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Abstract

Large-scale distributed systems often rely on replicated databases
that allow a programmer to request different data consistency guar-
antees for different operations, and thereby control their perfor-
mance. Using such databases 18 far from trivial: requesting stronger
consistency in to0 many places may hurt performance, and request-
ing it in OO few places may violate correctness. To help program-
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use. Ideally, we would like replicated databases 10 provide strong
consistency, 1.., 10 behave as if a single centralised node handles
all operations. However, achieving this ideal usually requires Syn-
chronisation among replicas, which slows down the database and
even makes it unavailable if network connections between replicas
fail (2, 24].

For this reason, modern replicated databases often eschew syn-
chronisation completely; such databases ar¢ commonly dubbed
eventually consistent (47). In these databases, & replica performs
an operation requested by a client locally without any synchronisa-
tion with other replicas and immediately returns 10 the client; the
effect of the operation i propagated to the other replicas only even-
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» Concurrent, Multi-master
» StrongQ: total order, identical state
» Weak: concurrent, interleaving, no global state
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Concurrency

Convergence?
Safety?

» Concurrent, Multi-master
» StrongQ: total order, identical state
» Weak: concurrent, interleaving, no global state



Anomalies of concurrent updates

» Bank:
» Oinit = 100€
» Alice: credit(20) ={ o= 120}

» Bob: debit (60) =1{ o =40 }
p O = 77?7




Anomalies of concurrent updates

» Bank: » File system:
» Oinit = 100€ ) Oinit = /"
» Alice: credit(20) ={ o= 120} » Alice: mkdir (“/foo”); mkdir (“/foo/bar”)
» Bob: debit (60) =1{ o =40 } » Bob: receives mkdir (“/foo/bar”)
) O = 777 p O =777




Eventual Consistency

Don’t show
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Alice @phone
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» access (Bob, photo) — ACL (Bob, photo)
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Eventual Consistency
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Eventual Consistency
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» Vv observed effects of t = v should be delivered after u
» Availlable: doesn’t slow down sender



Eventual Consistency

Alice @home --- 0 ---------------- 0 ------------------------------ >
|
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» access (Bob, photo) —= ACL (Bob, photo)

» Vv observed effects of t = v should be delivered after u
» Avallable: doesn’t slow down sender



(1) Causal consistency

Alice @home ----

Alice @phone

» access (Bob, photo) — ACL (Bob, photo)

» Vv observed effects of t = v should be delivered atter u
» Availlable: doesn't slow down sender



(2) Conflict-free Replicated
Data Types (CRDTs)

» Data type
» Encapsulates state

» Replicated
» At multiple nodes

» Avallable

» Update my replica without coordination
» Convergence guaranteed by design
» Decentralized, peer-to-peer



Commute = Converge

» Bank account:
» credit(amt), = { local_balance += amt }
» debit(amt), = { local_balance —= amt }
» interest(); = { local_balance += origin_balance*.05 }
» File system:
» write(f);={ local_fu f}




CRDT design concept

» Backward-compatible with sequential datatype
» Commute = concurrent is same

» add(e); rm(f) = rm(f); add(e)
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» Commute = concurrent is same

 add(e); rm(f) = rm(¥); add(e) + add(e) || rm (f



CRDT design concept

» Backward-compatible with sequential datatype

» Commute =— concurrent is same

» add(e); rm(f) = rm(f); add(e) £ add(e) || rm (f)
» Otherwise, concurrency semantics

» Example: add(e) || rm (e)

» Deterministic, similar to sequential

» ~ rm(e),add(e)or = add(e); rm(e)
» Merge, don't lose updates
» Result doesn't depend on order recelved



Application invariants

» South v Boatw North = { sheep, dog, wolf |
» carryNorth(S)— 1< |S| <2

» carrySouth(S)= 1< |S| <2

» VS e {South, Boat, North} : sheep e SA wolfe S=— dog e S

» Hard to tease invariants out
» Silent invariants



Seq. consistency examples

» Bank account
» deposit(amt), withdraw(amt), accruelnterest(amt)
» [nvariant: “balance > 0~
» { amt < balance A Inv '} withdraw(amt){ Inv }



Seq. consistency examples

» Bank account
» deposit(amt), withdraw(amt), accruelnterest(amt)
» [nvariant: “balance > 0~
» { amt < balance A Inv '} withdraw(amt){ Inv }

» File system
» mkdair, rmdir, create, write, rm, Is, etc.
» [Invariant: Tree
» { Tree A = X/.../y} mv(x,y){ Tree }



Just-Right Consistency

» CRDT geo-replicated database
» Lots of internal parallelism
» Transactional, causal consistency by default

» Specification of application updates, invariant
» CISE: do all state transitions preserve the invariant?

