
Programming Scalable Cloud Services with AEON∗

Bo Sang
Purdue University

bsang@purdue.edu

Gustavo Petri
IRIF – Université Paris Diderot
gpetri@univ-paris-diderot.fr

Masoud Saeida Ardekani†
Purdue University

msaeidaa@purdue.edu
Srivatsan Ravi
Purdue University

srivatsanravi@purdue.edu

Patrick Eugster
Purdue University,

TU Darmstadt
p@cs.purdue.edu

ABSTRACT
Designing low-latency cloud-based applications that are adapt-
able to unpredictable workloads and efficiently utilize mod-
ern cloud computing platforms is hard. The actor model
is a popular paradigm that can be used to develop dis-
tributed applications: actors encapsulate state and commu-
nicate with each other by sending events. Consistency is
guaranteed if each event only accesses a single actor, thus
eliminating potential data races and deadlocks. However
it is nontrivial to provide consistency for concurrent events
spanning across multiple actors.
This paper addresses this problem by introducing AEON:

a framework that provides the following properties: (i) Pro-
grammability: programmers only need to reason about se-
quential semantics when reasoning about concurrency re-
sulting from multi-actor events; (ii) Scalability: AEON run-
time protocol guarantees serializable and starvation-free ex-
ecution of multi-actor events, while maximizing parallel exe-
cution; (iii) Elasticity: AEON supports fine-grained elastic-
ity enabling the programmer to transparently migrate indi-
vidual actors without violating the consistency or entailing
significant performance overheads.
Our empirical results show that it is possible to combine

the best of all the above three worlds without compromising
on the application performance.

CCS Concepts
•Computing methodologies→ Distributed program-
ming languages;

∗Supported by NSF grants # 1117065, # 1421910, and #
1618923, European Research Council grant # FP7-617805
“LiVeSoft – Lightweight Verification of Software” and Ger-
man Research Foundation under grant # SFB-1053 “MAKI
– Multi-mechanism Adaptation for Future Internet”.
†Now at Samsung Research America.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

Middleware’16, December 12-16, 2016, Trento, Italy
c© 2016 ACM. ISBN 978-1-4503-4300-8/16/12. . . $15.00

DOI: http://dx.doi.org/10.1145/2988336.2988352

Keywords
Cloud elasticity, actor system, strong consistency, scalability

1. INTRODUCTION
Providing cloud-based distributed solutions, and adequately

leveraging the various capabilities provided by cloud providers
is pivotal to many modern low-latency cloud-based appli-
cations and services. However, many of these applications
(and services) still follow the de facto Internet architecture
consisting of stateless front and middle tiers, equipped with
a stateful storage tier at the back-end. Since most services
must use this storage back-end, the scalability of the system
as a whole is limited by the latency and throughput of the
storage. To overcome this limitation, it is common prac-
tice to add a caching mechanism. While a caching middle
tier might be effective in enhancing scalability, it comes at
the cost of relaxing the concurrency control provided by the
storage back-end. Moreover, this solution fails to exploit the
inherent data locality of the application, since cache requests
need to be shipped to other processes, potentially residing
on a different virtual machine.
An alternative to the above architecture which has the po-

tential to overcome these problems is to build a stateful mid-
dle tier using modern programming models based on actors.
Actors encapsulate state and communicate with each other
by sending events. In the actor model, consistency is guar-
anteed if each event only accesses a single actor, thus elim-
inating potential data races and deadlocks. Yet, this level
of abstraction provided by many existing solutions (e.g., Er-
lang, Akka) is not appropriate for cloud-based programming
since it is nontrivial to provide consistency for events span-
ning across multiple actors. Typically, the developer using
these models still needs to deal with distributed systems and
cloud programming issues such as asynchrony, failures and
deadlock, to mention but a few.
Recent industrial and academic efforts have proposed actor-

based frameworks (e.g., Orleans [8, 5] and EventWave [9])
for building and deploying cloud-based services. For exam-
ple, Microsoft’s Orleans is being used to implement many
services, including Skype and the Halo game services [2].
All of these frameworks attempt to ensure a subset of the

following properties: (i) Programmability: the simplicity
of the framework is paramount to reduce the learning effort,
increase developers’ productivity, and guarantee the plat-
form adoption. This aspect can be achieved by providing to
the programmer the illusion of sequential semantics, hence
ignoring the consistency challenges that may arise when the

http://dx.doi.org/10.1145/2988336.2988352

service runs in the cloud. (ii) Scalability: to effectively cope
with unpredictable workloads, the framework – and in par-
ticular its runtime system – must be able to function at
different scales; (iii) Elasticity: to achieve an economical so-
lution, the framework must be able to automatically scale
both in and out by adding and releasing resources to adapt
to the workload at hand. Moreover, such workload adapta-
tion should not violate application invariants or completely
stall the computation.
This paper introduces AEON: a distributed framework

that addresses the three concerns above as follows:
(i) To achieve programmability, AEON enables reasoning

about multi-actor events with sequential semantics in mind.
Specifically, AEON applications are modeled as a partially-
ordered set of dynamically interacting contexts that, akin
to actors, represent units of data encapsulation. Our pro-
tocol ensures that all the events are executed in an atomic
and strongly consistent manner (à la strict-serializability in
transactional systems). In other words, AEON provides to
the programmer the illusion of a server answering to asyn-
chronous requests one at a time in a sequential manner.
(ii) Partial-ordering of contexts in AEON induces an own-

ership network to organize contexts, whereby access to a
context is only granted to the contexts that directly own
it. This partial ordering results in a directed acyclic graph
(DAG) of contexts that is the key for AEON to implement
an efficient deadlock-free and starvation-free synchroniza-
tion protocol. This protocol maximizes parallel execution of
client request events, and is therefore highly scalable. This
is in stark contrast to the synchronization employed in Or-
leans [8, 5], which does not provide strict serializability, or
EventWave [9] which severely limits scalability by employing
a global synchronization bottleneck.
(iii) As foundation for elasticity, AEONs runtime system

allows for transparently migrating contexts across different
servers of the system without affecting the semantics of the
application, and thus dynamically adjusts the number of uti-
lized virtual machines to the actual workload. Specifically,
contexts can be automatically distributed across a data cen-
ter without exposing the actual location of contexts in the
network (i.e., it enforces location transparency [21]).
We have implemented a highly available and fault-tolerant

prototype of AEON in C++. Our empirical results show that
it is possible to combine the best of all three worlds: pro-
grammability, scalability and elasticity without compromis-
ing on the application performance.
Concretely we make the following contributions: (1) Af-

ter detailing challenges in developing elastic software in ex-
isting state-of-the-art paradigms such as EventWave [9] and
Microsoft’s Orleans [8], we present a novel programming
model for building elastic cloud applications in a seamless
and effortless fashion (§ 3). (2) The runtime of AEON im-
plements a novel protocol for executing events in a strict
serializable and highly scalable manner (§ 4) (3) AEON’s
runtime supports customizable automatic elasticity through
the novel notion of an elasticity manager (§ 5). (4) We
report an extensive evaluation, where we compare AEON
against EventWave and Orleans on Amazon EC2 through a
game application and the standard TPC-C benchmarks for
transactional systems (§ 6). Related work and final remarks
are the subjects of § 7 and § 8 respectively.
The AEON code along with some extended details, in-

cluding the operational semantics, are available on the AEON

website: https://www.cs.purdue.edu/homes/bsang/aeon/

2. OVERVIEW
In this section, we first identify the challenges with pro-

gramming support for scalable cloud services and applica-
tions and summarize the drawbacks of existing solutions to
the problem. We then provide an overview of AEON, and
illustrate how it addresses these challenges.

