−→
o′0

· σ′′′1 ∝MG a0−→
o0
· σ1. with σ′′′1 having a shorter length than

σ1 we conclude by the induction hypothesis.
• If a0DMGa2 then ¬([σ0 ·

a0−→
o0
, (a2, o2)] ≺σ [σ0 ·

a0−→
o0
· σ1, (a1, o1)]),

otherwise we would have a contradiction with the hypothesis about
the ordering of a0 and a1. Thus we can apply the induction hy-

pothesis on the step [σ0 ·
a0−→
o0
, (a2, o2)] to obtain σ̂′1 and σ̂′′1 with

σ0 ·
a0−→
o0
· σ̂′1 ·

a1−→
o′′1

· a2−→
o′2

· σ̂′′1 · σ2 ∝MG σ, where clearly σ̂′1 has a shorter

length than σ1 which allows us to use the induction hypothesis to conclude.

Also, if two events are ordered by the step ordering relation, either their actions
are dependent or there is an intermediate event that is conflicting with the first
one and ordered with the second one.

Lemma 4.22. Given γ = σ0·
a0−→
o0
·σ1·

a1−→
o1
·σ2 a RMNF execution with

a0, a1 /∈ {β, βv,↙,↘} and [σ0, (a0, o0)] ≺γ [σ0·
a0−→
o0
·σ1, (a1, o1)] we have one

of the following:

i) a0DMGa1, or

ii) there are σ′1, σ′′1 , a2 and o2 such that σ1 = σ′1·
a2−→
o2
·σ′′1 and a0DMGa2 and

[σ0·
a0−→
o0
·σ′1, (a2, o2)]≺γ [σ0·

a0−→
o0
·σ1, (a1, o1)]
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Proof. The proof is by induction on the length of σ1. In the base case the
conclusion is obvious satisfying the condition i). In the induction case σ1 =

a3−→
o3

·σ̂1. Clearly if ¬(a0DMGa3) we use lemma 4.13 to reorder them and conclude

by means of the induction hypothesis. If (a0DMGa3) and [σ0·
a0−→
o0
, (a3, o3)] ≺γ

[σ0 · σ1, (a1, o1)] we have the conclusion directly. Let us suppose then that

¬[σ0·
a0−→
o0
, (a3, o3)]≺γ [σ0 · σ1, (a1, o1)]. In this case we can apply lemma 4.21 to

obtain σ̂′1, σ̂′′1 , o′1 and o′3 such that γ ∝MG σ0·
a0−→
o0
·σ̂′1·

a1−→
o′1

· a3−→
o′3

·σ̂′′1 · σ2, with

σ̂′1 a shorter speculation than
a3−→
o3
·σ1, and hence we conclude by the induction

hypothesis.

The following lemmas state that some particular cases of events related by
the step reordering relation, whose actions are not dependent as per the mem-
ory model reordering relation, have intermediate events that transitively relate
them. These lemmas will be of importance for the following developments.

Lemma 4.23. Given a RMNF speculation σ such that

σ = σ0 ·
wrp,v−−−→
o0
· σ1 ·

a1−→
o1
· σ2 and [σ0, (wrp,v, o0)]≺σ [σ0 ·

wrp,v−−−→
o0
·σ1, (a1, o1)]

then either:

i) wrp,vDMGa1, or

ii) σ1 = σ′1 ·
b−→
o′
· σ′′1 ·

a2−→
o2
· σ′′′1 with b ∈ Bar (where we consider possible that

a2−→
o2
· σ′′′1 = ε, in which case a1 stands for a2), and b DPSO a2.

Proof. The proof is by induction on the length of σ1. Clearly if σ1 = ε then
wrp,vDMGa1 by lemma 4.20. Let us consider the induction case now. Let us
assume that ¬(wrp,vDMGa1), otherwise we have the conclusion. We can then

apply the lemma 4.22 to conclude that σ1 = σ1 ·
a2−→
o2
· σ′1 with wrp,vDMGa2

and [σ0 ·
wrp,v−−−→
o0
· σ1, (a2, o2)]≺σ [σ0 ·

wrp,v−−−→
o0
· σ1, (a1, o1)]. Let us now consider

the cases for a2:

• if a2 = wrq,w for some q ∈ Ref and w ∈ Val we can apply the induc-

tion hypothesis considering [σ0 ·
wrp,v−−−→
o0

· σ1, (wrq,w, o2)] in the place of

[σ0, (wrp,v, o)], which renders the conclusion.
• if a2 = ww we consider the following cases for a1:
• with a1 = wrq,w for some q and w we obtain the conclusion.
• with a1 ∈ {rdq,w, rdoq,w | q ∈ Ref , w ∈ Val} we can consider using

lemma 4.22 again to obtain that σ′1 = σ̂1 ·
a3−→
o3
· σ̂′1 and a2DMGa3 which

implies that a3 = wrq,w for some q and w. Moreover

[σ0 ·
wrp,v−−−→
o
· σ1 ·

a2−→
o2
· σ̂1, (a3, o3)]≺σ [σ0 ·

wrp,v−−−→
o
·σ1, (a1, o1)]

This concludes the case.
• if a2 = wr, then we consider the following cases for a1:
• with a1 ∈ {rdq,w, rdoq,w | q ∈ Ref , w ∈ Val} we have the conclusion of
the lemma.
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• with a1 = wrq,w for some q and w we can apply the lemma 4.22 to

obtain that σ′1 = σ̂1 ·
a3−→
o3
·σ̂′1 and wrDMGa3 which implies that a3 ∈

{rdr,v′ , rdor,v′ | r ∈ Ref , v′ ∈ Val} which renders the conclusion. Moreover

[σ0 ·
wrp,v−−−→
o
· σ1 ·

a2−→
o2
· σ̂1, (a3, o3)]≺σ [σ0 ·

wrp,v−−−→
o
·σ1, (a1, o1)].

