
VERIFYING IMPLEMENTATIONS
OF CRDTS

Recommended Reading

http://bit.ly/1PBC4zc

Recommended Reading

http://bit.ly/1PBC4zc http://bit.ly/2nM96mT

Disclaimer:
Slides kindly provided by Marc Shapiro

(all errors are mine)

origin
replica

client

replica

replica

Operation

‣ u: state ⤻ (retval, (state ⤻ state))
‣ Prepare (@origin) u?; deliver u!
‣ Read one, write all (ROWA)
‣ Deferred-update replication (DUR)

u

v? v!

origin
replica

client

replica

replica

Operation

‣ u: state ⤻ (retval, (state ⤻ state))
‣ Prepare (@origin) u?; deliver u!
‣ Read one, write all (ROWA)
‣ Deferred-update replication (DUR)

u?

u

v? v!

origin
replica

client

replica

replica

Operation

‣ u: state ⤻ (retval, (state ⤻ state))
‣ Prepare (@origin) u?; deliver u!
‣ Read one, write all (ROWA)
‣ Deferred-update replication (DUR)

u?

u

uPRE

v? v!

origin
replica

client

replica

replica

Operation

‣ u: state ⤻ (retval, (state ⤻ state))
‣ Prepare (@origin) u?; deliver u!
‣ Read one, write all (ROWA)
‣ Deferred-update replication (DUR)

u!

u!

u?

u

uPRE

u!v? v!

Concurrency

‣ Concurrent, Multi-master
‣ Strong: total order, identical state
‣ Weak: concurrent, interleaving, no global state

u!

u!

u?

u

u!

Concurrency

‣ Concurrent, Multi-master
‣ Strong: total order, identical state
‣ Weak: concurrent, interleaving, no global state

u!

u!

u?

u

v?

v!

v!

v! u!

Concurrency

‣ Concurrent, Multi-master
‣ Strong: total order, identical state
‣ Weak: concurrent, interleaving, no global state

Convergence?
Safety?

u!

u!

u?

u

v?

v!

v!

v! u!

Anomalies of concurrent updates

‣ Bank:
‣ σinit = 100€
‣ Alice: credit(20) = { σ ≔ 120 }
‣ Bob: debit (60) = { σ ≔ 40 }
‣ σ = ???

Anomalies of concurrent updates

‣ File system:
‣ σinit = “/“
‣ Alice: mkdir (“/foo”); mkdir (“/foo/bar”)
‣ Bob: receives mkdir (“/foo/bar”)
‣ σ = ???

‣ Bank:
‣ σinit = 100€
‣ Alice: credit(20) = { σ ≔ 120 }
‣ Bob: debit (60) = { σ ≔ 40 }
‣ σ = ???

Eventual Consistency

u

Bob

Alice @home

Alice @phone

Don’t show
photos to Bob

‣ access (Bob, photo) ⟹ ACL (Bob, photo)

‣ v observed effects of u ⟹ v should be delivered after u
‣ Available: doesn’t slow down sender

Eventual Consistency

u

u

uBob

Alice @home

Alice @phone

Don’t show
photos to Bob

‣ access (Bob, photo) ⟹ ACL (Bob, photo)

‣ v observed effects of u ⟹ v should be delivered after u
‣ Available: doesn’t slow down sender

Eventual Consistency

u

u

uBob

Alice @home

Alice @phone

‣ access (Bob, photo) ⟹ ACL (Bob, photo)

‣ v observed effects of u ⟹ v should be delivered after u
‣ Available: doesn’t slow down sender

Eventual Consistency

u

u v

v

v uBob

Alice @home

Alice @phone

post photo

‣ access (Bob, photo) ⟹ ACL (Bob, photo)

‣ v observed effects of u ⟹ v should be delivered after u
‣ Available: doesn’t slow down sender

Eventual Consistency

u

u v

v

v uBob

Alice @home

Alice @phone

Bob sees
photo

‣ access (Bob, photo) ⟹ ACL (Bob, photo)

‣ v observed effects of u ⟹ v should be delivered after u
‣ Available: doesn’t slow down sender

Eventual Consistency

u

u v

v

v uBob

Alice @home

Alice @phone

‣ access (Bob, photo) ⟹ ACL (Bob, photo)

‣ v observed effects of u ⟹ v should be delivered after u
‣ Available: doesn’t slow down sender

Causal-order delivery(1) Causal consistency

u

u v

v

vuBob

Alice @home

Alice @phone

‣ access (Bob, photo) ⟹ ACL (Bob, photo)