2.1 Existing Work and Drawbacks
There exist some efforts towards frameworks that help

implement scalable elastic applications while reducing pro-
gramming effort. EventWave [9] and Orleans [8] are two
important works in this space.
Orleans. Orleans is an open-source framework, developed
by Microsoft, based on the actor model. It introduces the
concept of grains. Akin to actors, grains are single-threaded.
There are two types of grains: stateful and stateless. Al-
though Orleans was initially described to support transac-
tions [8], the current open-source version does not provide
transactional guarantees. However, for many cloud appli-
cations, transaction(al) execution is required for correctness
since the manual implementation of distributed transactions
always requires considerable effort. Moreover, it’s easy to
run into deadlocks in Orleans with (a cycle of) synchronous
method calls because general grains are single-threaded and
do not allow reentrance. Finally, re-distribution of grains
is supported in Orleans, but the migration process provides
no guarantees that the application semantics will be unaf-
fected [27].
EventWave. EventWave is the nearest programming model
to AEON in which applications are modeled as a tree of con-
texts. EventWave guarantees strict-serializability by totally
ordering all requests at the (single) root context, assigning
an unique id to each request and executing events in order
of their ids. Consequently, EventWave provides only mini-
mal progress [18]. This clearly limits scalability and overall
performance, as adding more servers provides only limited
benefits due to the bottleneck at the tree root. Moreover,
EventWave only provides a simple API for the programmer
to manually migrate contexts to specific servers by halting
all executions during migration. This severely hampers elas-
ticity and introduces a nontrivial performance degradation.
EventWave also provides limited programmability since it
organizes contexts strictly as a tree and does not support
modification of tree edges. This prevents programmers from
implementing classic distributed data structures such as B-
trees and list-sets. § 7 covers the drawbacks of other (per-
haps less) related programming models for the cloud.

2.2 AEON Overview
Consider a massively multiplayer online (MMO) game,

where players can circulate through an arena containing dif-
ferent buildings and rooms, each containing different ob-
jects. The players can interact with other players and ob-
jects in the same room. Such a MMO game has to process
thousands of concurrent requests in an asynchronous envi-
ronment, thus emphasizing the need for an efficient protocol
to synchronize client requests. When there are too many on-
line players and existing physical servers become contended,
new servers must be allocated and some players must be mi-
grated to those. Such players will still be interacting with

https://www.cs.purdue.edu/homes/bsang/aeon/

other players and objects, and so the game service must
handle the migrations both quickly and correctly.
Atomic Events and Ownership Network (AEON) is a gen-

eral programming framework designed precisely to solve these
problems. AEON allows the programmer to write applica-
tions assuming a sequential semantics. The AEON run-
time system efficiently utilizes the distributed computing
resources and supports seamless resource migration with-
out sacrificing the application’s correctness, thus relieving
the application programmer of dealing with intricate con-
currency issues.
Programmability. In Figure 1 we outline a simplified
AEON implementation of our game. AEON takes an Object-
Oriented (OO) approach to implement the server-side logic
– the structure of the program follows a standard OO pro-
gramming approach if we substitute the contextclass key-
word by class, except for a few keywords that we will explain
shortly in § 3. Defining object structures as contextclasses
instead of regular classes means that their instances will
be automatically distributed, and relocated under workload
pressure by the AEON runtime system as needed. Notice
that the programmer does not need to implement any addi-
tional logic for the application to adapt to workloads.
For instance, suppose a client wants to put 50 gold coins

into treasure from gold_mine. To this end, she issues a call
of the form event player1.get_gold(50). The only difference
between an event call and a normal remote method call is the
event call decoration, which indicates to the runtime system
that the call must be executed as an event. This annotation
on the call site (as opposed to the method declaration) per-
mits the reuse of methods, e.g., get_gold, both as events for
client calls and as conventional synchronous methods in the
case of another context calling it.
While asynchronous calls and events have been proposed

before, the AEON programming model relieves the pro-
grammer from reasoning about race conditions, or tediously
implementing synchronization mechanisms. AEON guaran-
tees strict serializability. Therefore, events change the state
of multiple contexts (i.e., instances of contextclasses) even
residing on different machines, while maintaining the ap-
pearance of executing atomically and sequentially. In our
example, an event call to updateTimeOfDay in a Building con-
text updates the time in all of the rooms before executing
any subsequent event.
Scalability. In the interest of maximizing scalability, the
programmer would like to execute requests from different
users in parallel. However, it is not always the case that
requests from different users operate on disjoint data. In
the case where two or more requests operate on the same
data, an efficient arbitration mechanism must be put in place
to avoid strict serializability violations. Importantly, this
mechanism should also avoid the possibility of deadlocks.

AEON employs a flavor of ownership types (akin to [7,
16] proposed for concurrent programming) to facilitate par-
allel yet atomic executions of distributed events: contexts
form a directed acyclic graph (precisely, a join semi-lattice
as detailed in § 3) structure indicative of their state shar-
ing. Two events can run in parallel as long as they do not
access shared portions of state. In AEON, a simple static
analysis guarantees that the context graph derived from the
context-accessibility (i.e. ownership hierarchy) between dif-
ferent contexts is acyclic. In the example, we can see that a

contextclass Building {
void updateTimeOfDay () { // change time of day in

parallel
for (Room* room in children[Room])
async room->updateTimeOfDay();

}
readonly int countPlayers() { // read-only method
for (Room* room in children[Room])
count =+ room->nr_players();

return count;
}
...
}

contextclass Room {
readonly int nr_players() // read-only method
{ return children[Player].size(); }
readonly int nr_items()
{ return children[Item].size(); }
void updateTimeOfDay() { ... }
...
}

contextclass Player {
int playerId;
Item* gold_mine;
Item* treasure;
bool get_gold(int amt) {
if(gold_mine->get(amt))
treasure->put(playerId, amt);
...
}
...
}

Listing 1: Simplified game example. Fields of contextclasses
are not shown. Red keywords represent new AEON
constructs.

Player can own any number of Items, but not vice-versa.
Assuming two contexts of type Player sharing a common

child of type Item, to guarantee the atomic execution of an
event targeting one of the Player contexts, AEON delays the
execution of events targeting the other Player until the for-
mer event is terminated. Otherwise, the shared Item context
could be the source of data races, invalidating the serializ-
able execution of both events. However, if two events are
sent to Players in different Rooms, they can be executed in
parallel without violating strict serializability of the system
since they have no shared children. This enables a high
degree of parallelization since a majority of events sent by
different clients do not intersect.
Elasticity. To build a scalable distributed application that
caters to dynamic workloads, the programmer would have
to implement logic to: (i) migrate both data and compu-
tation between servers in case of a change in the workload;
(ii) resolve which server has which pieces of data at any given
time (which is non-trivial given that data might migrate);
(iii) guarantee that ongoing requests are not disrupted by
migrations. Writing even simple applications which meet
the desired scalability criteria would require expert program-
mers in distributed systems, and even in that case it would
remain an error-prone, time-consuming, and expensive en-
deavor. To avoid that such concerns related to distribution
outweigh the concerns related to the actual program logic,
AEON employs efficient migration protocols together with
an elasticity manager that enables the programmer to spec-

EventWave [9] Orleans [8] AEON
Data encapsulation Contexts Grains Contexts

Programmability restraint Context tree Unordered grains Context DAG
Event consistency across actors Strict serializability No guarantees Strict serializability

Event progress Minimal(due to sequential bottleneck) Possibility of deadlocks Starvation-freedom [19]
Automatic elasticity No Yes [27] Yes

Figure 1: Summary of distributed programming models for building cloud-based stateful applications

Variables x,y ∈ Var Expressions e ∈ Exp
Method Names m ∈M Field Names f ∈ F
Class Names cls ∈ Cls Contextclass Names C ∈ Ctx

Program Def. p ∈ P ::=
−−→
cxd
−−→
clsd main(. . .){ s }

Contextclass Def. cxd ∈ CtxD ::= contextclass C {
−→
fd
−→
md }

Class Def. clsd ∈ ClsD ::= class cls {
−→
fd
−→
md }

Type τ ∈ T ::= C | cls | int | float | τ [] | . . .
Field Def. fd ∈ FD ::= τ f

Method Def. md ∈MD ::= ro? τ m(−→τ x) { s }
Decorated Call dc ∈ DCall ::= event x.g(~x) | async x.g(~x)

Statements s ∈ S ::= dc | . . .

Figure 2: Syntax of AEON (excerpt). Underlined types
are only allowed in the declarations of context fields and
methods, not in class declarations.

ify how contexts scale in/out. In our game example, the
elasticity manager can easily move Room and Player contexts
to different servers of the system when their current virtual
machines become overloaded. For example, a player that
starts a computation-intensive task might be migrated to a
single virtual machine for the duration of the task. Figure 1
summarizes the properties provided by AEON with respect
to Orleans and EventWave.

