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Abstract

This paper describes a formalization of multi-threaded Java bytecode in Coq. The
formalization builds on the existing Bicolano formalization for sequential Java byte-
code – which captures basically all aspects of sequential bytecode supported by the
CLDC (Java for mobile phones) platform. We use a special extension framework
to extend the existing formalization in a systematic way. The formalization is com-
plete: it models all aspects related to concurrency: monitors, thread start and
completion, the wait-notify mechanism and the interrupt mechanism, and it does
not require any transformation of the bytecode. The formalization is developed to
be suited for program verification and static analysis.

1 Introduction

Formal techniques are often advocated as the best way to ensure software
security. However, before using such a technique, one needs to establish its
correctness formally. This requires a formalization of the underlying program-
ming language’s semantics. Ideally, such a semantics is formalized in the logic
of a theorem prover, to support the correctness proof of the formal technique.

As a result, many different language formalizations exist (see for exam-
ple [1,12,13,10]). However, most of these formalizations do not consider con-
currency aspects, even though, due to their complexity, the need for a formal
foundation is even bigger for concurrent programs. This paper presents a for-
malization of a multi-threaded language: we extend the sequential bytecode
formalization Bicolano [5] with concurrency primitives, as they exist in Java.
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Sequential Bicolano is a Coq formalization of Java bytecode, restricted to
the subset of Java that is used for MIDP applications on the CLDC plat-
form [23]. It is used as the formal foundation for the Proof Carrying Code
framework, developed in the Mobius project 4 . The Bicolano formalization
has been used to prove soundness of a program logic and a verification con-
dition generator for Java [5]. Moreover, an extension for information flow
types exists, that has been used to show soundness of an information flow
type system [2].

This paper presents the extension of Bicolano towards multi-threading.
In particular, we add instructions monitorenter and monitorexit, and we
provide a semantics for the (non-deprecated) native methods related to con-
currency (start, join, wait, notify and notifyAll). Moreover, we model
the interrupt mechanism of Java. We are aware of a few other formalizations
of multi-threaded Java (discussed in Section 6). Compared to those, we use
a similar structure to extend the state of a sequential program to the multi-
threaded setting, but we would like to stress the following points that we
believe distinguish our formalization from the others:

• Our formalization is faithful to Java, i.e., a bytecode class can be directly
mapped into the Coq representation that we use, and no artificial (and
hopefully semantics-preserving) code transformations – such as wrapping
the body of a synchronized method in a synchronized statement block – are
necessary. Currently, the tool bico that generates Coq files from bytecode
classes is under development (see [6, Ch. 6] for a short description).

• Since we describe the Java semantics at bytecode level, our formalization
has the right level of granularity to handle multi-threading, i.e., interleaving
of sequential instructions is described naturally. Moreover, in contrast to
source code level formalizations (like [16]), we do not have to add special
tags to mark that execution is within a synchronized block.

• We build our formalization as an extension of the sequential Bicolano frame-
work in a systematic way, using the extension technique proposed by Czarnik
and Schubert [8]. Sequential Bicolano is a fairly complete formalization of
Java bytecode, and we thus get this specification “for free”. Moreover, be-
cause of the use of the extension framework, any extensions made in the
sequential setting carry over immediately to the multi-threaded setting.

• Sequential Bicolano has been used to show soundness of program logics and
type systems for secure information flow. Our extension for multi-threading
allows to extend these soundness results for multi-threaded programs (e.g.,
an extension of the program logic with rely-guarantee, or a formalization of
a type system for secure information flow of multi-threaded programs [3],
where the sequential part is already formalized [2]). Moreover, using Coq’s
extraction mechanism, we can get the implementation of a verified verifica-

4 See http://mobius.inria.fr for more information.
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tion condition generator or type checker for free.

• In earlier work, we have formalized the Java Memory Model [11]. For our
current formalization, we do not take the Java Memory Model into account,
and we simply assume an interleaving semantics (since the Data Race Free-
ness guarantee of the Java Memory Model ensures that any program with-
out data races only has sequentially consistent behaviors). However, we
plan to connect the two formalizations, and to prove that for data race free
programs, any BicolanoMT execution can be mapped into a Java Memory
Model execution, and vice versa.

The remainder of this paper is organized as follows. Section 2 gives a very
brief summary of multi-threading in Java. Next, we discuss relevant aspects
of sequential Bicolano and the extension framework. Section 5 is the main
part of the paper: it describes how we formalize the multi-threaded features
of Java bytecode. Finally, Sections 6 and 7 discuss related work and conclude.

