VERIFYING IMPLEMENTATIONS
OF CRDTs

Recommended Reading

Zd | N R1A

A comprehensive study of
Convergent and Commutative Rephcated Data Types *|

Marc Shapiro, INRIA & LIP6, Paris, France
Nuno Prcguica, CITI, Universidade Nova de Lisboa, Portugal
Carlos Baquero; Universidade do Minho, Portugal
Marek Zawirski, INRIA & UPMC, Paris, France

Theme COM — Systemes communicants

Projet Regal

Rapport de recherche n° 7506 — J anvier 2011 ’pagos

Abstract: Eventual consistency aims to ensure that replicas of some mutable ghared
object converge without foreground synchronisation. Previous approaches to eventual con-
gistency are ad-hoc and error-prone. We study a principled approach: to base the design of
shared data types on some simple formal conditions that are gufficient to guarantee even-
tual consistency: We call these types Clonvergent OF Commutative Replicated Data Types

) + maner formalises asynchronous object replication, either state based or OpP-

h] . 1iei0n annropriate for each case. It describes
p / b I't ‘ ; both add and remove Op-
" . y B‘ 4 Z C s graphs, montonic DAGs,

and sequenceTT =~ 1t non-trivial CRDTs.

Key-words: Data replication, optimistic replication, commutative operations

Recommended Reading

Convergent and Commutative Replicated Data Types *|

tual consistency:

Marc Shapiro, INRIA g L1P6, Paris, France

Nuno Preguiga, CITI, Universidade Nova de Lisboa, Portugal

Carlos Baquero; Universidade do Minho Portugal
Marek Zawirski, INRIA & UPMC, Paris, France

Theme COM — Systemes communicants

Projet Regal

Rapport de recherche 1° 7506 — Janvier 2011 — |47 pages

Eventual consistency aims to ensure that replicas of some mutable ghared
ithout foreground synchronisation. Previous approaches to eventual con-

hoc and error-prone. We study a principled approach: to base the design of

n some simple formal conditions that are gufficient to guarantee even-
We call these types Clonvergent OF Commutative Replicated Data Types
:_naner formalises asynchronous object replication, either state based or OpP-

N i onpropriate for each case. It describes

http:// bl

-t . ‘y/1 P B< :4 Z graphs, montonic D
ZC it non-trivial CRDI5.

and sequenceT =~

Key-words:

Data

replication, optimistic replication, commutative operations

»Cause I’m Strong Enough:
Reasoning about Consistency Choices In Distributed Systems

Alexey Gotsman
IMDEA Software [nstitute, Spain

Mahsa Najafzadeh

Sorbonne Universités, Inria,

upMC Univ Paris 06, France

Abstract

Large-scale distributed systems often rely on replicated databases
that allow a programmer to request different data consistency guar-
antees for different operations, and thereby control their perfor-
mance. Using such databases 18 far from trivial: requesting stronger
consistency in to0 many places may hurt performance, and request-
ing it in OO few places may violate correctness. To help program-
for establishing
or various Oper-
the preservation

dular: it allows

mers in this task, weé propose the first proof rule

that a particular choice of consistency guarantees f

ations on a replicated database 18 enough to ensure

o . Nur rle 18 MO

Carla Ferreira

NOVA LINCS, DI, FCT,
Universidade NOVA de Lisboa, Portugal

Hongseok Yang
University of Oxford, UK

Marc Shapiro

Sorbonne Universités, Inria,
UPMC Univ Paris 06, France

use. Ideally, we would like replicated databases 10 provide strong
consistency, 1.., 10 behave as if a single centralised node handles
all operations. However, achieving this ideal usually requires Syn-
chronisation among replicas, which slows down the database and
even makes it unavailable if network connections between replicas
fail (2, 24].