3. PROGRAMMING MODEL
In this section we describe the principal programming ab-

stractions offered by AEON. Let us start by presenting a
simplified abstract syntax of AEON in Figure 2. Notice
first that AEON provides class declarations, as well as meth-
ods and fields like most mainstream OO programming lan-
guages. In addition, the language provides syntax for the
declaration of contextclasses.
Classes and contextclasses. An AEON program com-
prises a series of contextclass declarations, a series of class
declarations, and a main function which starts the execution
of the AEON program. A context (an instance of a con-
textclass) is a stateful point of service that receives and pro-
cesses requests either (i) in the form of events from clients,
or (ii) in the form of remote method calls from other con-
texts. At a high level, a context can be considered as a
container object or composite object that can be relocated
between hosts. Contexts encapsulate local state (in the form
of fields) and functionality (in the form of exported methods
or events). In particular, AEON contexts hide internal data
representations, which can only be read or affected through
their methods.
Another aspect that distinguishes contextclass declara-

tions from the standard class declarations is that types ap-
pearing in contextclass field and method declarations can
also contain context-type expressions, underlined as τ in
Figure 2. By inspecting the rule for types, we can see that

contextclass names can thus be used as types only in con-
textclass level code, but not in normal classes. Thus, we
vastly simplify the management of references (for example
for garbage collection, in that passing an object by value does
not implicitly create new references to contexts), and enable
a simple static analysis to check that ownership respects a
DAG structure as we shall describe shortly. Note that this
restriction may be relaxed in future revisions of AEON.
Context ownership network. In a nutshell, AEON con-
texts are guarded by an ownership mechanism loosely in-
spired by the ones proposed in [3, 7]. The concept of owner-
ship allows AEON to establish a partial order among con-
texts (when considered transitively), and thus guarantees
deadlock freedom when executing events.
We say that a context C is “directly-owned” by another

context C’ if any of the fields of C’ contains a reference to
C (we shall sometimes call the inverse relation of directly-
owned “parent-child”). The ownership relation described
above takes into account the transitive closure of the directly-
owned relation. To the right of Figure 3, we depict a possible
runtime ownership DAG for the application described in Fig-
ure 1. Here a Castle context of type Building owns two Room
contexts: the Kings Room, and an Armory. In turn, each of the
Rooms owns the respective Players currently in them, and a
number of accessible Items. Players can also own Items. In
addition, some contexts like Treasure can be owned by mul-
tiple contexts, Player1, Player2, and the Kings Room. More-
over, several contexts can own the same context, leading to
a form of multi-ownership, which allows the sharing of state,
a prevalent characteristic of object-oriented programming.
The ownership network enables the safe parallel execu-

tion of events provided that they do not access shared state.
When multiple concurrent events can potentially access the
same state, AEON serializes the events by exploiting the
ownership network. The DAG structure of the ownership
network guarantees that for any two contexts that might
have a common descendant context, there exists an ances-
tor context that transitively owns both (we have a join-semi-
lattice).1 In particular, for any set of contexts that have a
common set of descendants, we are interested in the least
common ancestor dominating them. Formally: for context
C in an ownership network G, assuming that desc(G,C) rep-
resents the set of its descendant contexts, let share(G,C) be
the set defined as follows:

share(G,C) =
{
C′ | desc(G,C)∩ children(G,C′) 6= ∅

}
∪{

C′ | desc(G,C′)∩desc(G,C) 6= ∅ &
C′ /∈ desc(G,C) & C /∈ desc(G,C′)

}
Then, we find in share(G,C) all contexts which share a descen-
dant context and are otherwise incomparable with C through
the directly-owned relation (encoded through desc), and all
1Unnamed contexts are automatically added in the case of
multiple maxima which share common descendants.

Room

Building

Player

Item

Type A

Type A

Type B

A contexts own
B contexts

Contextclass a owns b
a

b

Castle

Kings Room

Player1 Player2

Treasure

Armory

Weapons Vault

Player3

Sword Horse

dominator

Figure 3: Game static and dynamic context structure.

the contexts which might be an owner of C and moreover
share a common child with C.
In order to calculate the context dominating all contexts

that potentially share something with C, denoted dom(G,C)
and dubbed C’s “dominator”, we can compute the least upper
bound (lub) of the contexts share(G,C)∪{C} in the lattice G.

dom(G,C) = lub
(
G,share(G,C)∪{C}

)
For example, consider Figure 2 which illustrates the own-

ership network G for the game example and indicates dom-
inators for each context: dom(G,Player1) is Kings room and
dom(G,Sword) is Sword.
Methods and events. Events represent asynchronous client
requests to the AEON application, and therefore define its
external API. To simplify the syntactic categories of AEON,
and avoid code duplication, events are simply method calls
decorated by the event keyword targeted at a context. The
same convention applies to asynchronous method calls which
are decorated with the keyword async.
The execution of events is distributed and can span mul-

tiple contexts, but from the programmers’ perspective, the
execution of events appears atomic. The execution of an
event conceptually begins at a target context: the context
providing the method being called. An event executing in
a certain context C can issue method calls to any contexts
that C owns, and in this way can modify the state of any
context transitively reachable in the ownership DAG from
C.
In addition to method calls, events are able to dispatch

new events within themselves. An event that is dispatched
within another event will receive the same treatment as any
other client’s event, and will execute after its creator event
finishes its execution. This is in contrast to synchronous
and asynchronous method calls whose execution is entirely
contained within the current event execution.
As shown in Figure 2, there is an optional ro method

modifier (ro is a shorthand for the more verbose readonly
used throughout). This allows the declaration of methods
that are readonly, which enables the execution of multiple
readonly requests in a single context concurrently. A simple
check guarantees that readonly methods can only use other
readonly methods, and that they cannot modify the state
of a context. In the next section, we will explain in more
details how methods and events are executed.
Type-based enforcement of DAG ownership. As stated
before, an important invariant to achieve a deadlock-free
strictly serializable semantics for AEON is that the owner-
ship network be acyclic (at least with respect to contexts
that directly export events, i.e., the entry points for clients

Algorithm 1 AEON data structures
1: Event:
2: eid � unique event id
3: dom � dominator context
4: target � context the event lands
5: accessMode � indicate readonly or not

6: Context:
7: cid � unique id of the context
8: toActivateQueue � queue for incoming events
9: toExecuteQueue � queue for executing events

10: activatedSet � set of events currently using the
context

to access the application).
In particular, since the directly-owned relation is related

to referential reachability in the context-graph, we require
that the graph of contextclasses reachable for a context that
exports events be acyclic. An example of a hierarchy is
shown in the left hand side of Figure 3, where the hierarchy
represents essentially which contextclasses are contained in
a certain contextclass.
To enforce this property, we put in place a simple anal-

ysis that collects for each contextclass method declaration,
an over-approximation of the types of contexts that it could
access. Since our language is in Administrative Normal
Form [14], this can be done by a single pass over the declara-
tions of contextclasses. Whenever a contextclass C0 declares
an event that can use a contextclass C1, we require that
the contextclass C0 appears always at a higher level in the
ownership network than C1 and we denote this constraint as
C1 ≤ C0. The analysis succeeds if the collected constraints
are acyclic except for the obvious reflexive cases (i.e., C ≤ C),
and rejects the program otherwise. This exception, made
for reflexivity of the relation, allows for the construction of
inductive data structures like linked-lists, or trees, at the
slight expense of runtime checks upon modifications of con-
text ownership structure. We note that the context owner-
ship structure is modified when the object graph is explicitly
modified.

4. EXECUTION PROTOCOL
In this section, we describe our novel synchronization pro-

tocol employed by AEON that arbitrates between two con-
current events to ensure strict serializability: the execution
of an application’s events built atop AEON appears like a
sequential execution of the application that respects the tem-
poral ordering of events. In other words, any AEON execu-
tion is indistinguishable from a valid sequential execution of
the application’ events. To synchronize among events that
execute in contexts that have shared descendants, AEON
employs the dominator context as a sequencer. Intuitively,
when an event is launched in a context C of an ownership
network G, the dominator context of C (i.e. Dom(G,C)) is
conceptually locked. An event locking a context has – con-
ceptually – exclusive access to all the descendants of that
context. Since we lock the dominator context, we have the
guarantee that no other event that shares descendants with
C starts its execution until the termination of the current
event. These properties are ensured by AEON’s implemen-
tation.
Protocol overview. Algorithm 2 provides high-level pseudo-

Algorithm 2 Event execution at context C
1: to execute Event E: � accept incoming event
2: G← getOwnershipNetwork() � return context graph
3: dom←G.getDom(E.target) � get context dominator
4: send (ACT, E) to dom � send E to its dom

5: upon receive (ACT, Event E) from Context C′:
6: toActivateQueue.enqueue(E)