2 Multi-Threading in Java

Concurrency in Java is achieved through multiple threads of execution that
communicate via a single shared memory. We list the relevant instructions and
(native) methods. For a concise, but more detailed description of concurrency
in Java, we refer to Lea [14, Ch. 1]. The class Thread represents the actual
threads in the Java language. It declares (native) methods to create and
handle threads: start (spawn a thread for a given thread instance), join

(wait for a thread to die), and interrupt (interrupt a thread).

Because of the use of single shared memory, synchronization is needed
to avoid data races, i.e., different threads trying to access the same part of
memory simultaneously. This is important, because data races can cause unex-
pected behavior. The most basic form of synchronization in Java is its built-in
locking mechanism, provided by instructions monitorenter and monitorexit,
and by synchronized methods. In addition, Java provides a wait-notify mech-
anism (implemented by native methods wait, notify and notifyAll), where
threads can wait for a certain condition to hold, and other threads can notify
one or all waiting threads that this condition might have been established.

3 Sequential Bicolano

Bicolano is a formalization of the Java Virtual Machine Specification devel-
oped by D. Pichardie and others [21], using the Coq proof assistant [7], in the
context of the Mobius project. Because of its original focus on MIDP appli-
cations (e.g., for mobile phones), Bicolano considers a limited subset of the
Java language. For example, it does not formalize user-defined class loaders
or reflection, and in particular it does not consider multi-threading.

To guarantee that changes in (or extensions of) sequential Bicolano are
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propagated directly to the multi-threaded extension of Bicolano, we have build
this on top of the original Bicolano framework, using the extension mechanism
proposed by Czarnik and Schubert [8], as discussed in the next section. This
paper only briefly discusses the most important features of sequential Bicolano,
for more information we refer to [5].

Bicolano contains an axiomatic base and a description of the semantics.
The axiomatic base defines the abstract syntax, i.e., types of classes, methods,
instructions etc. with corresponding operations, and the semantic domain,
that formalizes the different data structures present in the JVM [15], such
as the heap, and the callstack. To show consistency of the axiomatizations,
Bicolano also contains example instantiations. The semantics is described as
an operational semantics 5 . We discuss the axiomatization of some of the
relevant JVM data structures, and a fragment of the small step operational
semantics.

JVM Data Structures

The heap is modeled as an abstract map, with operations get, update, typeof
and new. Figure 1 contains its Coq formalization. The argument of the get

and update operations is of type AddressingMode: it contains all the infor-
mation needed to access a field in the heap, such as the FieldSignature for
static fields, an additional Location for dynamic fields, and an offset for array
elements. Not all addresses in the domain of Location do actually contain
a value, therefore get and typeof are partial functions, modeled using the
option data type. The new function returns a free Location in the heap
of the type specified by the LocationType parameter, while modifying the
heap with type information about the new location. Since the new function
could be undefined for certain LocationType values, it is a partial function.
The behavior of the different operations is axiomatized via assumptions on
the module’s operations. Every instantiation of the module should prove that
these assumptions are satisfied. Figure 1 contains a few examples of such as-
sumptions, specifying how the get and update operations interact (where the
predicate Compat checks the compatibility of an address and the heap).

The frame data structure contains the information related to a method
call: method description, current program counter, operand stack and values
of the local variables. The callstack is defined as a list of frames, denoting the
unfinished method calls.

Module Type FRAME.
Inductive t : Type :=
make : Method -> PC -> OperandStack.t -> LocalVar.t -> t.

End FRAME.

Finally, the complete JVM state is modeled by the State data structure.

5 Sequential Bicolano contains both a small step and a big step operational semantics – our
semantics is built on top of the small step operational semantics, as this is more natural for
multi-threading.
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Module Type HEAP.
Parameter t : Type.
Parameter get : t -> AddressingMode -> option value.
Parameter update : t -> AddressingMode -> value -> t.
Parameter typeof : t -> Location -> option LocationType.
Parameter new : t -> Program -> LocationType -> option (Location * t).
Axiom get_update_same : forall h am v,
Compat h am -> get (update h am v) am = Some v.

Axiom get_update_old : forall h am1 am2 v,
am1<>am2 -> get (update h am1 v) am2 = get h am2.

Axiom get_uncompat : forall h am, ~Compat h am -> get h am = None.
End HEAP.