Lemma 4.24. Given a speculation σ = σ0 ·
wrp,v−−−→
o
· σ1 ·

a−→
o′
· σ2 with a ∈

{rdq,w, rdoq,w | p 6= q}, or a = rdop,w, and where there are no wr actions in

σ1 and [σ0, (wrp,v, o)]≺σ [σ0 ·
wrp,v−−−→
o
· σ1, (a, o

′)]. Then there exist σ′1, σ′′1 and

σ′′′1 such that σ1 = σ′1 ·
wrr,w−−−→
o0

· σ′′1 ·
rdr,w−−−→
o1
· σ′′′1 .

Proof. The proof is by induction on the length of σ1, with the base case being

vacuously true since we assume that [σ0, (wrp,v, o)]≺σ [σ0 ·
wrp,v−−−→
o
· σ1, (a, o

′)].

Let us consider the inductive case. We have ¬(wrp,v nMG a), and thus by

lemma 4.22 there must be the case that σ1 = δ · a2−→
o2
· δ′ with wrp,vDMGa2 and

[σ0 ·
wrp,v−−−→
o
· δ, (a2, o2)]≺σ [σ0 ·

wrp,v−−−→
o
· σ1, (a, o

′)]. Let us consider the cases for

a2 such that wrp,vDMGa2 is satisfied:

• if a2 = rdp,v′ we have the conclusion with r = p, σ′1 = ε and taking
[σ0, (wrp,v, o)] for the write event.

• if a2 = wrr,v′ we have from the lemma 4.22 that

[σ0 ·
wrp,v−−−→
o
· δ, (wrr,v′ , o2)]≺σ [σ0 ·

wrp,v−−−→
o
· σ1, (a, o

′)], and thus we

can apply the induction hypothesis to conclude.
• if a2 = ww then can apply again the lemma 4.22 to

obtain that δ′ = δ0 ·
a3−→
o3
· δ1 with wwDMGa3 which im-

plies that a3 = wrr,v′ for some r and v′. Once more

[σ0 ·
wrp,v−−−→
o
· δ · a2−→

o2
·δ0, (a3, o3)]≺σ [σ0 ·

wrp,v−−−→
o
· σ1, (a, o

′)] so we can

apply the induction hypothesis to conclude.

Corollary 4.25. Given a speculation σ = σ0 ·
ww−→
o
· σ1 ·

a−→
o′
· σ2 with a ∈

{rdq,v, rdoq,w | p 6= q} or a = rdop,w, and where there are no wr actions in σ1

and [σ0, (ww, o)]≺σ [σ0 ·
ww−→
o
· σ1, (a, o

′)]. Then there exist σ′1, σ′′1 and σ′′′1 such

that σ1 = σ′1 ·
wrr,w−−−→
o0

· σ′′1 ·
rdr,v′−−−→
o1
· σ′′′1 .

Proof. The proof is trivial applying lemmas 4.22 and 4.24.

Lemma 4.26. Let σ = σ0 ·
wrp,v−−−→
o
· σ1 ·

wrq,w−−−→
o′

· σ2 where σ1 contains no ww

action, with p 6= q and [σ0, (wrp,v, o)] ≺σ [σ0 ·
wrp,v−−−→
o
· σ1, (wrq,w, o

′)]. Then

σ1 = σ′1 ·
rdp,v′−−−→
o′
· σ′′1 .
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Proof. The proof is by induction on the length of σ1, with the base case being

vacuous since σ1 = ε contradicts [σ0, (wrp,v, o)] ≺σ [σ0 ·
wrp,v−−−→
o
· σ1, (wrq,w, o

′)].

Let us consider the inductive case. We have ¬(wrp,v nMG wrq,w) if p 6= q,

and thus by lemma 4.22 there must be the case that σ1 = δ · a2−→
o2
· δ′ with

(wrp,vDMGa2) and [σ0 ·
wrp,v−−−→
o
· δ, (a2, o2)]≺σ [σ0 ·

wrp,v−−−→
o
· σ1, (wrq,w, o

′)]. Let

us consider the cases for a2 such that wrp,vDMGa2 is satisfied: if a2 = rdp,v′
we have the conclusion, and if a2 = wrp,v′ we apply the induction hypothesis.
We have from the hypothesis that ww does not occur in σ1 so this concludes the
lemma.

4.5.4 From Write-Buffers to Speculations

It is fairly straightforward to see that for every computation of PSO as given
by the semantics of write-buffers the exact same computation is a computation
of the merge-calculus.

Remark 4.27. Any computation γ : C
∗−→ C ′ of PSO as provided by the seman-

tics of write-buffers (of Figure 4.4) is a legal execution of the merge-calculus as
well.

We will call these computations of the merge-calculus purely buffered, since the
only relaxation is provided by means of buffers and not speculations.

To prove our correspondence result, we need to construct a speculative com-
putation that corresponds to one in the semantics with buffers. However, in
the semantics of the merge-calculus the requirements for rdop,v actions are al-
most vacuous, whereas in the semantics with write-buffers these actions can
only happen under some conditions regarding the buffers. Indeed, the condi-
tions required in the semantics with write-buffers are important to prove the
correspondence of the semantics. Our proof proceeds by showing how actions
can be reordered to reach a computation of the merge-calculus that corresponds
to a speculative computation. In order to prove that we can reorder the actions
we use the fact that they were generated by a valid computation of the seman-
tics with buffers. For that purpose we define a property on computations of the
merge-calculus that indicates that actions that have not yet been reordered do
comply with the semantics of write-buffers.