7: task dispatchEvent: � dispatch next event
8: while ∃E ∈ toActivateQueue do
9: E← toActivateQueue.dequeue()

10: G← getOwnershipNetwork()
11: if

(
(@E′ ∈ activatedSet : E′.accessMode = EX) &
(E.accessMode = RO)

)
then

12: activatedSet ← activatedSet ∪{E} � activate E
13: else
14: wait until activatedSet = ∅
15: activatedSet ← {E} � activate E
16: send (EXEC, E) to E.target � send E to execute

17: upon receive (EXEC,Event E) from Context C′:
18: toExecuteQueue.enqueue(E)

19: task scheduleNext: � scheduling next executing event
20: while ∃E ∈ toExecuteQueue do
21: E← toExecuteQueue.dequeue()
22: if (E /∈ activatedSet) then
23: activatePath(E) � activate path from target to C
24: execute(E) � execute event after path is activated

25: procedure activatePath(Event E):
26: G← getOwnershipNetwork() � return context graph
27: P← findPath(G,E.target,C) � find a path
28: for all (C′ ∈ p) do � activate contexts in the path
29: send (ACT, E) to C′
30: wait until E is activated at C′

code of the AEON synchronization protocol and Algorithm 1
describes the data structures used in Algorithm 2. The ex-
ecution of an event consists of method calls on the target
context, or method calls on contexts that the target context
owns. To execute, an event must take the lock on the target
context. Each context has a set called activatedSet, which
records events that currently lock that context.2 When
an event tries to obtain the lock over the dominator of
its target context, it will be placed into the dominator’s
toActivateQueue. When the event tries to lock a context
other than the dominator, it must lock all events in a path
from the dominator to itself in a top-down fashion. Finally,
when a context method is called, the call is placed in the
toExecuteQueue of the context based on the same ordering
determined by the dominator.
Task dispatchEvent dequeues an event from toActivateQueue,

and waits until the event obtains the lock, that is, it is added
to the activatedSet. Note that multiple read-only events can
hold the lock to a context at the same time. Once an event
takes the lock, it is added to the toExecuteQueue for exe-
cution. Task scheduleNext is responsible for dequeuing an
event from toExecuteQueue, and execute it.
When a method finishes its execution in a context, control

returns to the caller context, but it is not immediately re-

2Multiple readonly events can lock the same context.

moved from the context activatedSet; the removal happens
only when the event has terminated in all contexts.
The execution model for method calls is by default syn-

chronous, similar to Java RMI. However, in certain situa-
tions, for example when notifying every children of a certain
context of a change, it is both unnecessary and inefficient to
wait for the completion of a method call before issuing the
following one, especially as these calls may be remote. The
async method call decorator in AEON thus indicates that
the execution of method call is asynchronous. This is the
case of the calls to updateTimeOfDay for the Room contexts in
the method of the same name in the declaration of Building
of Listing 1.
Evidently, in the case of multiple asynchronous methods

that update the state of common children contexts, this be-
havior can lead to non-deterministism. This is analogous to
data races which are considered a programming error, and
have no semantics. In AEON this is also considered an er-
ror, albeit having a well-defined coarse-grained interleaving
semantics (at the level of context accesses). In future work
we will consider ruling out programs prone to this kind of
error at compile-time.
We remark AEON employs a mechanism similar to read-

write locks exploiting the readonly annotations (cf. Fig-
ure 2). Unlike update events, which completely lock the
target context, read-only events conceptually use a read-
lock (Line 11), so multiple read-only events can execute in
parallel in the same context as detailed in Algorithm 2.
Informally, it is straightforward to see why the AEON

protocol is strictly serializable. Specifically, let A be any
application built using AEON and π be any execution of A.
There exists a sequential execution π′ of A equivalent to π
such that for any two events E1,E2 invoked in π, E1→π E2
implies E1 →π′ E2, where E1 →π E2 denotes the tempo-
ral ordering between events E1 and E2 in an execution π.
Indeed, let G be any ownership network of an application
A and E1,E2 be any two application events participating
in an execution of the AEON protocol. Since G is a semi-
lattice (cf. § 3), there is a deterministic monotonic ordering
for E1 (and resp. E2) for conceptually locking the contexts
accessed that begins with dom(G,C) (and resp. dom(G,C′),
where C (and resp. C′) is the context on which E1 (and resp.
E2) lands initially. Finally, locks on the contexts accessed
during an event are released in the reverse order on which
they are locked, thus ensuring starvation-freedom.
Illustration of event synchronization in AEON. We
now illustrate the execution of the AEON synchronization
protocol with our game example. Consider the single-owner
case where a context C is its own dominator, and an event is
enqueued for execution at C. Castle and Armory in Figure 3
are examples of such single-owner contexts. In this scenario,
to ensure that no two events modify context C or its descen-
dants at the same time, events hold exclusive access of the
context hierarchy starting at C during their execution, which
is guaranteed by enqueuing all incoming events in the con-
text’s execution queue. Events execute once they reach the
head of the queue.
However, if there is context sharing where the dominator

of context C is a different context C’, and the event is for-
warded to C’, it is sequenced at C’, and starts its execution
according to the sequence order. In Figure 3 all Player con-
texts are sharing contexts. The presence of sharing contexts
introduces potential for deadlock. Consider for example the

Treasure

Player1 Player2

HorseSword

E1

1

Player3

Weapons Vault~

2

3

4

5

1

1

2

4

3

5

6

7

EX event to Player1

EX event to Player3

EX event to Horse

6

6

7

Castle

Kings Room Armory

Castle

E1

E3 E2

E2

E1

E2

E3

8

9

8

9

1 to execute E1 1 to execute E21 to execute E3

2 K.dispatchEvent:E1 2 A.dispatchEvent:E2 H.dispatchEvent:E3 2

3 P1.scheduleNext:E1 P3.scheduleNext:E2 3H.scheduleNext:E33

4 P1.execute(E1) P3.execute(E2) H.execute(E3) 44

5 E1 makes call to H 5 E2 makes call to W

6 H.scheduleNext: E1 6 W.scheduleNext: E2

5 E3 unlocks H

7 W.execute(E2)

7 H.execute(E1) 6 E3 responds to client
8 E1 unlocks P1 & H

9 E1 responds to client

8 E2 unlocks P3 & W

9 E2 responds to client

E1 execution E3 execution E2 execution

Figure 4: Event execution

network in Figure 3, and assume that Player1 wants to steal
the money from the shared Treasure, and then run away us-
ing the Horse. At the same time, Player2 wants to use the
Horse to collect some debts, and then deposit the money in
the Treasure. The schema delineated above can lead to a
deadlock, where none of the players is able to execute their
events. To avoid deadlocks, when an event with different
target and dominator contexts is dispatched, AEON’s run-
time delivers that event to the dominator context: the event
is serialized at the dominator context before being sent to its
target context for execution. Therefore, in Figure 3, events
targeting Player1 and Player2 need to be serialized in Kings
Room, whereas events on Player3 are serialized in Armory (i.e.,
their dominator contexts). Observe that events targeting
other contexts can safely execute in their target contexts.
We observe that for most cases, contexts have different

dominators. For contexts that do not share sub-contexts
with others, their dominators are themselves. Thus events
to those contexts will be ordered independently. Generally,
if two events are not ordered by the same dominator, they
can execute in parallel.
Figure 4 shows a timeline of the execution of three events:

E1 targeting context Player1 (abbreviated P1 in the time-
line); E2 targeting Player3 (P3); and E3 targeting Horse (H).
The numbers in the timeline correspond to the numbered la-
bels in the ownership graph in the left of the figure.
We can firstly observe that since the dominators of E1

and E2 are the Kings Room and the Armory respectively, and
these contexts have no common descendants, they can ex-
ecute completely independently and in parallel. The dom-
inator context of event E3 is the Horse, which is also its
target. According to the rules outlined above, this event is
immediately added to the toActivateQueue of Horse and sub-
sequently activated. Importantly, event E1 also requires to
access Horse in the timeline. Therefore, when the execution
of E1 reaches the context Horse, the activatePath procedure
will temporarily stall since in Horse E3 is currently activated.
Hence, E1 has to wait for the completion of E3 and the de-
activation of E3 in Horse before resuming its execution. In
this way, the resulting serialization has the execution of E3
before that of E1, where the latter event sees the effect of
the former one in the context Horse.

