
C
o
n
si
st

en
t *
Complete *

W
ell D

o
cu
m
ented*Easyt

oR

eu
se
* *

Evaluated

*
C
A
V
*
Ar

tifact *

A
E
C

Poling: SMT Aided Linearizability Proofs

He Zhu, Gustavo Petri, and Suresh Jagannathan

Purdue University

Abstract. Proofs of linearizability of concurrent data structures gen-
erally rely on identifying linearization points to establish a simulation
argument between the implementation and the specification. However,
for many linearizable data structure operations, the linearization points
may not correspond to their internal static code locations; for example,
they might reside in the code of another concurrent operation. To over-
come this limitation, we identify important program patterns that expose
such instances, and describe a tool (Poling) that automatically verifies
the linearizability of implementations that conform to these patterns.

1 Introduction

Linearizability [13] is the de facto correctness condition for the implementation
of concurrent data structures. In a nutshell, linearizability establishes an obser-
vational equivalence between a multi-step fine-grained implementation, and an
atomic coarse-grained specification of the data structure [7]. Thus, linearizability
implies that each operation of a data structure implementation can be considered
as executing atomically with respect to other concurrent operations.

While the definition of linearizability is intuitively simple, its proofs tend to
be complex, and oftentimes depend on complicated simulation relations between
the abstraction and the implementation (eg. [3,18]). A common strategy to define
linearizability simulations is to identify program points in the implementation of
the data structure – known as linearization points (LP) – upon whose execution
an operation can be considered to have happened atomically [21]. Technically, a
linearization point indicates in a weak simulation argument a unique and atomic
step in the execution of the implementation at which the specification and the
implementation match their behaviors.

In this paper, we present a lightweight technique which reduces this complex
task into a property checking problem. In our approach, the abstract specification
of a data structure operation is defined using recursive functions on heaplets
(assertions describing a portion of the heap). We model these assertions as a set
of memory locations following [17], enabling the use of SMT solvers to discharge
our proof obligations. For example, at a linearization point (LP) of a stack push
method, the set of locations conforming the stack after the execution of LP,
should be equal to the set of locations conforming the stack before the push,
plus an additional location containing the new value pushed. The validity of the
formulae relating these two states of this linearizability argument (over sets) is

decidable because they can be translated to quantifier-free formulas over integers
and functions, and can be solved by using SMT solvers.

Tools like Cave [22] are succesful at automatically proving linearizability
for data structures where the linearization points – static program locations –
can be affixed to static program locations within each operation implementa-
tion. Unfortunately, a large class of lock-free linearizable data structures resist
proofs by identifying such linearization points [3,11,16]. This should not be sur-
prising since the definition of linearizability only requires the existence of a
linearization for each invocation, which is intrinsically a semantical property of
the implementation. Such a linearization needs not always correspond to the
execution of predefined instructions within the code of the operation implemen-
tation. Our work extends previous efforts on the automation of linearizability
proofs leveraging internal linearization points [22], by identifying data structure
implementations whose linearization points may reside in code belonging to a
concurrent operation.

We do so by identifying two common patterns, occurring in fine-grained con-
current algorithms which cannot be verified using linearization points. Our ideas
extend the state of the art in automatic linearizability verification by extending
Cave [22] beyond linearization points. To the verification of linearizability by
linearization points, Poling adds the following three notable features.
– Firstly, Poling converges faster than Cave in all the benchmarks that both

tools can handle. This can be attributed to the fact that Poling reasons
about separation logic (SL) verification conditions by interpreting them as
sets of memory locations, following [17], with efficient SMT solvers.

– Secondly, Poling can verify linearizability for implementations that use
helping [14], a mechanism that allows an operation performed by one thread
to be completed by a concurrent operation of a different thread.

– Finally, Poling is sensitive to hindsight [16], a specific pattern in which the
linearization of operations that do not update the state (called pure) can
only be established a posteriori of their execution, and it might depend on
other threads operations.