Definition 4.28 (Buffer Compliance). We say that the computation γ
complies with the semantics of buffers, denoted by WB(γ), if when-

ever γ = γ0 ·
wrp,v−−−→
t,o

· γ1 · (C
rdop,v−−−→
t,o′

C ′) · γ2 with C = (S, (B, t, e)‖T ) and

match[(γ0 ·
wrp,v−−−→
t,o

· γ1)|t, (rdop,v, o′)] = [γ0|t, (wrp,v, o)] then B(p) = s · v · wwn

and wr does not occur in s.

In other words rdop,v actions respect the semantics of write-buffers. Importantly
the condition WB(γ) only requires that the value read be the last value in the
buffer for own reads that follow their matching write in γ. It is easy to see that
this condition is satisfied for every computation of the merge-calculus that is a
computation of the semantics of PSO with write-buffers (Figure 4.4).
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Remark 4.29. Given a computation γ : C
∗−→ C ′ of PSO as provided by the

semantics of write-buffers (as in Figure 4.4) we have WB(γ).

Evidently every purely buffered computation γ satisfies WB(γ).
Before considering the reordering of actions required to obtain a speculative

computation from one in the semantics of write-buffers we need the following
definition, stating that in a prefix of the computation every buffer update, or
committed barrier is immediately preceded by the write, or a barrier action that
justifies it.

Definition 4.30 (Late-commit freedom). We say a speculative computation γ

is late-commit free, if γ = σ0 · (C0
a0−−−→
t0,o0

C
a1−→
t1

C1) · σ1 implies that:
a1 = bup,v ⇒ t0 = t1 & a0 = wrp,v &

C0 = (S, (B, t, e)‖T )⇒ B(p) = ε

a1 = ww ⇒ t0 = t1 & a0 = ww & C0 = (S, (ε, t, e)‖T )

a1 = wr ⇒ t0 = t1 & a0 = wr & C0 = (S, (ε, t, e)‖T )

We can prove a lemma that shows that events that depend on a write event
can be permuted after the buffer update that corresponds to the write being
considered. This will later enable us to move the write action to the place where
its corresponding buffer update is. Once all writes immediately precede their
corresponding update we have an execution that is similar to a speculative one.

Lemma 4.31 (Delayed Dependencies). Let γ be a RMNF computation satisfy-

ing WB(γ). Suppose that γ = γ0 ·
wrp,v−−−→
t,o

· γ1 ·
bup,v−−−→
t,ε

· γ2, where γ0 ·
wrp,v−−−→
t,o

· γ1

is the longest late commit free prefix of γ. Suppose as well that [γ0|t, (wrp,v, o)]
is the first uncommitted write to p by t in γ. Let γ′1 and γ′′1 be such that

γ1 = γ′1 ·
a1−−→
t,o1

· γ′′1 with [γ0|t, (wrp,v, o)] ≺γ|t [γ0 ·
wrp,v−−−→
o

· γ′1, (a1, o1)] and

¬(a1 # γ′′1 |t). Then there exists γ̂1 such that

γ′ = γ0 ·
wrp,v−−−→
t,o

· γ′1 · γ̂1 ·
bup,v−−−→
t,ε

· a1−−→
t,o′1

· γ2

and for all t′ 6= t we have γ′|′t = γ|t and γ′|t∝MGγ|t. Moreover we have WB(γ′).

Proof. By induction on the size of γ′′1 .

• In the base case we have γ = γ0 ·
wrp,v−−−→
t,o

· γ′1 ·
a1−−→
t,o1

· bup,v−−−→
t,ε

· γ2. Here we

clearly have that a1 6= rdp,v′ for the semantics disallows a1 = rdp,v′ , and
we notice that lemma 4.15 allows to reorder a1 and bup,v provided that
¬(a1.C bup,v) which is guaranteed since the buffer of t has a pending write
on p not generated by a1. Also notice that if a1 = rdoq,w (where possibly
p = q) then by lemma 4.23 that there must be a preceding barrier b, which
by the hypothesis WB(γ) cannot be a wr. From the construction of the
proof of the lemma 4.23 we know that the barrier b (= ww) is ordered
before rdoq,w, so we can apply the lemma 4.25 which implies that there is a
wrq,w and a following rdq,v′ action in γ′1; a contradiction to the semantics of
buffers, provided by hypothesis WB(γ), since the write of p is pending and
there is an intermediate ww barrier. Hence a1 6= rdoq,w. This guarantees
that the permutation of a1 after the bup,v action preserves WB(γ′).
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• Suppose now that γ′′1 =
a2−−−→
t′,o2

· γ̄1. Consider the following cases:

• if t = t′ we can verify once more that a1 6= rdoq,w since

[γ0|t, (wrp,v, o)]≺γ|t [γ0 ·
wrp,v−−−→
o
· γ′1, (a1, o1)] in conjunction with lem-

mas 4.23 and 4.25 would violate the semantics of buffers granted by
WB(γ).
By cases on a1. Suppose that a1 = rdq,w then we have from the
semantics, that q 6= p (no read can happen with pending writes).
By lemma 4.23 there must be a preceding barrier b and a following
action that is dependent on b. Of course b cannot be a wr since it
would violate the semantics of buffers. So it must be a ww and there
must be an intermediate write on reference q that conflicts with the
read rdq,w, as per lemma 4.25. Thus, the preceding write on p should
be committed before the one for q and there could not be a rdq,w
action. Hence a1 6= rdq,w. Otherwise suppose that a1 = wrq,w. If
q = p we have from the semantics of buffers that a1 is not committed
in σ′′1 and thus it is trivial to see that can be reordered after the
buffer update (using lemmas 4.15,4.16 and 4.13). So, in particular
can be reordered with a2. If p 6= q then there must be an intermediate
ww, else we would have no ordering (again as per lemmas 4.23 and
4.26); thus we know that the write is not committed in σ′1 (otherwise
we would have a violation to the semantics of buffers) and we can
permute a1 after the buffer update, thus in particular after a2. We
observe then that the resulting computation γ′ satisfies WB(γ′) and
we can use the induction hypothesis to conclude.