5. ELASTICITY
In this section, we explain AEON’s elasticity manager

called eManager. The eManager provides the following ca-
pabilities: (i) maintaining the global context mapping and
ownership network, and (ii) managing context creation and
migration based on elasticity policies. In our experiments,
AEON is made fault tolerant using the Zookeeper service.
In the remainder of this section, we explain the above two
capabilities.

5.1 Context Mapping
Since contexts can dynamically migrate across hosts, and

in order to deliver an event to the appropriate context,
AEON first needs to find the host currently holding the cor-
responding context. To this end, every client and host caches
the most recent context mapping that they have queried,
and periodically refreshes their context mappings by query-
ing the eManager. In practice, and in order to have a highly
scalable and available system, clients and other hosts do not
directly query the eManager. Instead, the eManager stores
the latest context mappings along with the ownership net-
work in a (configurable) cloud storage. Therefore, to locate
a context for the first time (or in case the local cache has
become invalid), a host or a client simply performs a read
operation on the cloud storage system to retrieve the latest
mapping. In the remainder of this paper, and for the sake of
simplicity, we assume that clients and other hosts directly
query the eManager.

5.2 Elasticity Policy
AEON gives the programmer the ability to define when

and where contexts should be migrated. To this end, AEON
employs an approach similar to Tuba [35, 34]. Every server
periodically sends its resource utilization data (i.e., CPU,
memory and IO) to the eManager. AEON provides a sim-
ple API to define when the eManager must perform a mi-
gration. The following example policies are implemented in
AEON by default: (i) Resource utilization: in this policy,
a programmer defines a lower and upper bound of a resource
utilization along with an activation threshold. Thus, when a
resource in a server reaches its upper bound plus a threshold
the eManager triggers a migration. (ii) Server contention:
under this policy, a programmer defines the total number of
acceptable contexts per server. Hence, once a server reaches
its maximum, the eManager triggers a migration.

Once a migration is triggered, AEON computes a list of
possible servers that can receive the contexts concerned.
The default algorithm tries to move contexts from over-
loaded hosts to underloaded ones, but programmers can im-
plement their own algorithms for choosing hosts and con-
texts. In addition, AEON allows programmers to define
constraints on any attribute of the system similar to Tuba [35].
For instance, a constraint can disallow certain context mi-
grations, or disallow a migration to a new host if total cost
reaches some threshold.
Migration protocol. Once a migration is triggered, the
eManager will follow the following atomic steps to migrate
a context C from host s1 to a new host s2.

I The eManager sends a prepare message to s2, notify-
ing that requests for context C might start arriving.
Then, s2 responds by creating a queue for context C
and acknowledges the eManager.

II Upon receiving the ack, the eManager informs s1 to
stop receiving events targeting C and it waits for s1
ack.

III Once the eManager receives the ack, and after δ sec-
onds, it updates its context mapping by assigning C to
s2. Thus, from this point on, the eManager returns s2
as the location of context C. It then sends a special
event called migrate(C,s2) to s1 indicating that C has
to be migrated to s2.

IV Upon receiving migrate(C,s2), s1 enqueues an event
migratec in C’s execution queue. This event serves as a
notification for context C that it must migrate. When
migratec reaches the head of C’s queue, s1 spawns a
thread to move C to s2.

V Upon completion of the migration, s2 notifies the eManager
that the migration is finished, and starts executing the
enqueued events for context C.

Correctness under context migration. Observe that
context C, at the end of step II when s1 stops accepting
events for C does not take any steps until step III when the
eManager updates the context map. During this period, s1
does not accept events targeting context C, and eManager
does not return s2 as the new host for C.
Once the migration event enters C at s1 for execution, it

will be the only event that is being executed at C. Following
the complete execution, both s1 and s2 will have up-to-date
context mappings. If s1 later receives an event for C from
a host with stale context map, s1 will forward those events
to s2 directly and notify source host to update its context
map. In § 6, we will evaluate the performance implication
of halting the execution of events on a migrating context.

5.3 Fault tolerance
Similar to Orleans [8], AEON provides users with a spe-

cial snapshot API that allows programmers to take consis-
tent snapshots of a given context along with all its children.
To this end, upon receiving a snapshot request for a con-
text, the runtime of AEON dispatches a particular event
called snapshot to that context. Consequently, this event
takes consistent snapshots of that context and its children
by getting contexts states, and writing them into a (config-
urable) cloud storage system like Amazon S3. To improve
the performance, a programmer is able to override a method
returning the state of a context. In case the overridden
method returns null for a context, the runtime system will
ignore that context during the checkpointing phase.

As we mentioned earlier, in practice the eManager is im-
plemented as a stateless service that is responsible for updat-
ing context mapping and the DAG structure that are stored
in a cloud storage system. The eManager also leverages
the cloud storage system for persisting the steps of ongoing
migrations. Therefore, if during the course of a migration,
the eManager crashes, a newly elected eManager can read
the state of an going migration, and tries to finish it. De-
tails on how individual server and the eManager failures are
treated without violating the consistency can be found on
the AEON webpage.

6. EVALUATION
We implemented AEON on top of Mace [22], a C++ lan-

guage extension that provides a unified framework for net-
work communication and event handling. The implementa-
tion of AEON consists in roughly 10,000 lines of core code
and 110 new classes on top of Mace. In the remainder of
this section, we first compare scalability and performance
of AEON with the two most closely related frameworks:
EventWave [9] and Orleans [8]. We then study AEON’s
elasticity capabilities, and conclude the section by evaluat-
ing AEON’s migration protocol and its effect on the overall
throughput of the system.

6.1 Scalability and performance
In order to compare scalability and performance of AEON

with EventWave and Orleans, we focus on the following two
conventional metrics: (i) scaling out: how a system scales
out as we increase the number of servers; and (ii) perfor-
mance: how throughput changes with respect to latency as
we increase the number of clients. To evaluate the above
metrics, we implemented the TPC-C benchmark [1] and
game application in all three systems.
To better study the effect of multiple ownership, the above

two applications were implemented with and without mul-
tiple ownership. Throughout this section, we refer to the
implementation with multiple ownership as AEON, and re-
fer to the one without multiple ownership as AEONso (for
Single Ownership). Therefore, the programming effort for
implementing the above applications is identical for AEONso
and EventWave.
We run AEON, AEONso and EventWave on m3.large

Linux VMs on EC2. For Orleans and Orleans*, we used
m3.large Windows 2012 VMs on EC2.

6.1.1 Game application
Both EventWave and Orleans were previously evaluated

using a game application similar to the example of § 2.
Therefore, we picked the very same game application de-
scribed in EventWave [9]. Since EventWave does not sup-
port multiple ownership, the implementation does not al-
low Players to access Items directly. They could only ac-
cess Items via Room. Since Orleans doesn’t support trans-
actional execution across multiple grains, we implemented
two variants of game application in Orleans: (i) A ver-
sion that ensures strict serializability. This version ensures
Players access the shared Items atomically by means of locks.
The Players simply lock the whole Room when they access
their Items. This version is called Orleans in this section.
(ii) Since one may argue that the above implementation is
not the best possible algorithm for implementing the game
in Orleans, we also implemented a non-strict serializability

0

10

20

30

2 4 8 12 16
Number of servers

EventWave Orleans Orleans*

AEON_SO AEON

(E
ve

n
ts

 X
 1

0
0

0
)/

s

(a) Game Scaling out

0

20

40

0 2 4 6 8 10 12 14 16

(Request x 1000) / s

EventWave Orleans Orleans*

AEON_SO AEON

La
te

n
cy

(m
s)

(b) Game Performance

Figure 5: Game application scalability and performance

variant of the game called Orleans*, in which Players just
access their shared Items directly, and without synchroniz-
ing with other Players that have the same Items. This may
result in incorrect executions potentially breaking applica-
tion invariants. We note that this implementation is only
used as a best-case scenario for the performance of Orleans,
and it should otherwise be considered erroneous.
Scale out. Figure 5a shows scalability of different systems
for the game application. In this experiment, we make each
server hold one Room with fixed number of Items. So if there
are more Players in one Room, Items will be shared by more
Players.
As shown in Figure 5a, EventWave reaches maximum

throughput with 12 servers since it needs to order all events
in the root node. Observe that AEONso (resp. AEON)
outperforms EventWave by 3x (resp. 5x) when the number
of servers reaches 16. Since both AEONso and EventWave
ensures strict serializability, and have identical tree struc-
tures, the 3x performance gain is not related to multiple
ownership. Instead, the fact that in AEON events are not
ordered at the root context along with async method calls
lead to the observed substantial performance boost.
Interestingly, both AEON and AEONso outperform Or-

leans* as well. This is because: 1) AEON is implemented
in C++ and Orleans uses C#. Hence, we expect AEON’s
implementation to have less overhead. 2) with the help of
the ownership DAG, the runtime of AEON can optimize
contexts placement, which will put Rooms, Players and Items
in the Room on the same server. Orleans does not have simi-
lar rules, which may result in more message passing among
servers. 3) due to the single-threaded nature of Orleans’
grains, shared Items have to process requests from Players

one by one. Though requests could be executed in paral-
lel in Players, throughput is limited by the fixed number of
Items within one Room.
Because of the parallelism provided by multiple owner-

ship, we observe that AEON’s performance is 50% more
than AEONso when the number of servers reaches 16. More
precisely, since AEONso does not have multiple ownership,
in order to access Items belonging to a given Players, Room
context needs to be locked. However, multiple ownership
allows both Players and Room contexts to access Items thus
leading to parallel execution of more events within one Room.