2 Overview

In the tradition of Cave, we focus on the linearizability of concurrent data
structures implemented using linked lists. Some examples of such data structures
are: stacks, queues and sets (see [12]). In our work we assume a garbage collected
environment. Our approach is defined with respect to the most general client
(MGC) program in which an unbounded number of threads interact though a
single shared instance of the data structure [21], hence generalizing any possible
client.

To introduce Poling, consider the implementation of a lock-free stack due
to Treiber [19] shown in Figure 1.The stack is organized as a linked list of nodes
containing a payload (val), and a next pointer to the following node in the
list. The head of the list is saved in the field first of a shared global variable

TOP
first val next

0

val next val next val next

int push (v) {
x = new Node(v);

while(true) {
y = TOP->first;

x->next = y;

〈 if (TOP->first==y) {
TOP->first = x;

break; } 〉 }
return; }

int pop () {
while(true) {

y = TOP->first; // L0

if (y==0) return EMPTY;

else z = y->next;

〈 if (TOP->first==y) {
TOP->first = z; // L

break; } 〉 }
return y->val; }

Fig. 1. Treiber Stack.

TOP, which serves as the synchronization point for competing threads. Thus,
TOP->first points to the last-in node, when there is one, and it contains 0 if
the stack is empty. The operations push and pop are presented. As customary,
we group blocks that should be executed atomically with “〈” and “〉” (in this
case they represent an inline of a cas instruction). The operation push creates
a new node - it reads the head of the linked list, and then tries to atomically
update it. If some other thread modifies TOP->first between the read and the
write, the update is aborted and the process is reiterated. A similar argument
applies to pop.

Since linearizability relates the implementation to a specification, the pro-
grammer must provide the specification. In the case of Cave this is done by
means of a simple language with primitives for the interpretation of lists and
sets. The programmer can use these primitives to operationally specify the data
structure. On the other hand, in Poling the specification is done declaratively
using recursive functions. The specification of pop is defined declaratively as:

vals(σ, TOP->first) = r :: vals(σ′, TOP->first) ⇐⇒ pop() = r
vals(σ, TOP->first) = [] ⇐⇒ pop() = Empty

In these equations, TOP and first are program variables. The keyword vals is a
primitive used to abstractly refer to the contents of a data structure, where the
argument σ represents the current state, and the argument TOP->first is a pro-
gram expression pointing to the first element of the list. The state resulting from
executing pop is represented by the symbol σ′. Finally, the return value of pop is
denoted by r. Then, the specification of pop establishes the relation between the
abstract state of the list before and after its execution. In this example, Poling
interprets vals(σ, TOP->first) as a recursive function [17], defining the values
stored in the locations reachable from TOP->first in σ. Recursive functions will
be formalized in Section 3.

In Figure 1, the program point marked with L0 corresponds to the lineariza-
tion point of pop when the list is empty. The specification for the non-empty
case is satisfied at the program point L, because the set of values of locations
reachable from TOP->first in a state σ (before the execution of the statement
at L) equals to the set of values reachable in the resulting state (σ′) plus the

push(v)

b = tryPush(v)

return true

[popdesc.g == W]

popdesc.d = v

popdesc.g = C

[popdesc.g != W]

[b] [!b]

(b)

pop()

r = tryPop()

[r != NULL]

[r == NULL]

return r

[popdesc.g = W]

popdesc.g = F

[popdesc.g = F]

popdesc.g = W

[popdesc.g = C]

r = popdesc.d

popdesc.g = F

(a1)

(a2)

(a3)

struct desc {

//@operation

method op;

//@parameter

//@return

value d;

value g;

};

desc popdesc;

popdesc.op = pop;

Fig. 2. Elimination Based Stack. The formulae in square brackets are assumes and
each node denotes an atomic block. Struct desc is an annotated descriptor.

element pointed by y, which is pop’s return value. Importantly no other point
in pop changes the values of the reachable locations. Poling using the set of
memory locations at L calls an SMT solver to automatically check whether the
update to these locations, before and after L, respects the specification of pop.
We present verification details in Section 4.