For this reason, modern replicated databases often eschew syn-
chronisation completely; such databases ar¢ commonly dubbed
eventually consistent (47). In these databases, & replica performs
an operation requested by a client locally without any synchronisa-
tion with other replicas and immediately returns 10 the client; the
effect of the operation i propagated to the other replicas only even-

I¢

‘.001. wW¢e plcav:u ~—

N htt " " ead 10 anomalies—-behaviours deviating from
t " I / 2 n ' One of them is illustrated in Figure |1(a). Here
" I ' l | t while connected 1o @ replica 71, and Bob, also

ees the post and comments on it. After each of

illustrate its use on several examples.

e o Gubiect Descriptors D.2.4 [Software Engineer-

o tT ~aine and Meanings the updates by Alice and Bob arrive to a replica 72 out of order,

— sends a message 10 the other replicas in the
system with the update performed by the user. If the messages with

PARIES =9 ted t0 T2, May end Up seeing Bob’s comment,
S Y [I

Disclaimer:

Slides kindly provided by Marc Shapiro

(all errors are mine)

client

origin
replica

replica

Operation

» U: State = (retval, (state <« state))
» Prepare (Qorigin) uz; deliver u;

client

origin
replica

replica

Operation

» U: State = (retval, (state <« state))
» Prepare (Qorigin) uz; deliver u;

client

origin
replica

replica

Operation

» U: State = (retval, (state <« state))
» Prepare (Qorigin) uz; deliver u;

client

origin
replica

replica

Operation

» U: State = (retval, (state <« state))
» Prepare (Qorigin) uz; deliver u;

Concurrency

» Concurrent, Multi-master
» StrongQ: total order, identical state
» Weak: concurrent, interleaving, no global state

Concurrency

» Concurrent, Multi-master
» StrongQ: total order, identical state
» Weak: concurrent, interleaving, no global state

Concurrency

Convergence?
Safety?

» Concurrent, Multi-master
» StrongQ: total order, identical state
» Weak: concurrent, interleaving, no global state

Anomalies of concurrent updates

» Bank:
» Oinit = 100€
» Alice: credit(20) ={ o= 120}

» Bob: debit (60) =1{ o =40 }
p O = 77?7

Anomalies of concurrent updates

» Bank: » File system:
» Oinit = 100€) Oinit = /"
» Alice: credit(20) ={ o= 120} » Alice: mkdir (“/foo”); mkdir (“/foo/bar”)
» Bob: debit (60) =1{ o =40 } » Bob: receives mkdir (“/foo/bar”)
) O = 777 p O =777

Eventual Consistency

Don’t show
photos to Bob

Alice @home - - - - o mm oo >
Alice @phone
BOD cccmm e mcmccccccccccccccccmcmemeaeaa- >

» access (Bob, photo) — ACL (Bob, photo)

Eventual Consistency

Don’t show
photos to Bob

Alice @home ---B---------cccmmmcccccccccceccccccmmmmmm—mmm—m——n- >
\
Alice @phone 0
0] o T ° >

» access (Bob, photo) — ACL (Bob, photo)

» Vv observed effects of t = v should be delivered after u
» Availlable: doesn’t slow down sender

Eventual Consistency

Alice @home --- 0 --- >
\
Alice @phone 0
0] o T 0 >

» access (Bob, photo) — ACL (Bob, photo)

» Vv observed effects of t = v should be delivered after u
» Availlable: doesn’t slow down sender

Eventual Consistency

post photo

Alice @home 0 -- >

Alice @phone xa\ <
N\

» access (Bob, photo) — ACL (Bob, photo)

» Vv observed effects of t = v should be delivered after u
» Availlable: doesn’t slow down sender

Eventual Consistency

Alice @home 0 ---------------- 0 ------------------------------ >
RN
Alice @phone 0 \
Bob sees
photo

» access (Bob, photo) — ACL (Bob, photo)

» Vv observed effects of t = v should be delivered after u
» Availlable: doesn’t slow down sender

Eventual Consistency

Alice @home --- 0 ---------------- 0 ------------------------------ >
|
Alice @phone 0 \
270 o J ° ------ ° >

» access (Bob, photo) —= ACL (Bob, photo)

» Vv observed effects of t = v should be delivered after u
» Avallable: doesn’t slow down sender

(1) Causal consistency

Alice @home ----

Alice @phone

» access (Bob, photo) — ACL (Bob, photo)