Performance evaluation. Figure 5b plots throughput
and latency of the game application when the number of
servers is fixed to 8. Similar to Figure 5a, AEON outper-
forms all other systems. As we explained above, optimized
AEON exploits allows for more parallelism and reduces the
overhead in communication.

6.1.2 TPC-C benchmark
The TPC-C benchmark is an on-line transaction process-

ing benchmark. TPC-C is a good candidate for comparing
AEON with its rivals since it has multiple transaction types
with different execution structures. Observe that transac-
tions in TPC-C are similar to events in AEON and Event-
Wave. All of our TPC-C implementations are made fault
tolerant through checkpointing. We note that we used TPC-
C solely to stress-test AEON, and evaluate its performance
under high contention. In reality, specifically engineered
elastic distributed databases may be a better fit for serv-
ing TPC-C style applications.
The TPC-C benchmark implementation in AEON uses

the following context declarations:
contextclass WareHouse {set<Stock> s; set<District> d;}
contextclass Stock { ... }
contextclass District {set<Customer> c; set<Order> o;}
contextclass Customer {History h; set<Order> os;}
contextclass Order {set<NewOrder> n; set<OrderLine> l;}
contextclass NewOrder { ... }
contextclass OrderLine { ... }

Since the number of items is fixed (i.e., 100K) in the TPC-
C benchmark, and does not need elasticity, warehouse and
items form a single context.
Observe that an Order context has two owners: District

and Customer. In our AEONso and EventWave implementa-
tions, and since they should follow a single ownership struc-
ture, the District context does not own the Order context.
In other words, the Order context is solely owned by the
Customer context.
A typical approach for evaluating the scalability of a system
using TPC-C is to partition TPC-C by warehouse, and put
each warehouse on a single server [10, 37]. But, as pointed
out by Mu et al. [26], this approach does not stress the
scalability and performance of distributed transactions (i.e.,
events in our programming model) because less than %15

0

50

100

150

200

2 4 8 12 16
Number of servers

EventWave Orleans Orleans*

AEON_SO AEON

Ev
en

ts
/s

(a) TPC-C Scaling out

0

100

200

300

400

0 50 100 150 200
Transactions / s

EventWave Orleans Orleans*

AEON_SO AEON

La
te

n
cy

 (
m

s)

(b) TPC-C Performance

Figure 6: TPC-C scalability and performance

of transactions are distributed. Therefore, we also partition
TPC-C by district similar to Rococo [26].
Similar to the game application, we also implemented two

variants of TPC-C in Orleans: (i) A version that ensures
strict serializability, which we shall name Orleans through-
out this section. This version is implemented by exploit-
ing the fact that stateful Orleans grains are single-threaded,
and we orchestrate grains in a tree-like structure à la Event-
Wave. (ii) We also implemented a non-strict serializability
variant called Orleans*, in which the strict serializability is
not guaranteed to be maintained. We note that this im-
plementation is only used as a best-case scenario for the
performance of Orleans, and it should otherwise be consid-
ered erroneous since it fails to ensure all the invariants of
the TPC-C benchmark.
Scale out. Figure 6a plots scalability of different systems
for the TPC-C benchmark. In this experiment, we placed
one District (along with its corresponding Customers, Orders,
etc.) in each server. While neither EventWave nor Orleans
can scale as the number of servers increases, we observe
that AEON scales up to 4 servers and AEONso scales up
to 8 servers. At this point, the Warehouse context becomes
saturated, thus AEON and AEONso cannot scale beyond
4 and 8 servers.
More specifically, AEON and AEONso are able to out-

perform EventWave and Orleans due to (i) its use of the
ownership network to order events, and (ii) async method
calls inside events. As an event (i.e., a TPC-C transaction)
finishes its execution in a parent context, it can continue its
execution in a child context by using async method calls to
the child context. For instance, once a payment transac-
tion finishes its execution in a Warehouse context, it calls a
method in a District context asynchronously, and releases
the Warehouse context. This allows another event to enter
the Warehouse for execution.
Figure 6a also shows that both Orleans* and AEONso per-

form better than AEON when the number of servers reaches
16. This is because in TPC-C, multiple ownership does not
help to increase the parallelism. Each District context owns
several hundreds of Customer contexts and each Customer con-
text owns several Order contexts. With multiple ownership,
all these Order contexts are shared by both District con-
text and Customer contexts. Consequently, method calls from

Customer contexts to Order contexts have to be synchronized
by the District context, which is the dominator of Customer
contexts. This leads to the District context becoming sat-
urated fast. But, in the single ownership case, the domi-
nators for Customer contexts are themselves. Therefore, the
District context does not become the bottleneck.
Performance evaluation. Figure 6b shows TPC-C per-
formance boundaries with 8 servers. As expected, the through-
put of EventWave and Orleans reach maximum with few
clients (i.e., 4-8 clients) and then their latencies skyrocket
immediately. This is due to both implementations failing
to handle high contention at the Warehouse context prop-
erly. As shown in both Figure 6a and Figure 6b, Orleans*
outperforms AEON with 8 servers since AEON has to pay
extra overhead for strict serializability: events will be syn-
chronized by District context.

6.2 Elasticity
As it was explained in § 5, AEON has several built-in

elasticity policies. In this section, we solely report our re-
sults on evaluating elasticity capabilities of AEON using
the Service Level Agreement (SLA) metric as the elasticity
policy of the game application.
For this experiment, we set the SLA for clients requests to

10ms. Therefore, AEON automatically scales out if it takes
more than 10ms to handle a client request. We placed our
clients on 8 m1.large EC2 instances. Similar to Tuba [35],
we varied the number of clients on each client machine from
1 to 16 according to the normal distribution. Therefore, at
its peak time, there were 128 active clients in the system.
The game application was deployed on a cluster of m1.small
EC2 instances. To better understand the elasticity capabil-
ities of AEON, we also run the game application with fixed
numbers of servers (i.e., 8, 16 and 32 servers).
Figure 7a shows the average request latency that clients

observed, and Figure 7b plots the variation of the number
of servers during the experiments. During peak times, both
8-server and 16-server setups were unable to maintain the
latency below 10ms. However, elastic and 32-server setups
successfully met their SLAs. Due to migration cost, and
fewer servers, clients in the elastic setup observed a slightly
higher request latency.
Table 1 shows the percentage of client requests violating

0

40

80

120

0

10

20

30

40

0 200 400 600 N
u

m
b

er
 o

f
cl

ie
n

ts

A
vg

. r
eq

. l
at

.(
m

s)

Time (s)
Elastic 8-server
16-server 32-server
Number of clients

(a) Elastic v.s static

0

10

20

30

40

0 200 400 600N
u

m
b

er
 o

f
se

rv
er

s

Time (s)
Elastic 8-server

16-server 32-server

(b) Server number

Figure 7: Elastic game application

Setup % of requests > 10ms Avg. servers
8-server 72.6% 8
16-server 44.2% 16
22-server 20.0% 22
32-server 0.0% 32
Elastic 0.0% 21.4

Table 1: Performance and cost

the SLA and the average number of servers used in each
setup. While both 32-server and elastic setups managed to
meet the SLA, 32-server setup did so with 47% more re-
sources. Lastly, observe that a (non-elastic) 22-server setup
was unable to satisfy the SLA while the elastic setup fulfilled
the SLA with 21.4 servers (on average).