‣ v observed effects of u ⟹ v should be delivered after u
‣ Available: doesn’t slow down sender

(2) Conflict-free Replicated
Data Types (CRDTs)

‣ Data type
‣ Encapsulates state

‣ Replicated
‣ At multiple nodes

‣ Available
‣ Update my replica without coordination
‣ Convergence guaranteed by design
‣ Decentralized, peer-to-peer

Commute ⟹ Converge

‣ Bank account:
‣ credit(amt)! = { local_balance += amt }
‣ debit(amt)! = { local_balance –= amt }
‣ interest()! = { local_balance += origin_balance*.05 }

‣ File system:
‣ write(f)! = { local_f ⊔ f }

CRDT design concept

‣ Backward-compatible with sequential datatype
‣ Commute ⟹ concurrent is same
‣ add(e); rm(f) = rm(f); add(e) ≜ add(e) || rm (f)

‣ Otherwise, concurrency semantics
‣ Example: add(e) || rm (e)
‣ Deterministic, similar to sequential
‣ ≈ rm(e);add(e) or ≈ add(e); rm(e)

‣ Merge, don’t lose updates
‣ Result doesn't depend on order received
‣ Stable preconditions

CRDT design concept

‣ Backward-compatible with sequential datatype
‣ Commute ⟹ concurrent is same
‣ add(e); rm(f) = rm(f); add(e) ≜ add(e) || rm (f)

‣ Otherwise, concurrency semantics
‣ Example: add(e) || rm (e)
‣ Deterministic, similar to sequential
‣ ≈ rm(e);add(e) or ≈ add(e); rm(e)

‣ Merge, don’t lose updates
‣ Result doesn't depend on order received
‣ Stable preconditions

CRDT design concept

‣ Backward-compatible with sequential datatype
‣ Commute ⟹ concurrent is same
‣ add(e); rm(f) = rm(f); add(e) ≜ add(e) || rm (f)

‣ Otherwise, concurrency semantics
‣ Example: add(e) || rm (e)
‣ Deterministic, similar to sequential
‣ ≈ rm(e);add(e) or ≈ add(e); rm(e)

‣ Merge, don’t lose updates
‣ Result doesn't depend on order received
‣ Stable preconditions

Application invariants

‣ South ⨄ Boat ⨄ North = { sheep, dog, wolf }
‣ carryNorth(S) ⟹ 1 ≤ |S| ≤ 2

‣ carrySouth(S) ⟹ 1 ≤ |S| ≤ 2

‣ ∀S ∈ {South, Boat, North} : sheep ∈ S ∧ wolf ∈ S ⟹ dog ∈ S
‣ Hard to tease invariants out
‣ Silent invariants

Seq. consistency examples

‣ Bank account
‣ deposit(amt), withdraw(amt), accrueInterest(amt)
‣ Invariant: “balance ≥ 0”
‣ { amt ≤ balance ∧ Inv } withdraw(amt) { Inv }

Seq. consistency examples

‣ Bank account
‣ deposit(amt), withdraw(amt), accrueInterest(amt)
‣ Invariant: “balance ≥ 0”
‣ { amt ≤ balance ∧ Inv } withdraw(amt) { Inv }

‣ File system
‣ mkdir, rmdir, create, write, rm, ls, etc.
‣ Invariant: Tree
‣ { Tree ∧ ¬ x/…/y } mv(x,y) { Tree }

Just-Right Consistency

‣ CRDT geo-replicated database
‣ Lots of internal parallelism
‣ Transactional, causal consistency by default

‣ Specification of application updates, invariant
‣ CISE: do all state transitions preserve the invariant?
‣ If not, fix: adjust
‣ either specification
‣ or synchronisation

‣ Repeat until safe
‣ App / synch co-design: Minimal synchronisation

Asynchronous, replicated updates
‣ State σ
‣ Invariant I
‣ Prepare: read one, generate effector
‣ Update all, deferred: deliver effector

Converge? Invariant OK?

σ: I

σ: I

Asynchronous, replicated updates
‣ State σ
‣ Invariant I
‣ Prepare: read one, generate effector
‣ Update all, deferred: deliver effector

Converge? Invariant OK?

σ: I
u!

u!

u?

σ: I

Asynchronous, replicated updates
‣ State σ
‣ Invariant I
‣ Prepare: read one, generate effector
‣ Update all, deferred: deliver effector

Converge? Invariant OK?