Fig. 1. Fragment of module HEAP

Inductive step (p:Program) : State.t -> State.t -> Prop :=
| putfield_step_ok : forall h m pc pc’ s l sf f loc cn v,
instructionAt m pc = Some (Putfield f) ->
next m pc = Some pc’ ->
Heap.typeof h loc = Some (Heap.LocationObject cn) ->
defined_field p cn f ->
assign_compatible p h v (FIELDSIGNATURE.type (snd f)) ->
step p (St h (Fr m pc (v::(Ref loc)::s) l) sf)
(St (Heap.update h (Heap.DynamicField loc f) v) (Fr m pc’ s l) sf)

Fig. 2. Fragment of step relation

The state is either normal, or exceptional. In both cases, the state contains a
heap and a callstack, however the exceptional frame present in the exceptional
state does not contain an operand stack, but only a single location (containing
a reference to an exception).

Module Type STATE.
Inductive t : Type :=
normal : Heap.t -> Frame.t -> CallStack.t -> t

| exception : Heap.t -> ExceptionFrame.t -> CallStack.t -> t.
End STATE.

Operational Semantics

The operational semantics is described by the inductively defined step rela-
tion. For each JVM instruction, one or more cases describe how the state is
changed by the instruction – in particular if an instruction might throw a run-
time exception, extra cases specify under which conditions these exceptions
occur. Notice that in sequential Bicolano, the step predicate is determinis-
tic, i.e., there is always only one case that applies. For illustration, Figure 2
shows a fragment of the step relation, specifying the effect of the putfield

instruction – in case it does not throw any exceptions.
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Module Type SS_SEM.
Declare Module Dom: SEMANTIC_DOMAIN.
Import Dom Dom.Prog.
Parameter state_t : Type.
Definition bottom_state_t := State.t.
Parameter get_bottom_state: state_t -> bottom_state_t -> Prop.
Parameter step: Program -> state_t -> state_t -> Prop.
Parameter additional_step: Program -> state_t -> bottom_state_t ->

state_t -> Prop.
Axiom add_step_step_compat: forall p st1 st2 bost2,
step p st1 st2 -> get_bottom_state st2 bost2 ->

additional_step p st1 bost2 st2.
End SS_SEM.

Fig. 3. Signature for vertical extension

4 Extensional Framework for Bicolano

As mentioned above, Czarnik and Schubert [8] propose a framework to system-
atically extend the semantics of Bicolano with additional information and/or
additional behavior. They define two kinds of extensions: a horizontal ex-
tension adds additional information (e.g., resource consumption) to the se-
mantics, but does not change it, while a vertical extension may modify the
definition of state, and the step relation, provided that the added ingredients
are coherent with the underlying semantics. A typical example is to limit
the memory size, and to add the possibility to throw an OutOfMemoryError.
Extensions are extendable themselves, i.e., they can be built on top of each
other. Thus our extension with multi-threading can be stacked on top of any
other extension of sequential Bicolano. For our development, we only use the
vertical extension framework. We give a brief sketch of this framework; for
more information we refer to [8].

Figure 3 defines the signature of a vertical extension for the small step op-
erational semantics. The type variable state_t defines the new state, whereas
bottom state t refers to the type of the original Bicolano state. Every ex-
tension should preserve the original Bicolano state, i.e., there should be a
way to reconstruct the bottom state from the extension state (by defining
get_bottom_state). Next, the extension defines the step relation between
the new, extended states. Finally, one must define an additional_step rela-
tion that determines how to modify current state values to contain previously
unforeseen bottom states at this level. Given an extended state s, and a bot-
tom state b, it specifies an extended state s′ with the additional information
derived from s, such that the bottom state of s′ is b. The purpose of this
relation is to allow future extensions to reconstruct the extended state, on the
basis of a bottom state only. The add_step_step_compat axiom specifies that
additional_step should be compatible with the (extended) step relation.

In our formalization, we use the operations from the vertical extension
framework described above. However, for a good understanding of our formal-
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ization, it is sufficient to think about it as if we built the extension directly
on top of the original Bicolano specification.

5 BicolanoMT

This section describes BicolanoMT 6 , an interleaving semantics for multi-
threaded Java bytecode, built on top of the existing Bicolano semantics. Based
on the Data Race Freeness guarantee provided by the Java memory model
(JMM) [17], we can consider an interleaving semantics only, abstracting away
from all the details of the JMM. The guarantee ensures that all correctly
synchronized programs only exhibit behaviors described by an interleaving
semantics. Program analyses and logics proved with this semantics will thus
be valid for correctly synchronized programs. We resort to existing data race
detection static analyses to reject incorrectly synchronized programs [9,19,20].
Interestingly, programs containing data races can also be treated with our for-
malization, provided that the semantics of these races is described by some
interleaving of the threads (i.e., benign data races).