6.3 Migration
In this section, we first study the effect of migration on

the overall throughput of the system. We then evaluate the
throughput of eManager when performing migration.
Overall throughput. We now show the effect of migra-
tion for different cases in our game application. In a first
experiment, which we omit for lack of space, we migrated
one context with different sizes up to 100MB. Clearly, as a
context’s size increases, the time it takes to transfer from
one server to another increases, but the overall throughput
remains stable.
In the second experiment, we migrated different numbers

120

150

180

210

100 200 300 400

Ev
en

ts
 /

 s

Time (s)
1 Context 8 Contexts

12 Contexts Migration

Figure 8: Migrating different number of contexts.

of contexts. Our experiments were deployed on EC2 with 20
m1.small instances. We create 20 Room contexts, one for each
host. We also fixed the size of each context to 1MB, and
migrated contexts in order to determine the accumulated
effect of multiple migrations at the same time – expected
for high workloads.
Figure 8 shows the overall throughput variation of the

system when migrating different numbers of Room contexts.
The mild degradation observed, especially for the case of
12 simultaneous migrations is due to the fact that when a
context is being migrated, requests to it are delayed for the
duration of the migration. In this case more than 50 percent
of the contexts are being moved, which should obviously
impact the performance of the system for a short period of
time as shown in the figure.
eManager throughput. Finally, we evaluated the maxi-
mum throughput of the migration algorithm introduced in
§ 5 using a micro benchmark. To this end, the eManager
moves contexts from one AWS instance to another. Fig-
ure 9 shows the eManager throughput with different con-
text sizes. With m1.large instances, the eManager is able
to move around 90 small contexts (i.e., 1KB in size) or 40
large contexts (i.e., 1MB in size) every second. These num-
bers are dropped to 60/25 with m1.medium instances, and
40/20 with m1.small instances.
We expect that the number of contexts to be much less

than the number of objects for an application. In other
words, one context plays the role of a container for sev-
eral objects as long as these objects do not require an inde-
pendent elasticity policy. For example, consider the game
application. Within a room, there can be several objects
like lights and chairs. These objects can all be included in
the Room context. However, in case light object has some
non-trivial CPU or memory usage, it should be treated as a
separate context.

7. RELATED WORK
Distributed programming models. The actor model
[29, 8, 5] is a popular paradigm that can be used to develop
concurrent applications. Actors encapsulate state and ex-
ecute code that can be distributed across multiple servers.
Actors communicate with each other via message passing,
and there is at most one thread executing in an actor at all
times. This eliminates the complexities involved in guaran-
teeing data race and deadlock freedom. In that sense, actors
are similar to contexts in our model. However, it is impor-
tant to note that atomicity in actor systems is only given

0

20

40

60

80

100

m1.large m1.medium m1.small

1KB 1MB

N
u

m
b

er
o

f
co

n
te

xt
s/

s

Instance type

Figure 9: Max migration throughput on eManager

with respect to single actors, whilst an event in AEON can
atomically modify several contexts.
Orleans [8] and EventWave [9], described in § 6 provide

concepts similar to AEON’s contexts and events. The orig-
inality of AEON however resides in the ownership network,
which allows us to guarantee strict serializability, unlike any
of these two works, and deadlock freedom unlike Orleans,
while still allowing sharing of state, and providing oppor-
tunities for automatic parallelization and scale adaptation.
EventWave also induces single ownership and limits scala-
bility by invariably synchronizing at a single root node.
Distributed transactional memory (DTM) [33] is a pro-

gramming paradigm based on Transactional memory (TM) [36]
that allows the programmer to build strictly serializable dis-
tributed applications with sequential semantics in mind, just
as in AEON. However, to the best of our knowledge, there
is no efficient DTM implementation that ensures strict seri-
alizability and provides implicit elasticity.
Transactors [13] have been proposed as a means to build

distributed applications that provide strict serializability for
events spanning multiple actors. However, transactors also
do not provide support for building applications whose in-
dividual actors are distributed across the cloud. Moreover,
there is no support for migrating actors without affecting
consistency which is an important contribution from this
work. We remark though that AEON may be thought of
as an extension of transactors to the distributed cloud with
support for automatic elasticity.
MapReduce [12] is a functional programming paradigm

for the cloud that allows parallelizing computation via two
sequential phases: map and reduce, to build applications
involving huge data sets. However, writing a generic state-
ful application whose operations are non-commutative re-
quires extensive synchronization among threads of compu-
tation, which is nontrivial to get right in the MapReduce
paradigm [32], let alone supporting automatic elasticity.

AEON also shares similarities with models tailored to
multi-core execution environments like Bamboo [39]. Bam-
boo provides a data-oriented approach to concurrency, where
the programmer implements tasks, and the runtime sys-
tem exploits dynamic and static information to parallelize
data-independent tasks. Bamboo uses locks to implement a
transactional mechanism for data-dependent tasks. Unlike
AEON, Bamboo optimizes concurrency for multiple cores;
distribution, migration, and scale adaptation are not con-
sidered.
In SCOOP [28], objects are considered individual units of

computation and data. Separate calls – marked by the pro-
grammer – can be executed asynchronously from the main

thread of execution. This is similar to the async calls of
AEON. Similarly, separate calls can only be issued on ar-
guments of a method, which is SCOOP ’s way of control-
ling what AEON achieves through multiple ownership and
events. SCOOP is not concerned with distribution or scale
adaptation addressed by AEON.
Distributed programming languages. Emerald [20] is
an OO distributed programming language, providing local-
ity functionalities to allow programmers to relocate objects
across the available servers. Unlike AEON, Emerald does
not guarantee atomicity, and synchronization is left to the
programmer. Moreover, Emerald was not designed for the
cloud, where the existing resources might be unknown or
dynamically allocated. Therefore, Emerald provides no elas-
ticity. Identical arguments apply to programming languages
like Erlang and Akka that contrast them from AEON and
render them insufficient for building complex distributed ap-
plications with minimal programming effort.
Transactional key-value stores. Elastic databases (e.g.,
ElasTras [11], Megastore [4]) are similar to AEON: they
partition and distribute data among a set of servers and pro-
vide consistency in the face of concurrent accesses. Unlike
AEON, these do not provide a self-contained programming
environment for writing generic elastic cloud applications.
Pilot job frameworks. A pilot job framework offers dy-
namic computational resources to a set of tasks [6, 15, 24,
31]. Applications running on such a framework can be split
into a set of isolated tasks organized either as a “bag of
tasks” [6, 15, 24] or as a DAG workflow [31]. In the former
case, tasks can execute in any order, while in the latter case,
they should execute in a particular order defined by a DAG.
These tasks are similar to the events of AEON, but unlike
AEON where events can communicate with each other via
contexts, tasks cannot communicate with each other.
Computation offloading. Offloading improves applica-
tion performance by partitioning it among servers either
at compilation or runtime [17, 23, 25, 30, 38]. Clearly,
partitioning at compilation fails to provide elasticity. Dy-
namic partitioning, on the other hand, either targets single-
threaded applications, or requires an explicit addition of par-
allelism in contrast to AEON.

8. CONCLUDING REMARKS
We have presented the design and implementation of the

AEON language. AEON provides a sequential program-
ming environment for the cloud based on the standard paradigm
of object-orientation. We provide a description of the se-
mantics of AEON, and show that this semantics exploits
parallelism while providing strict serializability as well as
deadlock and starvation freedom. We have experimentally
shown that the AEON runtime system scales as the number
of client requests increases, and it is able to scale-out/in to
provide an economic solution for the cloud. In future work
we wish to lift some of the restrictions imposed on the us-
age of context references in classes and define a fine-grained
elasticity policy language to allow the programmer control
over the locality of contexts and usage of resources.

Acknowledgments
We thank the anonymous reviewers for their comments and
suggestions that helped improving this work.

9. REFERENCES
[1] TPC-C. http://www.tpc.org/tpcc/default.asp.
[2] Who is using Orleans. http:

//dotnet.github.io/orleans/Who-Is-Using-Orleans.
[3] P. S. Almeida. Balloon types: Controlling sharing of

state in data types. In Euro. Conf. on Object-Oriented
Pging. (ECOOP), pages 32–59, 1997.

[4] J. Baker, C. Bond, J. C. Corbett, J. J. Furman,
A. Khorlin, J. Larson, J.-m. L, Y. Li, A. Lloyd, and
V. Yushprakh. Megastore : Providing scalable , highly
available storage for interactive services. In Biennial
Conf. on Innovative DataSystems Research (CIDR),
pages 223–234, 2011.