σ: I
u!

u!

u?

σ: I v!

v!

Asynchronous, replicated updates
‣ State σ
‣ Invariant I
‣ Prepare: read one, generate effector
‣ Update all, deferred: deliver effector

Converge? Invariant OK?

σ: I
u!

u!

u?

σ: I v!

v!

Asynchronous, replicated updates
‣ State σ
‣ Invariant I
‣ Prepare: read one, generate effector
‣ Update all, deferred: deliver effector

Converge? Invariant OK?

σ: I
u!

u!

u?

σ: I v!

v!

I ?

I ?

Asynchronous, replicated updates
‣ State σ
‣ Invariant I
‣ Prepare: read one, generate effector
‣ Update all, deferred: deliver effector

Converge? Invariant OK?

σ: I
u!

u!

u?

σ: I v!

v!

I ?

I ?100 € ≥ 0

100 € ≥ 0

Asynchronous, replicated updates
‣ State σ
‣ Invariant I
‣ Prepare: read one, generate effector
‣ Update all, deferred: deliver effector

Converge? Invariant OK?

σ: I
u!

u!

u?

σ: I v!

v!

I ?

I ?100 € ≥ 0

100 € ≥ 0

accrue 5% +5 €

+5 €

Asynchronous, replicated updates
‣ State σ
‣ Invariant I
‣ Prepare: read one, generate effector
‣ Update all, deferred: deliver effector

Converge? Invariant OK?

σ: I
u!

u!

u?

σ: I v!

v!

I ?

I ?100 € ≥ 0

100 € ≥ 0

accrue 5% +5 €

+5 €

withdraw(100)

–100

–100

Asynchronous, replicated updates
‣ State σ
‣ Invariant I
‣ Prepare: read one, generate effector
‣ Update all, deferred: deliver effector

Converge? Invariant OK?

σ: I
u!

u!

u?

σ: I v!

v!

I ?

I ?100 € ≥ 0

100 € ≥ 0

accrue 5% +5 €

+5 €

withdraw(100)

5 € ≥ 0

5 € ≥ 0
–100

–100

CISE Rules
1: Sequential correctness
‣ Any single operation maintains the invariant

2: Convergence
‣ Concurrent effectors commute

3: Precondition Stability
‣ Every precondition is stable under every

concurrent operation
If satisfied: invariant is guaranteed

σ: I
u!

u!

u?

σ: I v!

v!

I ?

I ?

Simple example: bank
account

‣ Operations: deposit(amount), withdraw(amount)
‣ Invariant: balance ≥ 0
‣ Start with weak specification
‣ Rule 1 ⟶ strengthen precondition for withdraw
‣ Rule 2: OK
‣ Rule 3 ⟶ withdraw || withdraw unsafe
‣ fixed with concurrency control

CISE Rules
1: Sequential correctness
‣ Any single operation maintains the invariant

2: Convergence
‣ Concurrent effectors commute

3: Precondition Stability
‣ Every precondition is stable under every

concurrent operation
If satisfied: invariant is guaranteed

u!

u!

u?
I

I
uPRE

uPRE

σ: I

σ: I

CISE Rules
1: Sequential correctness
‣ Any single operation maintains the invariant

2: Convergence
‣ Concurrent effectors commute

3: Precondition Stability
‣ Every precondition is stable under every

concurrent operation
If satisfied: invariant is guaranteed

u!

u!

u?
I

I
uPRE

uPRE

σ: I

σ: I

CISE Rules
1: Sequential correctness
‣ Any single operation maintains the invariant

2: Convergence
‣ Concurrent effectors commute

3: Precondition Stability
‣ Every precondition is stable under every

concurrent operation
If satisfied: invariant is guaranteed

u!

u!

u?
I

I
uPRE

uPRE

σ: I

σ: I

CISE Rules
1: Sequential correctness
‣ Any single operation maintains the invariant

2: Convergence
‣ Concurrent effectors commute

3: Precondition Stability
‣ Every precondition is stable under every

concurrent operation
If satisfied: invariant is guaranteed

u!

u!

u?

v!

v!σ: I

σ: I

CISE Rules
1: Sequential correctness
‣ Any single operation maintains the invariant

2: Convergence
‣ Concurrent effectors commute

3: Precondition Stability
‣ Every precondition is stable under every

concurrent operation
If satisfied: invariant is guaranteed

u!

u!

u?

uPRE
σ: I

σ: I

CISE Rules
1: Sequential correctness
‣ Any single operation maintains the invariant

2: Convergence
‣ Concurrent effectors commute

3: Precondition Stability
‣ Every precondition is stable under every

concurrent operation
If satisfied: invariant is guaranteed

u!

u!

u?

uPRE

I
σ: I

σ: I

CISE Rules
1: Sequential correctness
‣ Any single operation maintains the invariant

2: Convergence
‣ Concurrent effectors commute

3: Precondition Stability
‣ Every precondition is stable under every

concurrent operation
If satisfied: invariant is guaranteed

u!

u!

u?

uPRE

I
v!