5.1 Data Structures

As previously explained, threads only communicate via the single shared mem-
ory (i.e., the heap). All other thread information is local to a thread. There-
fore, in our extension we keep a single heap, plus execution information per
thread, by means of a partial map from thread IDs to thread execution in-
formation. Each thread contains a current (possibly exceptional) frame and
a callstack, as in the Bicolano state, plus some additional information needed
to model synchronization and interruption: the thread state, and the inter-
ruption state, as discussed below.

Module Type THREAD.
Inductive t : Type :=
normal : Frame.t -> CallStack.t -> ThreadState.t -> Interruption -> t

| exception : ExceptionFrame.t -> CallStack.t -> ThreadState.t ->
Interruption -> t.

End THREAD.

The definition of thread state describes under which conditions a thread
can execute, cf. Lea [14, Ch. 1]. If a thread is in runnable state it is able
to take a step in the semantics. When a thread has no more instructions to
execute, its state becomes terminated. A thread is in state blocked when
it unsuccessfully tried to acquire a lock, represented by the Location value;
a thread can only leave the blocked state if it acquires the lock, or if it is
interrupted by another thread. The last state is waiting, which is both used
to represent the state where a thread issued a wait and it has not been notified,
and where a thread issued a join on a thread that is not yet terminated. We

6 The complete formalization can be foud at:
http://mobius.inria.fr/twiki/bin/view/BicolanoMT/
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Module Type THREADMAP.
Parameter t : Set.
Parameter get : t -> ThreadId.t-> option Thread.t.
Parameter update : t -> ThreadId.t -> Thread.t -> t.
Parameter notifyAll : t -> Location -> ThreadSet.t -> t.
Axiom get_notifyAll_in : forall tmap loc tset tid fr sf tinfo, ThreadSet.
In tid tset = true -> get tmap tid = Some (Tr fr sf tinfo) ->
get (notifyAll tmap loc tset) tid = Some (Tr fr sf (blocked loc)).

Axiom get_notifyAll_not_in : forall tmap loc tset tid, ThreadSet.
In tid tset = false -> get tmap tid = get (notifyAll tmap loc tset) tid.

End THREADMAP.

Fig. 4. ThreadMap definition

use the notation wait_lock and wait_join to refer to these two different
cases in the formalization. As in the case of blocked, this constructor is
parameterized by the lock or thread that is being waited for (in a disjoint
union type parameter).

Module Type THREADSTATE.
Inductive t : Set := | runnable | terminated |
blocked : Location -> t | waiting : (ThreadId.t+Location) -> t.

End THREADSTATE.

The Interruption state is an enumerated data type containing only two
constructors: non_interrupted and interrupted, with the obvious meaning.

The execution states for the different threads are combined into a single
ThreadMap, mapping thread IDs to thread local information, as shown in
Figure 4. The thread map is defined by operations get and update, with
obvious meaning, and notifyAll. The latter allows to modify the thread state
of all the threads in a ThreadSet from waiting to blocked. The behavior of
these operations is specified by several axioms.

The heap is extended to contain synchronization information by adding
operations for locking (lock and unlock) and querying information about the
monitor state. For modularity, we do this by defining a module type HEAP_MT,
a fragment of which is presented in Figure 5. This extends the sequential
Bicolano heap with several new operations.

The lock and unlock operations take the following arguments: a heap
(Heap.t) that represents the heap to be updated; a reference (Location)
corresponding to the object whose monitor should be (un)locked; and a thread
ID (ThreadId.t) of the thread issuing the operation. Some extra operations
are defined to correctly specify the behavior of the synchronization mechanism;
for example, the getLockLevel operation returns the number of times a lock
has been acquired by a certain thread.