The example shown in Figure 2 (adapted from [6]) is a simplification of
the HSY stack [10].The stack uses an underlying Treiber implementation, but
improves its performance for high-contention scenarios through an elimination
layer, an occurrence of the helping mechanism. The example allows pairs of
overlapping instances of pop and push to exchange their values without accessing
the list. Each operation attempts an iteration of the Treiber implementation,
and if it fails it applies the helping mechanism. The process is iterated until the
operation succeeds. Helping is implemented by storing a descriptor of a pending
pop into the shared state variable popdesc. In the descriptor, if the value of g
is W(aiting) in location a1, there is an invocation of pop ready to be helped. If
the value of g is C(ollided), then a pair of push and pop invocations is in the
process of exchanging the value through g in location b. The helping completes
or gives up when pop sets the value of g back to F(ree), in locations a2 and a3,
so that another instance of helping can happen. Importantly, the linearization of
pop can happen in the code of a concurrent push in location b and, in location
a2, the pop can witness that it has been helped because the transition through
a1 to a2 can only be caused by an action that happened in location b of a push

thread, where it was linearized.

We exploit this witnessing strategy in our linearization proofs. When an
operation is linearized by another operation that helps it, we record the state
at which the operation was linearized. Then, in the verification of the helped
operation, we can use the recorded state as a witness to check that it was indeed
helped by a concurrent operation. We observe that the witnessing is carried out
through the descriptors (popdesc). To verify how a push can find and then help
a pending pop, we allow programmers to use JML-style markers to annotate the
descriptor data structure, indicating for an operation’s name, the parameters
and the return value (in Figure 2 denoted via @operation, @parameter and
@return respectively). We cover the details of the verification in Section 4.

3 Formal Model

We define a data structure D as a pair (DΣ , DM) consisting of DΣ , the domain
of the data structure; and DM a set of method names, or primitive operations
in the terminology of [13]. We call an invocation of the method m simply an
operation, and use the metavariable opm to range over the set Ops of all possible
invocations. In turn, operations can be decomposed into a tuple opm = (m, t, v, r)
containing a thread identifier t ∈ T id, a vector with the arguments v, and if the
operation is completed, a return value r.

Program Model. We omit a description of the program state and operational
semantics of the programming language, assumed to be a standard first-order,
shared-memory, concurrent, imperative language. We assume a set of states σ ∈
DΣ , and an operational semantics with execution steps between states labeled

by events ev ∈ Evs following the judgment: σ
t,ev−−→ σ′. Events capture data

and control-flow actions (loads, stores, conditionals, etc.) with the addition of
invocation and response events of operation opm, denoted inv(opm) and res(opm)
respectively. These latter two kinds of events serve to delimit the “duration” of
operation invocations. We assume the obvious extension of this step judgment

to traces of events ranged by tr ∈ Evs∗, denoted σ
tr−→ σ′, with the obvious

inductive definition. Where unnecessary, we also omit the intermediate states.

Linearizability. Following [21], and without loss of generality, we assume a thread
makes at most one invocation to an operation of the data structure. We then
overload the notations for invocations and responses as inv(t) and res(t), for
thread t. We define history(tr) to be the projection of invocation and response
events in trace tr. Traces induce a partial order between operations. We say that
a operation t precedes operation t′ in tr (t ≺tr t

′) as defined below1:

t ≺tr t
′ ⇐⇒ ∃ tr0 tr1 tr2, tr = tr0 · res(t) · tr1 · inv(t′) · tr2

We say that a history is sequential if each invocation event inv(t) is immediately
followed by its corresponding response event res(t).

Definition 1 (Linearizable History). A history h is linearizable w.r.t. the
specification of a data structure D if, and only if, there exists a sequential trace
hs of D such that ≺h⊆≺hs , and the set of operations of h and hs coincide.