[5] P. A. Bernstein, S. Bykov, A. Geller, G. Kliot, and
J. Thelin. Orleans: Distributed Virtual Actors for
Programmability and Scalability. Technical Report
MSR-TR-2014-41, Microsoft, March 2014.

[6] B. Bode, D. M. Halstead, R. Kendall, Z. Lei, and
D. Jackson. The Portable Batch Scheduler and the
Maui Scheduler on Linux Clusters. In Annual Linux
Showcase & Conference (ALS), 2000.

[7] C. Boyapati, R. Lee, and M. C. Rinard. Ownership
types for safe programming: preventing data races
and deadlocks. In Conf. on Object-Oriented Prog.
Sys., Lang. and Applications (OOPSLA), pages
211–230, 2002.

[8] S. Bykov, A. Geller, G. Kliot, J. R. Larus, R. Pandya,
and J. Thelin. Orleans: cloud computing for everyone.
In Symp. on Cloud Computing (SoCC), pages
16:1–16:14, 2011.

[9] W. Chuang, B. Sang, S. Yoo, R. Gu, M. Kulkarni, and
C. E. Killian. EventWave: Programming Model and
Runtime Support for Tightly-coupled Elastic Cloud
Applications. In Symp. on Cloud Computing (SoCC),
pages 21:1–21:16, 2013.

[10] J. Cowling and B. Liskov. Granola: Low-overhead
distributed transaction coordination. In Usenix
Annual Tech. Conf. (ATC), pages 223–235, June 2012.

[11] S. Das, D. Agrawal, and A. El Abbadi. Elastras: An
elastic, scalable, and self managing transactional
database for the cloud. Trans. on Database Sys.,
38:5:1–5:45, 2013.

[12] J. Dean and S. Ghemawat. Mapreduce: Simplified
data processing on large clusters. Commun. ACM,
51(1):107–113, Jan. 2008.

[13] J. Field and C. A. Varela. Transactors: A
programming model for maintaining globally
consistent distributed state in unreliable
environments. In Symp. on Principles of Prog. Lang.
(POPL), pages 195–208, 2005.

[14] C. Flanagan, A. Sabry, B. F. Duba, and M. Felleisen.
The essence of compiling with continuations. In Conf.
on Prog. Lang. Design and Implementation (PLDI),
pages 237–247, 1993.

[15] J. Frey, T. Tannenbaum, M. Livny, I. T. Foster, and
S. Tuecke. Condor-G: A Computation Management
Agent for Multi-Institutional Grids. Cluster
Computing, 5(3):237–246, 2002.

[16] D. Gordon and J. Noble. Dynamic ownership in a
dynamic language. In Symp. on Dynamic Languages
(DLS), pages 41–52, 2007.

[17] X. Gu, A. Messer, I. Greenberg, D. S. Milojicic, and

K. Nahrstedt. Adaptive Offloading for Pervasive
Computing. IEEE Pervasive Computing, 3(3):66–73,
2004.

[18] R. Guerraoui and M. Kapalka. Principles of
Transactional Memory,Synthesis Lectures on
Distributed Computing Theory. Morgan and Claypool,
2010.

[19] M. Herlihy and N. Shavit. On the nature of progress.
In Int. Conf. on Principles of Dist. Sys. (OPODIS),
pages 313–328, 2011.

[20] E. Jul, H. M. Levy, N. C. Hutchinson, and A. P.
Black. Fine-grained mobility in the emerald system
(extended abstract). In Symp. on Op. Sys. Principles
(SOSP), pages 105–106, 1987.

[21] R. K. Karmani, A. Shali, and G. Agha. Actor
frameworks for the jvm platform. In Int. Conf. on
Principles and Practice of Programming in Java
(PPPJ), pages 11–20, Aug. 2009.

[22] C. E. Killian, J. W. Anderson, R. Braud, R. Jhala,
and A. M. Vahdat. Mace: Language support for
building distributed systems. In Conf. on Prog. Lang.
Design and Implementation (PLDI), pages 179–188,
2007.

[23] Z. Li, C. Wang, and R. Xu. Computation offloading to
save energy on handheld devices: a partition scheme.
In Int. Conf. on Compilers, Architecture, and
Synthesis for Embedded Sys. (CASE), pages 238–246,
2001.

[24] A. Luckow, L. Lacinski, and S. Jha. SAGA bigjob: An
extensible and interoperable pilot-job abstraction for
distributed applications and systems. In Int. Conf. on
Cluster, Cloud and Grid Computing (CCGrid), pages
135–144, 2010.

[25] P. McGachey, A. L. Hosking, and J. E. B. Moss. Class
Transformations for Transparent Distribution of Java
Applications. Journal of Object Technology, 10:9:
1–35, 2011.

[26] S. Mu, Y. Cui, Y. Zhang, W. Lloyd, and J. Li.
Extracting more concurrency from distributed
transactions. In Symp. on Op. Sys. Design and
Implementation (OSDI), pages 479–494, 2014.

[27] A. Newell, G. Kliot, I. Menache, A. Gopalan,
S. Akiyama, and M. Silberstein. Optimizing
distributed actor systems for dynamic interactive
services. In Euro. Conf. on Comp. Sys. (EuroSys),
pages 38:1–38:15, 2016.

[28] P. Nienaltowski, V. Arslan, and B. Meyer. Concurrent
object-oriented programming on .NET. IEE
Proceedings - Software, 150(5):308–314, 2003.

[29] M. D. Noakes, D. A. Wallach, and W. J. Dally. The
J-Machine Multicomputer: An Architectural
Evaluation. In Annual Int. Symp. on Computer
Architecture (ISCA), pages 224–235, 1993.

[30] S. Ou, K. Yang, and A. Liotta. An Adaptive
Multi-Constraint Partitioning Algorithm for
Offloading in Pervasive Systems. In Int. Conf. on
Pervasive computing and communications
(PerComm), pages 116–125, 2006.

[31] I. Raicu, Y. Zhao, C. Dumitrescu, I. T. Foster, and
M. Wilde. Falkon: a Fast and Light-weight tasK
executiON framework. In Conf. on Supercomputing
(SC), pages 43:1–43:12, 2007.

http://www.tpc.org/tpcc/default.asp
http://dotnet.github.io/orleans/Who-Is-Using-Orleans
http://dotnet.github.io/orleans/Who-Is-Using-Orleans

[32] C. Ranger, R. Raghuraman, A. Penmetsa, G. Bradski,
and C. Kozyrakis. Evaluating mapreduce for
multi-core and multiprocessor systems. In Int. Symp.
on High Performance Computer Architecture (HPCA),
pages 13–24, 2007.

[33] P. Romano, L. Rodrigues, N. Carvalho, and
J. Cachopo. Cloud-tm: Harnessing the cloud with
distributed transactional memories. SIGOPS Oper.
Syst. Rev., 44(2):1–6, Apr. 2010.

[34] M. Saeida Ardekani. Ensuring Consistency in
Partially Replicated Data Stores. Ph.d., UPMC, Paris,
France, Sept. 2014.

[35] M. Saeida Ardekani and D. B. Terry. A
self-configurable geo-replicated cloud storage system.
In Symp. on Op. Sys. Design and Implementation
(OSDI), pages 367–381, Oct. 2014.

[36] N. Shavit and D. Touitou. Software transactional
memory. In PODC, pages 204–213, 1995.

[37] A. Thomson, T. Diamond, P. Shao, and D. J. Abadi.
Calvin : Fast distributed transactions for partitioned
database systems. In Int. Conf. on the Mgt. of Data
(SIGMOD), pages 1–12, 2012.

[38] L. Wang and M. Franz. Automatic Partitioning of
Object-Oriented Programs for Resource-Constrained
Mobile Devices with Multiple Distribution Objectives.
In Int. Conf. on Parallel and Dist. Sys. (ICPADS),
pages 369–376, 2008.

[39] J. Zhou and B. Demsky. Bamboo: a data-centric,
object-oriented approach to many-core software. In
Conf. on Prog. Lang. Design and Implementation
(PLDI), pages 388–399, 2010.

	Introduction
	Overview
	Existing Work and Drawbacks
	AEON Overview

	Programming Model
	Execution protocol
	Elasticity
	Context Mapping
	Elasticity Policy
	Fault tolerance

	Evaluation
	Scalability and performance
	Game application
	TPC-C benchmark

	Elasticity
	Migration

	Related Work
	Concluding Remarks
	References