• if t 6= t′ we can trivially reorder a1 (recall from the previous case
that a1 /∈ {rdq,w, rdoq,w}) with a2 by lemma 4.16 and conclude by the
induction hypothesis. Notice that the permutation trivially preserves
WB(γ′).

It should be easy to see that similar (but simpler) results can be derived in
the case where the first late-commit is a ww or wr action. What is important to
observe here is that from the proof we know that only wrp,w, ww or wr actions
need to be permuted. Read actions need never be reordered. We will use this
observation in the sequel.

The following corollary states that we can always find a speculation where
writes are immediately followed by their corresponding buffer updates. Clearly
the same holds for barrier actions as shown in the subsequent corollaries. This
property is the core of the proof establishing that the semantics of speculations
can simulate the one of write-buffers.

Corollary 4.32 (Matching Write Update). Let γ : C
∗−→ C ′ be a RMNF compu-

tation such that WB(γ) and γ = σ0 ·
wrp,v−−−→
t,o

· σ1 ·
bup,v−−−→
t,ε

· σ2 with σ0 ·
wrp,v−−−→
t,o

· σ1

the longest late-commit free prefix of γ, and with [σ0|t, (wrp,v, o)] the first un-
committed write on reference p of thread t in γ. Then there exists o′, σ′1 and σ′′1
and γ′ : C

∗−→ C ′ such that

γ′ = σ0 · σ′1 ·
wrp,v−−−→
t,o′

· bup,v−−−→
t,ε

· σ′′1 · σ2
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and for all t′ 6= t we have γ|′t = γ′|′t and γ′|t ∝MG γ|t. Moreover WB(γ′) holds.

Proof. Simple induction on σ1 repeatedly applying lemmas 4.31, 4.15 and 4.16.

Corollary 4.33 (Matching Barrier Update). Let γ : C
∗−→ C ′ be a RMNF

computation such that WB(γ) and γ = σ0 ·
b−−→
t,o
· σ1 ·

b−→
t,ε
· σ2 with b ∈ Sync

and σ0 ·
b−−→
t,o
· σ1 the longest late-commit free prefix of γ, and with [σ0|t, (b, o)]

the first uncommitted b barrier of thread t in γ. Then there exists o′, σ′1 and σ′′1
and γ′ : C

∗−→ C ′ such that

γ′ = σ0 · σ′1 ·
b−−→
t,o′

· b−→
t,ε
· σ′′1 · σ2

and for all t′ 6= t we have γ|′t = γ′|′t and γ′|t ∝MG γ|t. Moreover WB(γ′) holds.

Proof. Same as for the previous lemma.

To establish a relation between computations in the formalization with write-
buffers and the formalization with speculations we need to identify which are
the computations of the merge-calculus that correspond to computations of
the speculative semantics. For that purpose we will define quasi-speculative
computations.

Definition 4.34 (Quasi-speculative Computation). A computation γ : C
∗−→ C ′

of the merge-calculus is called quasi-speculative if every write is immediately
followed by its corresponding buffer update, and every barrier action is followed
immediately by its corresponding barrier commit.

Lemma 4.35. Given γ : C
∗−→ C ′ a computation of the merge-calculus satisfying

WB(γ) there exists a quasi-speculative computation γ′ of the merge-calculus such
that for every thread t we have γ′|t ∝MG γ|t.

Proof. The proof proceeds by induction on the number of buffer update (includ-
ing barrier commit) actions present in γ and orders writes, or barriers to match
their respective buffer-update action as stated by corollaries 4.32 and 4.33.

In a quasi-speculative computation of the merge-calculus we still have the
buffer updates and the commits of barrier symbols in the buffers. To obtain
a truly-speculative computation we need to erase these actions from the com-
putation. Let us denote by bγc the computation that results from erasing all
commit actions from the merge-calculus computation γ.

Theorem 4.36 (Write Buffering is Speculative). Given a computation γ : C
∗−→

C ′ of the formalization of PSO with write-buffers (as defined in Figure 4.4) there

exists a quasi-speculative computation γ′ : C
∗−→ C ′ such that for every thread t

it holds γ′|t ∝MG γ|t. Then bγ′c is a DPSO-valid speculative computation.

Proof. Given the computation γ we have from remarks 4.27 and 4.29 that γ
is a computation of the merge-calculus and in particular we have WB(γ). We

can therefore apply the Lemma 4.35 to obtain γ′ : C
∗−→ C ′ a quasi-speculative

computation. It is not hard to see from the construction of γ′ that since the exe-
cution γ satisfies WB(γ) the final computation bγ′c is a DPSO-valid speculative
computation.
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4.5.5 From Speculations to Write-Buffers

Let us see now how a computation of the speculative formalization of PSO
can be turned into one of the formalization with write buffers by reordering
speculatively performed actions to the position where they become “normal”.
In essence, since we consider only DPSO-valid speculations, we know that for
every thread projection γ|t, for an hypothetical speculation γ, there exists a
normal speculation that is a DPSO-reordering of γ|t, and let us denote such
normal computation γ[t]. What we prove here, is that we can always find a
computation γ′ of the merge-calculus such that coincides with γ, the initial and
final states are the same, and for every thread γ′|t = γ[t]. Let us now proceed
with the proof.