This notion is trivially lifted to implementations by requiring every imple-
mentation trace to have a linearizable history.
Set Specification. As hinted in Section 2, we abstract the data structure
through an abstraction function: vals(σ, x), which for a given state σ represents
the set of values stored in the data structure pointed by the program variable x.
This allows us to express the abstract data structure specification as an equation
relating the initial state σ and final state σ′. Then for Set data structures imple-
mented as an ordered list, where we assume that the global variable head(Set)

1 We eschew treating uncompleted invocations [13], which is a simple extension.

points to the beginning of the list, we write:

vals(σ′, head(Set)) = {v} ∪ vals(σ, head(Set)) ⇐⇒ add(v) = true
vals(σ′, head(Set)) ∪ {v} = vals(σ, head(Set)) ⇐⇒ contains(v) = true

v /∈ vals(σ, head(Set)) ⇐⇒ contains(v) = false

Order Preserving Specifications. Using the concatenation operator (::) in-
stead of union (∪) as above, we can capture the behavior of data structures
whose temporal behavior imposes an ordering. For example a stack pop should
always return the “last” value pushed. Assuming that head(D) is the global vari-
able pointing to the first element of the list, we can specify pop and dequeue –
where we omit all other methods – as:

vals(σ, head(Stk)) = r :: vals(σ′, head(Stk)) ⇐⇒ pop() = r
vals(σ, head(Queue)) = vals(σ′, head(Queue)) :: r ⇐⇒ dequeue() = r

State Abstraction. Since we use RGSep [21], we abstract the program state σ
using separation logic formulae, denoted by a metavariable ψ. The syntax of
these formulae is given by the following grammars, where ≈ ranges over binary
relations of expression.

ψ ::= P ∗ P ′ | ψ ∨ ψ′

P ::= Π ∧ Γ
Π ::= true | false | E ≈ E′ | (Π ∧Π ′)
Γ ::= emp | Etl 7→ ρ | Γ ∗ Γ ′ | lsegtl,ρ(E,E)

We briefly describe these assertions (details can be found in [21]): 1. The formulae
are given in disjunctive normal form, representing the different possible states
reachable through different paths, 2. Each of the disjuncts has two parts, the
local state, P predicating over the state local to the thread, and a shared state

P ′ – demarcated by a box [21] – which predicates over the state accessible to
all threads, 3. Further, each of these states can be separated into a pure part
Π, only concerned with stack allocated variables, and a spatial part Γ , which
describes the heap, 4. Finally, heap assertions include the standard separation
logic operators, where Etl 7→ ρ denotes that the location E contains a record
ρ (a mapping from field names to values), where the special field tl points to
the next node in a linked list, and lsegtl,ρ(E,E

′) denotes a linked list segment
starting at location E and ending at E′. The same convention applies to tl. All
the nodes in this list segment share a same field-value mapping described in ρ.
Data Structure Abstraction. We use the method of [17] to discharge proof obliga-
tions about the state using an SMT solver. In [17] SL assertions are encoded as
predicates on sets of memory locations. To that end, we define in Figure 3 a data
structure abstraction function that takes an RGSep assertion, and transforms
it into a set of values. This is the function LvalsM(ψσ, x), which is the symbolic
counterpart to the function vals(σ, x) used for specifications. This recursive ab-
straction definition represents the set of elements that inhabit the data structure.
The function Find(Γ,E), simply finds the syntactic atomic occurrence of a node
or a list starting from E in the spacial formula Γ . We omit its trivial recursive
definition over RGSep formulae. Here, the capitalized expressions VALS are un-
interpreted functions in the logic of the underlying theorem provers we use [17].
Finally, notice that if we substitute the concatenation operator (::) for all the oc-

LvalsM(P ∗ Π ∧ Γ ,E) = valaux(Γ,Find(Γ,E))

where
valaux(Γ,Etl 7→ ρ) = VAL(E) ∪ LvalsM(Γ , ρ(tl))

valaux(Γ, lsegtl,ρ(E,E
′)) = VALS(E,E′) ∪ LvalsM(Γ ,E′)

Fig. 3. Recursive Abstraction Definition

currences of the union operator (∪) in Figure 3, we obtain a recursive definition
for lists instead of sets. A refined definition of our data structure abstraction is
given in [25] (that also considers reachable locations that are logically detached).