The wait/notify mechanism as described in the JVM Specification specifies
that every object is associated to a wait set where threads waiting for a certain
monitor are accumulated; this bookkeeping is specified in our formalization by
the getWaitset operation, that records thread identifiers of threads waiting
for a monitor. The relation waitFor_and_unlock relates two heaps, where
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Module Type HEAP_MT.
Declare Module Heap : HEAP.
Import Heap.
Parameter lock : t -> Location -> ThreadId.t -> t.
Parameter unlock : t -> Location -> ThreadId.t -> t.
Parameter getLockLevel : t -> Location -> ThreadId.t -> nat.
Parameter getWaitLockLevel : t -> ThreadId.t -> nat.
Parameter getWaitset : t -> Location -> ThreadSet.t.
Inductive waitFor_and_unlock h loc tid h’ : Prop :=
waitFor_unlock_def : forall h’’,
unlockn h loc tid (getLockLevel h loc tid) h’’ -> (* Release locks *)
... -> (* nothing changes ... *)
(* except for getWaitLockLevel in the tid location ... *)
getWaitLockLevel h’ tid = getLockLevel h’’ loc tid ->
(* and the getWaitset in the loc location *)
getWaitset h’ loc = ThreadSet.add (getWaitset h’’ loc) tid ->
waitFor_and_unlock h loc tid h’.

End HEAP_MT.

Fig. 5. Fragment of Multi-threaded Heap definition

the latter is the result of releasing all the locks held in the former state by
a certain thread, and adding this thread ID to the corresponding wait set.
Several similar relations are defined (not shown here), and appropriate axioms
are given, describing all the possible interactions between these operations.

Finally, Figure 6 defines multi-state to collect all information needed to
describe the multi-threaded semantics . A multi-state contains a single current
sequential support state, abstracted from the underlying semantics (Support.
state_t), a thread map (ThreadMap.t) and the thread ID corresponding
to that support state in the thread map. The idea is that only the thread
with this ID can perform an action. One can think of the current thread as
the thread being currently scheduled. Rescheduling of threads is modeled by
the update operation, that allows to change the current support state. The
support_tid_coincidence axiom requires that the correspondence between
the current support state and the current thread identifier must be preserved,
i.e., the information contained in the thread map must be coherent with the
information contained in the current support state for the current thread ID.
The only heap present in the multi-state is the one contained in the current
support state.

5.2 Operational semantics

Because of the use of the vertical extension framework we sometimes have
to use three different semantics to describe how a step modifies the multi-
state: the bottom semantics (i.e., Bicolano as in [21]), the support semantics
(as defined in [8]) of which we assume as little as possible, and finally, the
multi-threaded semantics (and its corresponding state) as we are defining it.
This might seem confusing at first, but in general the complexity added is not
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Module Type MT_STATE.
Parameter t : Type.
Parameter get_current_support : t -> Support.state_t.
Parameter get_current_tid : t -> ThreadId.t.
Parameter get_tmap : t -> ThreadMap.t.
Parameter update : t -> Support.state_t ->

ThreadId.t-> ThreadMap.t -> option t.
Axiom support_tid_coincidence : forall st bst tr,
Support.get_bottom_state (get_current_support st) bst ->
ThreadMap.get (get_tmap st) (get_current_tid st) = Some tr ->
bget_frame bst = trget_frame tr /\ bget_cstack bst = trget_cstack tr.

End MT_STATE.

Fig. 6. Fragment of Multi-state definition

significant, and it allows BicolanoMT to be used on top of previous extensions
to Bicolano.

This paper describes only the most important cases of the semantics that
is added as part of our extension; the Coq formalization contains all cases.

In the JVM, many of the mechanisms related to multi-threading are im-
plemented as native methods (start, notify etc.). Therefore, they do not
have a corresponding bytecode instruction, instead they are called using the
InvokeSpecial instruction. Currently, the InvokeSpecial is not formalized
in Bicolano. Therefore, we added bytecode place holders to model calls to
these methods, and to formalize their semantics. The place holders have the
name of the method, preceded by the keyword _native_ (e.g., _native_start).

Interleaving

First we consider interleaving of sequential instructions. Any thread that is
enabled (i.e., a runnable thread) can execute a step of the support semantics.
The definition of the interleaving step determines the resulting state in the
support semantics, and it updates the initial multi-state with the relevant
information from this support state. Note that the only part of the support
semantics whose existence we can assume is the bottom state; we extract the
frame and callstack from it to update the threadmap accordingly.