Given a valid speculative computation γ we can trivially obtain a quasi-
speculative computation dγe of the merge-calculus where all writes and barrier
instructions are immediately committed.

Remark 4.37. Given a valid computation γ : C
∗−→ C ′ of the speculative calculus

there is a quasi-speculative computation dγe : C
∗−→ C ′ of the merge-calculus such

that for all t we have γ|t = γ′|t.

We now prove that buffer commit actions can be reordered w.r.t. every action
other than a read or a buffer commit action of the same thread to reach the
same final configuration.

Lemma 4.38. Suppose that we have C
a0−→
t,ε

C0
a1−−→
t,o1

C ′ and a0 ∈
{bup,v, ww, wr | p ∈ Ref , v ∈ Val} and a1 /∈ {rdp,v, bup,v, ww, wr | p ∈ Ref , v ∈
Val}, then there exists C1 such that C

a1−−→
t,o1

C1
a0−→
t,ε

C ′.

Proof. The proof is trivial by case analysis. Notice that no a1 action other than
a write modifies or depends on the buffers or memory. In the case of a write
action, it simply puts its contents at the end of the buffer which is independent
of any previous buffer update.

If an action does not conflict with preceding actions of different threads, then
this action can be moved backwards in the computation obtaining an equivalent
computation (in the sense that individual speculations are preserved and the
initial and final configurations are the same).

Lemma 4.39. Let γ = C
∗−→ C ′ be a computation of the merge-calculus and let

γ = γ0 ·
a0−−→
t,o0

· γ1 ·
a1−−→
t,o1

· γ2 with a1 /∈ {rdp,v, bup,v, wr, ww | p ∈ Ref , v ∈ Val}

and γ1|t = ε. Then there exists γ′ = C
∗−→ C ′ and γ′1 such that for all t we have

γ|t = γ′|t and γ′ = γ0 ·
a0−−→
t,o0
· a1−−→
t,o1
· γ′1 · γ2.

Proof. We proceed by induction on the length of γ1. Clearly if γ1 = ε we have
the conclusion. If γ1 = γ1 ·

a2−−−→
t2,o2

we have the following cases:

• t = t2 and therefore we know that a2 ∈ {bup, wr, ww | p ∈ Ref } by γ1|t =
ε. We can simply apply the previous lemma (4.38) and conclude by the
induction hypothesis.

• t 6= t2 and since a1 /∈ {rdp,v, bup,v, ww, wr | p ∈ Ref , v ∈ Val} we can
directly apply Lemma 4.16 and the induction hypothesis to conclude.
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And similarly to the previous result, if an action does not conflict with sub-
sequent actions of different threads in the computation, we can push it forward
to obtain an equivalent computation.

Lemma 4.40. Let γ : C
∗−→ C ′ be a merge-calculus computation such that

γ = γ0 ·
a−−→
t,o
· γ1 · γ2 with a /∈ {wrp,v, rdp,v, bupv, ww, wr | p ∈ Ref , v ∈ Val}

and γ1|t = ε. Then there are γ′ and γ′1 such that γ′ = γ0 · γ′1 ·
a−−→
t,o
· γ2 with

γ′ : C
∗−→ C ′ and for all t ∈ T id we have γ|t = γ′|t.

Proof. The proof is obvious since a does not modify or inspect the buffers or
the memory.

Lemma 4.41. Let γ : C
∗−→ C ′ be a merge-calculus computation such that

every thread projection is valid, i.e. for all t ∈ T id then γ|t ∝MG γ[t] with γ[t] a
normal speculation. Suppose as well that γ|t ∝MG γ′t ∝MG γ[t] with γ|t reaching

γ′t by a single reordering. Namely γ = γ0 ·
a0−−→
t,o0

· γ1 ·
a1−−→
t,o1

· γ2 with γ1|t = ε

and γ′t = γ0|t·
a1−→
o′1

· a0−→
o′0

·γ2|t. Then there exists γ′1, γ′′1 and γ′ : C
∗−→ C ′ such

that γ′ = γ0 · γ′1 ·
a1−−→
t,o′1

· a0−−→
t,o′0

· γ′′1 · γ2. Moreover for all t′ ∈ T id with t′ 6= t

we have γ′|t = γ|t.

Proof. Let us proceed by cases on a1:

• If a1 ∈ {rdp,v, rdop,v | p ∈ Ref , v ∈ Val} we have from the fact that γ|t∝MG

γ′t that ¬(a1DPSOa0) which implies that a0 /∈ {rdq,w, rdoq,w,wrq,w | q ∈
Ref , w ∈ Val} and thus we can apply the lemmas 4.40 and 4.15 to con-
clude.

• If a1 = wrp,v we can apply the lemmas 4.39 and 4.15 to get the desired
reordering.

• If If a1 = {ww, wr} we proceed as in the previous case.
• All the remaining cases are trivial.

One remark from the proof of this lemma is that it requires to reorder only
memory-model-related actions (that is reads, writes or memory barriers) forward
in the computation (in particular in the speculation). One can observe that the
actions that need to be reordered are write actions and barrier actions, where
read actions can be regarded as remaining at their place. Indeed, we see in the
proof that if a1 is a read action the a0 action is moved to a later stage in the
computation (but in this case a0 is not a memory model related action), and in
the cases where a1 is a write or a barrier, it is this action that is moved to the
front of the computation.