» If not, fix: adjust
» either specification
» Oor synchronisation

» Repeat until safe
» App / synch co-design: Minimal synchronisation
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Asynchronous, replicated updates
» State o
» |Invariant /
» Prepare: read one, generate eftector
» Update all, deterred: deliver effector
Converge”? |nvariant OK?
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Asynchronous, replicated updates
» State o
» |Invariant /
» Prepare: read one, generate eftector
» Update all, deterred: deliver effector
Converge”? |nvariant OK?



ol

CISE Rules

1: Sequential correctness
» Any single operation maintains the invariant

2. Convergence
» Concurrent effectors commute

3: Precondition Stability
» Every precondition is stable under every
concurrent operation

It satisfied: invariant is guaranteed



Simple example: bank
account

» Operations: deposit(amount), withdraw(amount)
» Invariant: balance > 0
p Start with weak specification

» Rule 1 — strengthen precondition for withdraw

» Rule 2: OK

» Rule 3 — withdraw || withdraw unsafe
» fixed with concurrency control
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CISE Rules

1: Sequential correctness
» Any single operation maintains the invariant

2. Convergence
» Concurrent effectors commute

3: Precondition Stability
» Every precondition is stable under every
concurrent operation

f satisfied: invariant is guaranteed
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2. Convergence
» Concurrent effectors commute

3: Precondition Stability
» Every precondition is stable under every
concurrent operation

f satisfied: invariant is guaranteed
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CISE Rules

1: Sequential correctness
» Any single operation maintains the invariant

2. Convergence
» Concurrent effectors commute

3: Precondition Stability
» Every precondition is stable under every
concurrent operation

f satisfied: invariant is guaranteed



;

PRE N |
ol O | —@ >

u:z

3: Precondition Stability
» Every precondition is stable under every
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3: Precondition Stability
» Every precondition is stable under every
concurrent operation
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1: Sequential correctness
» Any single operation maintains the invariant

2. Convergence
» Concurrent effectors commute

3: Precondition Stability
» Every precondition is stable under every
concurrent operation

f satisfied: invariant is guaranteed
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1: Sequential correctness
» Any single operation maintains the invariant

2. Convergence
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CISE Rules

1: Sequential correctness
» Any single operation maintains the invaria

Fix:
concurrency
control

2. Convergence
» Concurrent effectors commute

3: Precondition Stability
» Every precondition is stable under every
concurrent operation

f satisfied: invariant is guaranteed



Advanced example: file system

» Operations: mkdir, rmdir, mv, write, etc.
» Invariant: Iree

» Rule 1 — precondition on mv
“May not move node under self”

» Rule 2 — Use CRDTs for write || write

» Rule 3 — mv || mv precondition unstable



Advanced example: file system

myv

» Rule 3 — mv || mv precondition unstable



TIVPRE mv /B, IA

{~B/.../A}

VRN | O\
A B I '

3: Precondition Stability
» Every precondition Is stable under every concurrent operation
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3: Precondition Stability
» Every precondition Is stable under every concurrent operation
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3: Precondition Stability
» Every precondition Is stable under every concurrent operation



TIVPRE mv /B, /A
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3: Precondition Stability
» Every precondition Is stable under every concurrent operation
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3: Precondition Stability

» Every precondition Is stable under every concurrent operation

root

mvIA /B )




TIVPRE mv /B, /A

{~B/.../A}

mvIA /B )

FIX: concurrency
control

3: Precondition Stability
» Every precondition Is stable under every concurrent operation



TIVPRE mv /B, IA

{~B/.../A}

mvIA /B )

You can have
your cake anad
eat It too

3: Precondition Stability
» Every precondition Is stable under .very concurrent operation



CISE: The tool

Version of the tool (CEC) by Sreeja Nair


https://github.com/SyncFree/CISE

Related Problems

» Going beyond single invariants
» Verify Pre/Post conditions of client programs
p State-Based implementations of CRDTs
» Composition of CRDTs
» ... and much more :-)



The END