» Vv observed effects of t = v should be delivered atter u
» Availlable: doesn't slow down sender

(2) Conflict-free Replicated
Data Types (CRDTs)

» Data type
» Encapsulates state

» Replicated
» At multiple nodes

» Avallable

» Update my replica without coordination
» Convergence guaranteed by design
» Decentralized, peer-to-peer

Commute = Converge

» Bank account:
» credit(amt), = { local_balance += amt }
» debit(amt), = { local_balance —= amt }
» interest(); = { local_balance += origin_balance*.05 }
» File system:
» write(f);={ local_fu f}

CRDT design concept

» Backward-compatible with sequential datatype
» Commute = concurrent is same

» add(e); rm(f) = rm(f); add(e)

CRDT design concept

» Backward-compatible with sequential datatype
» Commute = concurrent is same

 add(e); rm(f) = rm(¥); add(e) + add(e) || rm (f

CRDT design concept

» Backward-compatible with sequential datatype

» Commute =— concurrent is same

» add(e); rm(f) = rm(f); add(e) £ add(e) || rm (f)
» Otherwise, concurrency semantics

» Example: add(e) || rm (e)

» Deterministic, similar to sequential

» ~ rm(e),add(e)or = add(e); rm(e)
» Merge, don't lose updates
» Result doesn't depend on order recelved

Application invariants

» South v Boatw North = { sheep, dog, wolf |
» carryNorth(S)— 1< |S| <2

» carrySouth(S)= 1< |S| <2

» VS e {South, Boat, North} : sheep e SA wolfe S=— dog e S

» Hard to tease invariants out
» Silent invariants

Seq. consistency examples

» Bank account
» deposit(amt), withdraw(amt), accruelnterest(amt)
» [nvariant: “balance > 0~
» { amt < balance A Inv '} withdraw(amt){ Inv }

Seq. consistency examples

» Bank account
» deposit(amt), withdraw(amt), accruelnterest(amt)
» [nvariant: “balance > 0~
» { amt < balance A Inv '} withdraw(amt){ Inv }

» File system
» mkdair, rmdir, create, write, rm, Is, etc.
» [Invariant: Tree
» { Tree A = X/.../y} mv(x,y){ Tree }

Just-Right Consistency

» CRDT geo-replicated database
» Lots of internal parallelism
» Transactional, causal consistency by default

» Specification of application updates, invariant
» CISE: do all state transitions preserve the invariant?

» If not, fix: adjust
» either specification
» Oor synchronisation

» Repeat until safe
» App / synch co-design: Minimal synchronisation

ol >

Asynchronous, replicated updates
» State o
» |Invariant /
» Prepare: read one, generate eftector
» Update all, deterred: deliver effector
Converge”? |nvariant OK?

ol - =T

Asynchronous, replicated updates
» State o
» |Invariant /
» Prepare: read one, generate eftector
» Update all, deterred: deliver effector
Converge”? |nvariant OK?

ol

Asynchronous, replicated updates
» State o
» |Invariant /
» Prepare: read one, generate eftector
» Update all, deterred: deliver effector
Converge”? |nvariant OK?

ol

Asynchronous, replicated updates
» State o
» |Invariant /
» Prepare: read one, generate eftector
» Update all, deterred: deliver effector
Converge”? |nvariant OK?

ol

Asynchronous, replicated updates
» State o
» |Invariant /
» Prepare: read one, generate eftector
» Update all, deterred: deliver effector
Converge”? |nvariant OK?