Figure 7 shows the formalization of this state transformation. The multi-
threaded semantics is represented in Coq by the inductive mt_step relation,
that relates two states via the execution of a single instruction. Figure 7 shows
only the interleaving of a normal step in the support semantics. The first line
looks up, via the current_info definition, information from the multi-state
(mtst) concerning the current support state (sst) the current thread ID (tid)
and the thread map (tmap). The second line looks up information about the
current thread; it checks that the thread is in runnable state, meaning that
the thread is able to execute, and it binds the frame (f) and the callstack (cs).
Next, the no_synch_instr predicate checks that the current instruction does
not involve synchronization (a different case of the mt_step predicate covers
those instructions). Then, step in the underlying semantics is consulted,

10



Petri and Huisman

Inductive mt_step : Program -> state_t -> state_t -> Prop :=
| interleaved_normal_mtstep :

forall p mtst mtst’ sst sst’ tid tmap tmap’ h’ cs cs’ f f’ it,
current_info mtst sst tid tmap ->
ThreadMap.get tmap tid = Some (Tr f cs runnable it) ->
no_synch_instr f ->
Support.step p sst sst’ -> (* STEP IN SUPPORT *)
Support.get_bottom_state sst’ (St h’ f’ cs’) ->
tmap’ = ThreadMap.update tmap tid (Tr f’ cs’ runnable it) ->
Some mtst’ = update mtst sst’ tid tmap’ -> (* UPDATE MULTISTATE*)
mt_step p mtst mtst’

Fig. 7. Interleaving step

binding the result to the sst’ variable. By using the mapping to the bottom
semantics (get_bottom_state), the heap, current frame and callstack are
extracted. Finally, the thread map and multi-state are updated.

Start

Start is a native method that causes a thread to be created and begin exe-
cuting. A call to start on a thread object executes its run method. In our
formalization, a new thread is created with the location of the thread object
as thread ID. This is a formalization decision; the real JVM thread identifiers
need not correspond to the formalization’s ThreadId type.

Figure 8 shows two interesting details of the step start. First, two updates
are required on the thread map; the first to modify the frame of the calling
thread; and the second to add the newly created thread. Second, before updat-
ing the multi-state, the support state must be modified, to change the program
counter and frame of the calling thread. However, since the _native_start

instruction is not present in the underlying semantics, there is no step in the
support semantics that does this. Instead, the new bottom state is constructed
explicitly, and the additional_step relation of the support semantics is used
to construct the new support state based on the knowledge of the old support
state and the new bottom state. The rest of the formalization is similar to
the interleaving case.

Monitorenter/Monitorexit

The monitorenter and monitorexit bytecode intructions lock and unlock
Java monitors. Both take as parameter a reference whose lock must be
acquired or released, respectively. Figure 9 shows the formalization of a
monitorenter instruction that succeeds to acquire the lock 7 . First, the heap
is checked for the state of the lock. If it is free or acquired by the same
thread, lockable holds. In that case the lock is acquired by the thread, and
the heap and state are updated. The case in which the lock is not free is
not shown, but the main difference is that the heap is not updated, and the

7 Only the relevant conditions are shown.
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| native_start_mtstep_ok : ...
current_info mtst sst tid tmap ->
TMap.get tmap tid = Some (Tr f cs runnable it) ->
f = (Fr m pc ((Ref loc)::s) l) ->
instructionAt m pc = Some _native_start -> (* start place holder *)
next m pc = Some pc’ ->
Heap.typeof h loc = Some (Heap.LocationObject cn) ->
lookup p cn RunMethodSignature (cn, m’) ->
METHOD.body m’ = Some bm’ ->
tmap’ = TMap.update tmap tid (Tr (Fr m pc’ s l) cs runnable it) ->
new = Tr (Fr m’ (BCMETHOD.firstAddress bm’) OperandStack.empty
(stack2localvar ((Ref loc)::s) 1)) nil runnable non_interrupted ->

tmap’’ = TMap.update tmap’ loc new -> (* loc as tid (unique id) *)
Support.additional_step p sst (St h (Fr m pc’ s l) cs) sst’ ->
Some mtst’ = update mtst sst’ tid tmap’’ ->
mt_step p mtst mtst’

Fig. 8. Step _native_start

| monitorenter_nonblocking_mtstep_ok : ...
instructionAt m pc = Some monitorenter -> ...
lockable h loc tid ->
h’ = Heap_mt.lock h loc tid -> ...
Support.additional_step p sst (St h’ f’ cs) sst’ ->
tmap’ = ThreadMap.update tmap tid (Tr f’ cs runnable it) ->
Some mtst’ = update mtst sst’ tid tmap’ ->
mt_step p mtst mtst’

Fig. 9. Step monitorenter

thread state of the thread is changed to blocked, meaning that the thread is
only able to re-attempt to acquire the lock. BicolanoMT also specifies all the
exceptional cases documented in the JVM Specification. The formalization of
monitorexit is similar, but the predicate locked_by is checked instead, and
an IllegalMonitorStateException is thrown when the lock is not held.