σ: I

σ: I

CISE Rules
1: Sequential correctness
‣ Any single operation maintains the invariant

2: Convergence
‣ Concurrent effectors commute

3: Precondition Stability
‣ Every precondition is stable under every

concurrent operation
If satisfied: invariant is guaranteed

u!

u!

u?

uPRE

uPRE

?

I
v!

σ: I

σ: I

CISE Rules
1: Sequential correctness
‣ Any single operation maintains the invariant

2: Convergence
‣ Concurrent effectors commute

3: Precondition Stability
‣ Every precondition is stable under every

concurrent operation
If satisfied: invariant is guaranteed

u!

u!

u?

uPRE

uPRE

?

I
v!

σ: I

σ: I

CISE Rules
1: Sequential correctness
‣ Any single operation maintains the invariant

2: Convergence
‣ Concurrent effectors commute

3: Precondition Stability
‣ Every precondition is stable under every

concurrent operation
If satisfied: invariant is guaranteed

u!

u!

u?

uPRE

uPRE

?

I
v!

σ: I

σ: I

CISE Rules
1: Sequential correctness
‣ Any single operation maintains the invariant

2: Convergence
‣ Concurrent effectors commute

3: Precondition Stability
‣ Every precondition is stable under every

concurrent operation
If satisfied: invariant is guaranteed

balance = 1

balance −＝ 1

withdraw(1)

withdrawPRE

{1 ≤ 1}

balance = 1
balance −＝ 1

CISE Rules
1: Sequential correctness
‣ Any single operation maintains the invariant

2: Convergence
‣ Concurrent effectors commute

3: Precondition Stability
‣ Every precondition is stable under every

concurrent operation
If satisfied: invariant is guaranteed

balance = 1

balance −＝ 1

withdraw(1)

withdrawPRE

{1 ≤ 1}

balance = 1
balance −＝ 1

CISE Rules
1: Sequential correctness
‣ Any single operation maintains the invariant

2: Convergence
‣ Concurrent effectors commute

3: Precondition Stability
‣ Every precondition is stable under every

concurrent operation
If satisfied: invariant is guaranteed

balance = 1

balance −＝ 1

withdraw(1)

withdrawPRE

{1 ≤ 1}

balance = 1
balance −＝ 1

CISE Rules
1: Sequential correctness
‣ Any single operation maintains the invariant

2: Convergence
‣ Concurrent effectors commute

3: Precondition Stability
‣ Every precondition is stable under every

concurrent operation
If satisfied: invariant is guaranteed

balance = 1

balance −＝ 1

withdraw(1)

withdrawPRE

{1 ≤ 1}

balance = 1
balance −＝ 1balance −＝ 1

debit(1)

CISE Rules
1: Sequential correctness
‣ Any single operation maintains the invariant

2: Convergence
‣ Concurrent effectors commute

3: Precondition Stability
‣ Every precondition is stable under every

concurrent operation
If satisfied: invariant is guaranteed

balance = 1

balance −＝ 1

withdraw(1)

withdrawPRE

{1 ≤ 1}

withdrawPRE

{ 1 ≤ 0 }
?

balance = 1
balance −＝ 1balance −＝ 1

debit(1)

CISE Rules
1: Sequential correctness
‣ Any single operation maintains the invariant

2: Convergence
‣ Concurrent effectors commute

3: Precondition Stability
‣ Every precondition is stable under every

concurrent operation
If satisfied: invariant is guaranteed

balance = 1

balance −＝ 1

withdraw(1)

withdrawPRE

{1 ≤ 1}

withdrawPRE

{ 1 ≤ 0 }
?

balance = 1
balance −＝ 1balance −＝ 1

debit(1)

balance = –1

CISE Rules
1: Sequential correctness
‣ Any single operation maintains the invariant