100 € = 0 | I?
o:

Asynchronous, replicated updates
» State o
» |Invariant /
» Prepare: read one, generate eftector
» Update all, deterred: deliver effector
Converge”? |nvariant OK?

accrue 5% +5€ 5
100 € >0 I

ol

Asynchronous, replicated updates
» State o
» |Invariant /
» Prepare: read one, generate eftector
» Update all, deterred: deliver effector
Converge”? |nvariant OK?

accrue5% +5€ -100 [2
100€=0 U ur Vi :

o:l O=——2¢ I >

Asynchronous, replicated updates
» State o
» |Invariant /
» Prepare: read one, generate eftector
» Update all, deterred: deliver effector
Converge”? |nvariant OK?

accrue5% +5€ -100 [2
100€=0 U ur Vi :

o:l O=——2¢ I >

Asynchronous, replicated updates
» State o
» |Invariant /
» Prepare: read one, generate eftector
» Update all, deterred: deliver effector
Converge”? |nvariant OK?

ol

CISE Rules

1: Sequential correctness
» Any single operation maintains the invariant

2. Convergence
» Concurrent effectors commute

3: Precondition Stability
» Every precondition is stable under every
concurrent operation

It satisfied: invariant is guaranteed

Simple example: bank
account

» Operations: deposit(amount), withdraw(amount)
» Invariant: balance > 0
p Start with weak specification

» Rule 1 — strengthen precondition for withdraw

» Rule 2: OK

» Rule 3 — withdraw || withdraw unsafe
» fixed with concurrency control

/aﬁ{hu! I

o: 1 O | o
u? \ I
UPRE
® I

o:l I

CISE Rules

1: Sequential correctness
» Any single operation maintains the invariant

2. Convergence
» Concurrent effectors commute

3: Precondition Stability
» Every precondition is stable under every
concurrent operation

f satisfied: invariant is guaranteed

/aﬁ{hu! I

o: 1 O | o
u? \ I
UPRE
® I

o:l I

CISE Rules

1: Sequential correctness
» Any single operation maintains the invariant

2. Convergence
» Concurrent effectors commute

3: Precondition Stability
» Every precondition is stable under every
concurrent operation

f satisfied: invariant is guaranteed

/aﬁ{hu! I

o: 1 O | o
u? \ I
UPRE
® I

o:l I

CISE Rules

1: Sequential correctness
» Any single operation maintains the invariant

2. Convergence
» Concurrent effectors commute

3: Precondition Stability
» Every precondition is stable under every
concurrent operation

f satisfied: invariant is guaranteed

o:l oo I ”

o: | ® ® I

CISE Rules

1: Sequential correctness
» Any single operation maintains the invariant

2. Convergence
» Concurrent effectors commute

3: Precondition Stability
» Every precondition is stable under every
concurrent operation

f satisfied: invariant is guaranteed

;

PRE N |
ol O | —@ >

u:z

3: Precondition Stability
» Every precondition is stable under every
concurrent operation

;

PRE N |
ol O | —@ >

u:z

3: Precondition Stability
» Every precondition is stable under every
concurrent operation

o O |
u;
\ I
| O o |

3: Precondition Stability
» Every precondition is stable under every
concurrent operation

CISE Rules

1: Sequential correctness
» Any single operation maintains the invariant

2. Convergence
» Concurrent effectors commute

3: Precondition Stability
» Every precondition is stable under every
concurrent operation

f satisfied: invariant is guaranteed

CISE Rules

1: Sequential correctness
» Any single operation maintains the invariant

2. Convergence
» Concurrent effectors commute

3: Precondition Stability
» Every precondition is stable under every
concurrent operation

f satisfied: invariant is guaranteed

CISE Rules

1: Sequential correctness
» Any single operation maintains the invariant

2. Convergence
» Concurrent effectors commute

3: Precondition Stability
» Every precondition is stable under every
concurrent operation

f satisfied: invariant is guaranteed

WithdraWPRE balance — = 1

{1 <1}
balance = 1 | /\Q >
withdraw(1
balance = 1] O >
balance —=
CISE Rules

1: Sequential correctness
» Any single operation maintains the invariant

2. Convergence
» Concurrent effectors commute

3: Precondition Stability
» Every precondition is stable under every
concurrent operation

f satisfied: invariant is guaranteed

WithdraWPRE balance — = 1

{1 <1}
balance = 1 | /\Q >
withdraw(1
balance = 1] O >
balance —=
CISE Rules

1: Sequential correctness
» Any single operation maintains the invariant

2. Convergence
» Concurrent effectors commute

3: Precondition Stability
» Every precondition is stable under every
concurrent operation

f satisfied: invariant is guaranteed

WithdraWPRE balance — = 1

{1 <1}
balance = 1 | /\Q >
withdraw(1
balance = 1] O >
balance —=
CISE Rules

1: Sequential correctness
» Any single operation maintains the invariant

2. Convergence
» Concurrent effectors commute

3: Precondition Stability
» Every precondition is stable under every
concurrent operation

f satisfied: invariant is guaranteed

WithdraWPRE balance — = 1

{1 <1}
balance = 1 | /\. >
withdraw(1
I O @
balance - — 1[balance —_ =
debit(1) O