The following lemma states that merge-calculus computations corresponding
to DPSO-valid speculative computations can be reordered to reach a computa-
tion of the semantics with write-buffers.

Lemma 4.42. Let dγe : C
∗−→ C ′ be a quasi-speculative computation of the

merge-calculus corresponding to a DPSO-valid speculative computation γ of the
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formalization of PSO by means of speculations, and let γ′ : C
∗−→ C ′ be a merge-

calculus computation such that for all t ∈ T id, γ|t ∝MG γ′|t. Then there is

γ′′ : C
∗−→ C ′ a purely buffered computation of the merge-calculus such that for

all t ∈ T id, γ′|t ∝MG γ′′|t.

Proof. The proof is by induction on the summation of reorderings needed to
reach γ[t] from γ′|t for every t. In the base case all projections are normal,
and thus the computation corresponds to a computation of the calculus with
write buffers. We simply apply the previous lemma (4.41) in the induction
case and conclude by the induction hypothesis. Notice as well that the validity
condition guarantees that rdop,v actions are actually allowed and moreover obtain
the correct value from the buffers.

And we can finally prove that DPSO-valid computations in the speculative
semantics of PSO correspond to computations of the semantics of PSO with
write-buffers.

Theorem 4.43 (PSO Speculations are Write Buffering). Given γ : C
∗−→ C ′

a DPSO-valid speculative computation of the formalization of PSO with spec-
ulations. There exists a purely buffered computation of the merge-calculus
γ′′ : C

∗−→ C such that for all t ∈ T id then γ|t ∝MG γ′′|t = γ[t]. And in
particular γ′′ is a computation of the calculus with buffers.

Proof. The proof is simple consequence of Remark 4.37 and Lemma 4.42.

Interestingly, the formalization by means of speculations resembles signifi-
cantly to the formal description of the memory models provided in the Appendix
D of Sparc’s specification [SPARC, 1994]. However, there are some major differ-
ences, that are mainly induced by the fact that their formalization is axiomatic,
and thus concepts like data and control dependencies are hard to formulate.
The axiomatic specification provided by Sparc requires the existence of a total
order among the events of the computation that bears some resemblance with
the computations we obtain operationally by our semantics of speculations.

Then, an interesting consequence of our theorem is that it provides a for-
malization to the informal claim in the Sparc specification [SPARC, 1994] that
states:

The distinction between local and remote stores permits use of store-
buffers, which are explicitly supported in all SPARC-V9 memory
models.

To the best of our knowledge there is no previous proof that justifies that the
axiomatic formalization in the Sparc document guarantees that behaviors ap-
pearing in write buffering architectures are allowed. Our speculative formal-
ization, which as we said above, is intuitively easy to relate to the axiomatic
formalization of Sparc, can be proved to allow the behaviors induced by write
buffering. We consider that providing such proofs is an important advantage
enabled by the use of operational techniques.

4.6 Conclusion

We conclude this chapter by recalling the principal contributions. The main
contributions are the formalizations of the relaxed memory models of the Sparc
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architecture [SPARC, 1994] in an operational way. In particular, these for-
malizations serve both, as a faithful semantics for working with those memory
models, and as an exercise to prove the flexibility of the frameworks presented
in Chapters 2 and 3 in formalizing existing relaxed memory models.

Two of the relaxed memory models of Sparc, namely TSO and PSO, are
formalized by means of the framework of write buffers of Chapter 2. Actually,
the only modifications, other than the syntax, needed to render the framework of
Chapter 2 suitable for TSO and PSO are: to disallow thread creation, adopting
a static thread system, with a single write buffer for each processor (which
greatly simplifies the buffer update mechanism); and for the particular case of
TSO, disabling the possibility of updating buffers in an order different from that
in which they are filled, this is simply done by considering the buffer as a single
queue of writes (for all references).

In fact, if we consider the syntax of Chapter 2 with the modifications required
to model TSO, that is, static thread systems and no reordering of writes in the
buffers, we get a model that is almost identical to that presented in [Owens
et al., 2009; Sewell et al., 2010] (except for the syntax, of course). However,
since for Sparc we have to consider a lower level syntax, we need to add new
rules for the handling of barriers and the compare-and-swap constructs of that
architecture. The rules we adopt for barriers are minimal, in the sense that a
certain type of barrier enforces ordering constraints only on events of the kind
required, unlike the lock construct of Chapter 2.

By means of the speculative framework of Chapter 3 we are able to formalize
the three memory models of Sparc. The formalization of these models requires
a careful instantiation of the validity condition, that has to capture the exact
behaviors allowed by write-buffering architectures. In addition to being able to
model the RMO memory model, which is not suitable for the framework of write
buffers of Chapter 2, the operational formalization we provide for these memory
models, by means of speculations, resembles the axiomatic formalization of the
original specification of Sparc. This enables comparing these two formalizations,
which we plan to do in future research.

Finally, the main result of this chapter is the proof of the coincidence of
the formalizations of PSO and TSO with the write buffering framework on one
side, and the speculative framework on the other. This result provides support
to the claim that the Sparc memory models allow write buffering. Moreover, it
provides a proof that, to some extent, the framework of speculative computation
is more general than the one of write buffering.
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Conclusion

The goal of this thesis was, as the title indicates, the development of opera-
tional semantics for relaxed memory models, and more generally, relaxed exe-
cution models. To that end we provided two general frameworks that can be
instantiated to obtain operational characterizations of realistic memory models.
These frameworks capture a vast set of execution relaxations that are common
to existing relaxed memory models.