2: Convergence
‣ Concurrent effectors commute

3: Precondition Stability
‣ Every precondition is stable under every

concurrent operation
If satisfied: invariant is guaranteed

balance = 1

balance −＝ 1

withdraw(1)

withdrawPRE

{1 ≤ 1}

withdrawPRE

{ 1 ≤ 0 }
?

balance = 1
balance −＝ 1balance −＝ 1

debit(1)

Fix:
concurrency

control

balance = –1

‣ Operations: mkdir, rmdir, mv, write, etc.
‣ Invariant: Tree
‣ Rule 1 ⟶ precondition on mv
‣ “May not move node under self”
‣ Rule 2 ⟶ Use CRDTs for write || write

‣ Rule 3 ⟶ mv || mv precondition unstable

Advanced example: file system

Advanced example: file system

‣ Operations: mkdir, rmdir, mv, update, etc.
‣ Invariant: Tree
‣ Rule 1 ⟶ precondition on mv
‣ “May not move node under self”
‣ Rule 2 ⟶ Use CRDTs for update || update

‣ Rule 3 ⟶ mv || mv precondition unstable

CISE Rules
1: Sequential correctness
‣ Any single operation maintains the invariant

2: Convergence
‣ Concurrent effectors commute

3: Precondition Stability
‣ Every precondition is stable under every concurrent operation

If satisfied: invariant is guaranteed

mv /B, /AmvPRE

{¬B/.../A}
root

BA

CISE Rules
1: Sequential correctness
‣ Any single operation maintains the invariant

2: Convergence
‣ Concurrent effectors commute

3: Precondition Stability
‣ Every precondition is stable under every concurrent operation

If satisfied: invariant is guaranteed

mv /B, /AmvPRE

{¬B/.../A}
root

BA

root

BA

CISE Rules
1: Sequential correctness
‣ Any single operation maintains the invariant

2: Convergence
‣ Concurrent effectors commute

3: Precondition Stability
‣ Every precondition is stable under every concurrent operation

If satisfied: invariant is guaranteed

mv /B, /AmvPRE

{¬B/.../A}

mv /A, /B

root

BA

root

BA

CISE Rules
1: Sequential correctness
‣ Any single operation maintains the invariant

2: Convergence
‣ Concurrent effectors commute

3: Precondition Stability
‣ Every precondition is stable under every concurrent operation

If satisfied: invariant is guaranteed

mv /B, /AmvPRE

{¬B/.../A}

mv /A, /B

root

BA

root

BA

root

BA

CISE Rules
1: Sequential correctness
‣ Any single operation maintains the invariant

2: Convergence
‣ Concurrent effectors commute

3: Precondition Stability
‣ Every precondition is stable under every concurrent operation

If satisfied: invariant is guaranteed

mv /B, /AmvPRE

{¬B/.../A}

mvPRE

{¬B/.../A}
?

mv /A, /B

root

BA

root

BA

root

BA

CISE Rules
1: Sequential correctness
‣ Any single operation maintains the invariant

2: Convergence
‣ Concurrent effectors commute

3: Precondition Stability
‣ Every precondition is stable under every concurrent operation

If satisfied: invariant is guaranteed

mv /B, /AmvPRE

{¬B/.../A}

mvPRE

{¬B/.../A}
?

mv /A, /B

root

BA

root

BA

root

BA

root

BA

CISE Rules
1: Sequential correctness
‣ Any single operation maintains the invariant

2: Convergence
‣ Concurrent effectors commute

3: Precondition Stability
‣ Every precondition is stable under every concurrent operation

If satisfied: invariant is guaranteed

mv /B, /AmvPRE

{¬B/.../A}

mvPRE

{¬B/.../A}
?

mv /A, /B

Fix: concurrency
control

root

BA

root

BA

root

BA

CISE Rules
1: Sequential correctness
‣ Any single operation maintains the invariant

2: Convergence
‣ Concurrent effectors commute

3: Precondition Stability
‣ Every precondition is stable under every concurrent operation

If satisfied: invariant is guaranteed

mv /B, /AmvPRE

{¬B/.../A}

mvPRE

{¬B/.../A}
?

mv /A, /B

root

BA

root

BA

root

BA

You can have
your cake and

eat it too

CISE: The tool

Version of the tool (CEC) by Sreeja Nair

https://github.com/SyncFree/CISE

Related Problems

‣Going beyond single invariants
‣ Verify Pre/Post conditions of client programs
‣State-Based implementations of CRDTs
‣Composition of CRDTs
‣… and much more :-)

The END