3: Precondition Stability
» Every precondition is stable under every
concurrent operation

WithdraWPRE balance — = 1

{1 <1}
)

balance = 1 | @ >
withdraw(1
| O —©

balance = 1
balance — = 1 f

debit(1) O

balance — =

withdrawpere

{1<0}

2

CISE Rules

1: Sequential correctness
» Any single operation maintains the invariant

2. Convergence
» Concurrent effectors commute

3: Precondition Stability
» Every precondition is stable under every
concurrent operation

f satisfied: invariant is guaranteed

WithdraWPRE balance — = 1

{1 <1}
)

balance = 1 | @ >
withdraw(1
| O —©

balance = 1 > balance = —1
balance — = 1 f

debit(1) O

balance — =

withdrawpere

{1<0}

2

CISE Rules

1: Sequential correctness
» Any single operation maintains the invariant

2. Convergence
» Concurrent effectors commute

3: Precondition Stability
» Every precondition is stable under every
concurrent operation

f satisfied: invariant is guaranteed

WithdraWPRE balance — = 1

{1 <1}
)

balance = 1 | @ >
withdraw(1
| O —©

balance = 1 > balance = —1
balance — = 1 f

debit(1) O

balance — =

withdrawpere

{1<0}

2

CISE Rules

1: Sequential correctness
» Any single operation maintains the invaria

Fix:
concurrency
control

2. Convergence
» Concurrent effectors commute

3: Precondition Stability
» Every precondition is stable under every
concurrent operation

f satisfied: invariant is guaranteed

Advanced example: file system

» Operations: mkdir, rmdir, mv, write, etc.
» Invariant: Iree

» Rule 1 — precondition on mv
“May not move node under self”

» Rule 2 — Use CRDTs for write || write

» Rule 3 — mv || mv precondition unstable

Advanced example: file system

myv

» Rule 3 — mv || mv precondition unstable

TIVPRE mv /B, IA

{~B/.../A}

VRN | O\
A B I '

3: Precondition Stability
» Every precondition Is stable under every concurrent operation

/ro
(-B/.iay ™ 1B Q
root /_\

3: Precondition Stability
» Every precondition Is stable under every concurrent operation

/ro
(-B/.iay ™ 1B J
root /\

mvIA /B)

3: Precondition Stability
» Every precondition Is stable under every concurrent operation

/ro
(-B/.iay ™ 1B J
root /\

AN
mv A, 1B () Aﬂ/ﬁ;

3: Precondition Stability
» Every precondition Is stable under every concurrent operation

TIVPRE mv /B, /A

{~B/.../A}

mvIA /B)

3: Precondition Stability
» Every precondition Is stable under every concurrent operation

root

RN

e
(Bl ™ B J

3: Precondition Stability

» Every precondition Is stable under every concurrent operation

root

mvIA /B)

TIVPRE mv /B, /A

{~B/.../A}

mvIA /B)

FIX: concurrency
control

3: Precondition Stability
» Every precondition Is stable under every concurrent operation

TIVPRE mv /B, IA

{~B/.../A}

mvIA /B)

You can have
your cake anad
eat It too

3: Precondition Stability
» Every precondition Is stable under .very concurrent operation

CISE: The tool

Version of the tool (CEC) by Sreeja Nair

https://github.com/SyncFree/CISE

Related Problems

» Going beyond single invariants
» Verify Pre/Post conditions of client programs
p State-Based implementations of CRDTs
» Composition of CRDTs
» ... and much more :-)

The END