Our first framework, in Chapter 2, is based on the notion of write buffers.
This optimizing technique is of paramount importance for the performance of
programs, and therefore has been widely adopted in many multiprocessor ar-
chitectures like [Intel Corporation, 2007; AMD, 2010; SPARC, 1994] just to
mention a few. From a semantic point of view the inclusion of write buffers
implies many relaxations with respect to the interleaving semantics. If we con-
sider the relaxations allowed by our formalization of write buffers, according
to the terminology of [Adve and Gharachorloo, 1996], we see that it enables
the reordering of a write followed (in the program text) by a read on a dif-
ferent memory location, denoted (W→ R), the reordering of a write followed
by another write on a different memory location, (W→W), and it permits a
processor to see it “own writes early”.

From the point of view of the formalization technique, the fact that our
semantics is operational, and that computations can be directly generated con-
sidering only the syntax of the program, turns to be invaluable. The standard
concepts of data dependencies and control dependencies, are directly extracted,
or observed, from the generated computations, rather than being posed a priori
as it is the case with axiomatic formalization of memory models. This is a major
advantage of our approach. Moreover, we can use standard “true concurrency”
techniques, like the equivalence by permutations of [Berry and Lévy, 1979] that
is at the core of our proof that the fundamental property of relaxed memory
models [Saraswat et al., 2007] holds for the semantics we consider.

However, the framework of Chapter 2 does not allow all possible execution
relaxations. In particular, the reordering of reads with respect to a subsequent
memory access is not considered, which motivates the framework of Chapter 3.

In Chapter 3 we propose an operational framework for the characterization
of speculative computation. In this setting we capture the behaviors induced
by several speculative techniques such as instruction level parallelism [Hennessy
and Patterson, 1996; Fisher, 1981] and branch prediction [Smith, 1981] among
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many more. In fact, these speculative techniques lead to behaviors similar to
those commonly found in the relaxed memory models area, and hence, our for-
malization enables the description of relaxed memory models as well. Although
the framework of Chapter 3 is very general, not all relaxed consistency models
can be formalized by means of speculations. In particular, the model assumes a
single global store, to which all writes are eventually updated. Models such as
Release Consistency Gharachorloo et al. [1990] go beyond this assumption, and
thus cannot be modeled by our framework.

One of the key contributions of Chapter 3 is the definition of the validity
property, which characterizes the notion of correct speculative computations,
which is in general implicit in the literature of speculative computations.

In terms of memory model relaxations, the speculative semantics we develop
allows the reordering of a write followed by a read on a different memory location
(W→ R), or a write followed by another write (W→W) on a different mem-
ory location, and the the reading of “own writes early”; all relaxations allowed
by the formalization of Chapter 2. Furthermore, the speculative framework al-
lows the reordering of a read followed by another read (R→ R) regardless of
the locations involved, and the reordering of a read with respect to a subse-
quent write on a different location (R→W). These two last relaxations where
not permitted in the framework of write buffers. We can see then, that the
framework of speculations is more general than the one with write buffers.

Regarding the programming language, we considered in Chapter 3 two differ-
ent synchronization disciplines (or synchronization models according to [Adve
and Hill, 1990]) that use different syntax. The first language supports high-
level locks to guarantee mutual exclusion. The second language, which is at a
lower level, provides only barriers and a simple compare-and-swap construct.
For both of these languages we identify robustness properties that guarantee
that speculative computations of robust programs exhibit sequentially consis-
tent behaviors.

Finally, in Chapter 4 we exercise the frameworks of Chapters 2 and 3 by
instantiating them to deal with the Sparc family of memory models [SPARC,
1994]. The TSO and PSO variations of Sparc can be easily encoded in the
framework of write buffers, and all the Sparc memory models can be encoded
with the framework of speculative computations. Interestingly, having formal-
izations of TSO and PSO in both frameworks allows for their comparison. The
main result of Chapter 4 is a correspondence result between these two formal-
izations. In particular, our proof of correspondence provides support to the
claim, to be found in the Sparc architecture specification [SPARC, 1994], that
the Sparc family of memory models supports write buffering.

5.1 Future Prospects

Some rather immediate research directions are considering the speculative
framework of Chapter 3 with “stricter” semantics. We conjecture that disal-
lowing the speculation of write events within the branch of a conditional con-
struct suffices to ensure that checking whether a program is SDRF can be done
simply by considering the sequentially consistent computations of the program
(cf. the DRF guarantee). However, this restriction applies only to a high-level
language, since the scope of the branch of a conditional construct might not be
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obvious in a lower-level language. Moreover, we conjecture that if we further
restrict the semantics of locks by disallowing instructions past a lock construct
to be speculated (as discussed in Chapter 3) the DRF guarantee holds for this
speculative semantics.

Another research directions that we plan to pursue is the formal comparison
of our operational semantics with axiomatic ones like [Alglave et al., 2010] for
example. To that end we could follow the approach of [Boudol and Castellani,
1994]. We think that “extracting” from the computations generated by our spec-
ulative framework the events and orders required to instantiate the definition
of [Alglave et al., 2010; Sarkar et al., 2009], and finding a speculative compu-
tation that satisfies each valid instantiation of that definition should enable a
correspondence result between these approaches.