Synchronized Methods

Synchronized methods constitute a special case of locking, where the object
being locked is the one on which the method is invoked; in the case of static
methods the lock is that of the class object allocated in the heap when
the class is first loaded. The semantics of entering a synchronized method
is very similar to that of monitorenter, but the way the lock object is
looked up is different. This can be seen in Figure 10, where it is defined
by the is_invoke_synch predicate, that in case the method is synchronized
returns the reference to be locked. Also of interest is the exit of synchro-
nized methods, where the lock must be released. Similar to monitorexit,
the heap is consulted to check whether the thread holds the lock, and if not,
an IllegalThreadStateException is thrown. To know whether a lock must
be released, every method is checked for its synchronization modifier when
it terminates, either because of a return or because of the propagation of an
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| invoke_synch_ok : ...
is_invoke_synch p sst loc ->
Support.step p st sst’ -> ...
lockable h’ loc tid ->
h’’ = Heap_mt.lock h’ loc tid ->
Support.additional_step p sst’ (St h’’ f’ cs’) sst’’ -> ...
tmap’ = ThreadMap.update tmap tid (Tr f’ cs’ runnable it) ->
Some mtst’ = update mtst sst’’ tid tmap’ -> (* Update the Tmap *)
mt_mtstep p mtst mtst’

Fig. 10. Synchronized method invocation multi-step

| native_wait_enter_mtstep_ok :
ThreadMap.get tmap tid =

Some (Tr f cs runnable non_interrupted) -> ...
instructionAt m pc = Some _native_wait -> ...
locked h loc tid -> Heap_mt.waitFor_and_unlock h loc tid h’ -> ...
f’ = Fr m pc’ s l ->
Support.additional_step p sst (St h’ f’ cs) sst’ ->
tmap’ = ThreadMap.update tmap tid (Tr f’ cs (wait_lock loc)

non_interrupted) ->
Some mtst’ = update mtst sst’ tid tmap’ ->
mt_step p mtst mtst’

Fig. 11. Step _native_wait

uncaught exception.

Wait/Notify

When the wait method is invoked on an object, the caller releases all the locks
held on this object. Then it blocks, entering the waiting state and joining the
wait set for that lock. Figure 11 presents the case where a thread succeeds
in entering the waiting state. A thread can leave the waiting state if either
another thread calls notify and this thread is selected, or the notifyAll is
called (both on the appropriate lock). When a thread is notified, its thread
state becomes blocked, meaning that the thread must reacquire all the locks
it released when waiting. Another way for a method to exit the wait_lock

state is to be interrupted by another thread. Moreover, if a call to wait

occurs in an interrupted thread (i.e., its interruption state is interrupted),
an exception is thrown and the thread continues to be runnable (see below).

The formalization of notify and notifyAll is similar to wait, except that
a (resp. all) thread(s) in the waitset is removed, and its state changes from
waiting to blocked – to proceed, the notified thread must re-acquire the locks
that it released when waiting. The conditions for notify and notifyAll to
succeed are the same as for wait: the lock must be held by the calling thread
(otherwise IllegalMonitorStateException is thrown), and the object must
not be null (otherwise a NullPointerException is thrown).

13
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| native_wait_mtstep_InterruptedException :
ThreadMap.get tmap tid = Some (Tr f cs runnable interrupted) -> ...
instructionAt m pc = Some _native_wait -> ...
locked h loc tid ->
Heap.new h p (Heap.LocationObject

(javaLang,InterruptedException)) = Some (loc, h’) ->
f’ = FrE m pc loc l ->
tmap’ = TM_update tmap tid (TrE f’ cs runnable non_interrupted) ->
Support.additional_step p sst (StE h’ f’ cs) sst’ ->
tmap’ = ThreadMap.update tmap tid sst’ ->
Some mtst’ = update mtst sst’ tid tmap’ ->
mt_step p mtst mtst’

Fig. 12. Interrupted wait exit step

Interruption

The last of the mechanisms we will describe is interruption. A thread can
be interrupted at any moment; its actual effect depends on the particular
thread state of the interrupted thread. If the state is waiting or joining (i.e.,
waiting for a thread to terminate), the interrupt method causes the thread
to become runnable and throw an interrupted exception. In any other case,
it causes the thread to be marked as interrupted. This mark (flag) can be
reset at any moment by the interrupted method. If an interrupted thread
executes a wait or a join method it causes the interruption state to be reset
and to throw an InterruptedException, as well as reseting the thread state
to runnable.