All of the results presented in this thesis focus mainly on the semantical
aspects of relaxed memory models, and leave the optimization concerns apart.
In fact we attempt to explain in an operational way the behaviors of relaxed
memory models rather than considering program transformations. A question
to study is to which extent common compiler optimizations are sound with re-
spect to our semantics. One can find inspiration for this research in the work
of Ševč́ık [2009]. A different angle on the same subject is to identify how the
speculative framework could (or should) be adapted to capture standard (de-
sirable) compiler optimizations. Perhaps, considering sound optimizations for
the subset of programs satisfying our robustness properties (for both languages)
could suggest different robustness properties or novel optimizations. One can
think of techniques such as lock elision [Rajwar and Goodman, 2001] for the
language with locks, or minimal placement of barriers [Shasha and Snir, 1988]
for the language with barriers. We think this research area is vast, and hav-
ing an operational semantics to explain some optimizations is just a first step
towards a theory of safe parallel program transformations.

Other possible research directions include the verification and analysis
(which we have already started exploring) of programs running on relaxed mem-
ory models. In particular, verifying the correctness of parallel algorithms and
data structures running on relaxed memory models requires new techniques for
the cases in which the DRF guarantee turns to be insufficient. Relaxed mem-
ory model aware program logics, or other verification techniques are interesting
candidates for future work. We think that having an operational semantics will
prove to be of great help towards these goals.

Of course, the specialization of the framework we considered here to fur-
ther architectures and memory models is part of our future research directions.
Maybe describing with more precision the machine architectures could prove of
interest for the specification and the use of multiprocessor architectures.

Finally, this thesis is based on the idea that having operational descriptions of
relaxed memory models could shed some light on the nature of relaxed memory
models and improve their understanding. We plan to pursue this line of research
by considering the interaction of programming languages and relaxed memory
models to provide support for safe parallelism, a subject that desperately needs
a solution [Adve and Boehm, 2010].
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Appendix A

Examples

This Appendix contains a list of the main examples discussed in this thesis and
the page numbers in which the examples are discussed.

Dekker’s mutual exclusion algorithm appears in pages 3 and 22.

Example 1.1 (Dekker).

flag0 := false ; ‖ flag1 := false ;
if flag1 then ‖ if flag0 then

critical section 0 ; ‖ critical section 1 ;

The Safe Publication example appears in pages 9, 23 and 87.

Example 1.6 (Safe Publication).

data := 1; ‖ while not flag do skip;
flag := true ‖ r := data

The following example illustrates the effects of the reordering of reads with
respect to previous writes. It appears in pages 5, 25, 99 and 110.

Example 1.2 (Write Read Reordering).[
p := 1 ;
r0 := (!q)

]
‖
[
q := 1 ;
r1 := (!p)

]
The following example is similar to the previous one, where barriers are

added to prevent the reordering of writes with subsequent reads. It appears in
page 111.

Example 4.1. p := 1 ;
〈wr|rd〉 ;
r0 := (!q)

 ‖

q := 1 ;
〈wr|rd〉 ;
r1 := (!p)


The example below puts in evidence the reordering of two write instructions

on different references (assuming that reads cannot be reordered). It appears
in pages 5, 25, 43, 91, 99, and 109.
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Example 1.3 (Write Write Reordering).[
p := 1 ;
q := 1

]
‖
[
r0 := (!q) ;
r1 := (!p)

]
The following example is similar to the previous one where barriers have

been added in the writing thread. Nonsequentially consistent behaviors are only
possible if the read actions on the left thread can be reordered. The example
appears in pages 54, 99, 109, and 117.

Example 2.40 (Read Read Reordering: Barrier). p := 1 ;
〈wr|wr〉 ;
q := 1

 ‖
[
r0 := (!q) ;
r1 := (!p)

]

This example is used to illustrate the reordering of a read with respect to a
subsequent write on a different memory location. It appears in pages 5, 78, 99
and 116.

Example 1.4 (Read Write Reordering).[
r0 := (!q) ;
p := 1

]
‖
[
r1 := (!p) ;
q := 1

]
The following program is used to illustrate the behaviors produced by write

buffering that cannot simply be explained by the reordering of actions. It ap-
pears in pages 25 and 118.

Example 2.3 (Read Own Write Early). p := 1 ;
r0 := (!p) ;
r1 := (!q)

 ‖

 q := 1 ;
r2 := (!q) ;
r3 := (!p)


The example that follows is similar to the previous and illustrates that data

dependencies and 〈rd|rd〉 barriers are not enough to recover sequential consis-
tency in the presence of write buffers. It appears in pages 76 and 118.

Example 3.19 (Read Own Write Early: Barrier).
p := 1 ;
r0 := (!p) ;
〈rd|rd〉 ;
r1 := (!q)

 ‖


q := 1 ;
r2 := (!q) ;
〈rd|rd〉 ;
r3 := (!p)


This code corresponds to a common example allowed by many memory mod-

els. It appears in pages 44 and 78.

Example 2.24 (Independent Reads Independent Writes).[
p := 1

]
‖
[
q := 1

]
‖
[
r0 := (!p) ;
r1 := (!q)

]
‖
[
r2 := (!q) ;
r3 := (!p)

]
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We use the following example to show that the speculative semantics of
Chapter 3 does not satisfy the DRF guarantee. It appears in page 79.

Example 3.21 (Thin Air Values).[
p := ff ;
(if ! p then q := tt else ())

] ∥∥ [ q := ff ;
(if ! q then p := tt else ())

]
The following example appears in page 119 to illustrate the need of a global

validity condition for the speculative semantics of the models in Chapter 4.

Example 4.7.  p := 1 ;
r0 := (!q) ;
r1 := (!p)

 ‖
[

let x = (!p) in
(

q := x
) ]
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