Figure 12 shows the case where a wait method is called, while the inter-
ruption state value is interrupted. As described, an InterruptedException

is allocated on the heap, and a reference (Location) to the exception is stored
in the current frame of the calling thread. Then the thread state is reset to
runnable and non_interrupted, and an exceptional thread state is stored in
the thread map. The other cases are specified similarly.

Concluding remarks

It is important to notice that all the exceptional cases, as well as all possible
interactions of the different thread states and instructions (as well as native
methods) are specified in the semantics. Therefore the number of cases con-
sidered is very large (around 500 lines of Coq specification). However, we do
not formalize thread groups, timing and class loading, as these are not allowed
in the MIDP framework.

6 Related Work

Moore and Porter formalize a significant part of the Java bytecode instruc-
tion set in the ACL2 theorem prover [18]. Although their semantics includes
multi-threading aspects, it does so in a simple and minimalistic way, that is
sufficient for them to prove properties of several example programs. Their
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formalization contains the monitorenter and monitorexit synchronization
instructions and thread creation, but synchronized methods, the wait/notify
mechanism and interruptions are not taken into account. Moreover, their for-
malization does not consider exceptions, which are an important source of
complexity in our formalization.

Belblidia and Debbai [4] present an operational semantics for Java bytecode
that supports multi-threading. Their semantics covers many concurrency-
related aspects: synchronization via monitorenter and monitorexit, as well
as synchronized methods; thread creation; and thread termination. How-
ever, most native methods (wait/notify, interruption, join) related to concur-
rency are not handled in their semantics. Further, we completely separate
the single threaded semantics from the multi-threaded one, i.e., no multi-
threading related bytecode instructions or knowledge is present in Bicolano,
while Belblidia and Debbai specify instructions related to multi-threading in
their single-threaded semantics (the first semantic layer in their work). Their
single-threaded semantics generates labels to signal the multi-threaded layer
how to react; thus they do not have a clear distinction between sequential and
multi-threaded semantics. Finally, in contrast to our work, they do not have
a tool-supported formalization.

Lochbihler gives a source code level formalization of multi-threaded Java
in the Isabelle theorem prover [16]. This models synchronization as well as the
wait/notify mechanism, but it does not contain interrupts or join (it is only
remarked that this could easily be added). Since the semantics is given for
Java source code, it is at some points more artificial than ours. We consider
that bytecode is the most appropriate level to specify an interleaving seman-
tics for multi-threading, as it has the right level of granularity. Moreover, a
source code level formalization cannot model unstructured monitor acquisi-
tion, that can be produced by compiler optimizations. Further, Lochbihler
considers synchronized methods to be syntactic sugar for monitorenter and
monitorexit. This is not appropriate for bytecode, where monitors might
be acquired and released in different order. Also here, the single threaded
semantics produces labels for the higher level interleaving semantics. This
sometimes results in rather awkward sequences of instructions, like releasing
a lock and reacquiring it immediately, to check whether a thread holds a lock.

Finally, Stärk, Schmid and Börger define an abstract state machine se-
mantics for multi-threaded Java [22] covering most of the synchronization
mechanisms presented here. However, their formalization is for source code
and they do not formalize it in a theorem prover.

7 Conclusions

We have formalized BicolanoMT in Coq. To the best of our knowledge, this is
the most complete interleaving semantics for multi-threaded Java. It features
thread creation and termination; monitor synchronization; the wait/notify
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mechanism; interruption; synchronized methods and synchronization-aware
exceptions and method termination. BicolanoMT is modular in the sense
that it only models the multi-threading aspects of Java, building on top of
the Bicolano semantics for sequential Java, using the extensional framework of
Czarnik and Schubert [8]. BicolanoMT can be used to prove soundness of con-
current extensions of sequential type systems proved sound in Bicolano. For
example, the information flow type system developed and formalized for the
sequential case in [2], has been extended to concurrency in [3]. We can reuse
the proof of soundness of the former by adding the new multi-threaded cases,
and lifting the definitions of the old cases by means of the get bottom state

relation. Data race detection type systems (as in [9]) can be proved correct
using our semantics. Also, we plan to make a connection with our formaliza-
tion of the Java Memory Model [11], and prove that they are isomorphic for
data race free programs.
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