4 Verification

Our verification begins after a pass of the frontend of Cave [22], which given
the implementation of a data structure D, uses symbolic execution and shape
analysis to produce D’s data structure invariant [4] and RGSep [21] rely-guarantee
actions. To aid the verification of the helping mechanism, Poling requires the
programmer to instrument descriptors (as exemplified in Figure 2). A simple
analysis could be implemented to instrument the descriptors automatically, or
an interface could be implemented to indicate the thread descriptors, but we
omit this unrelated step to simplify our development.

Central to our development are LP (linearization point) functions.

Definition 2 (Valid LP). Assume a trace tr : σi
tr−→ σf of the data structure

D, and a function % : Ops→ DΣ, mapping each operation op of tr to the state in
tr exactly prior to the linearization of op. We say that % is a valid linearization
point function for tr with respect to an abstract specification ϕ if:
1. every operation op ∈ tr, has an LP state (i.e. %(op)) strictly between its in-

vocation (inv(op)) and its response (res(op)). Formally:

∃ tr(1:4), σi
tr−→ σf = σi

tr1−−→ · inv(op)−−−−→ · tr2−−→ %(op)
tr3−−→ · res(op)−−−−→ · tr4−−→ σf

2. only the states that linearize operations can affect the abstract data structure:

σ1 /∈ {%(op) | op ∈ tr} and σi
tr−→ σf = σi

tr1−−→ σ1
ev−→ σ2

tr2−−→ σf ⇒
vals(σ1, head(D)) = vals(σ2, head(D))

3. for each operation op ∈ tr, we have that the LP state, and its subsequent
state are related by the data structure specification ϕ. Formally, if the ab-

stract specification of op = (m, t, v, r) is ϕ, for a trace of op: σi
tr−→ σf =

σi
tr1−−→ %(op)

ev−→ σ̂
tr2−−→ · res(op)−−−−→ σr

tr3−−→ σf where (m(v) = σr(r)):
(1) if op is the only operation linearized in %(op) (i.e. there does not exist
another op′, such that op′ 6= op ∧ %(op′) = %(op)) then

[%(op)/σ][σ̂/σ′]ϕ
(2) if there does exist one op′ whose abstract specification is ϕ′, such that
op′ 6= op ∧ %(op′) = %(op) 2 then, for any (ghost) state σg,

([%(op)/σ][σg/σ
′]ϕ⇒ [σg/σ][σ̂/σ′]ϕ′) ∨ ([%(op)/σ][σg/σ

′]ϕ′ ⇒ [σg/σ][σ̂/σ′]ϕ)

2 Definition 2 is defined for at most two operations linearized in one step. It can be
extended to handle the case when finitely many operations are helped in one step.

In condition 3, to verify whether an operation op can be linearized when op
is the single operation linearized in state %(op), we prove that the specification
[%(op)/σ][σ̂/σ′]ϕ is respected by the execution step from the LP state %(op). In
the substitution, the parametric pre state σ and post state σ′ of the specification
ϕ, are replaced with the LP state and its post state σ̂. However, in the case of
helping, many operations can be linearized in a single step (e.g. a push and a pop

exemplified in Figure 2). We handle this case by introducing ghost states. For

example, if an event %(op)
ev−→ σ̂ linearizes two operations; say %(op) = %(op′), we

check that there exists an intermediate state σg such that %(op) and σg satisfy
the specification of op and σg and σ̂ satisfy the specification of op′, or viceversa.
Intuitively this mediates and orders the linearization of the two operations.

Theorem 1. A data structure implementation D is linearizable with respect to
an abstract specification ϕ, if for every trace tr of the implementation, there
exists a valid D-LP function with respect to the specification ϕ.3

Witness States. Definition 2 paired with Theorem 1 provides us with a way of
checking linearizability by constructing valid LP functions. However, since LP
functions map operations to states, it could be the case that the LP state of a
certain operation may precede an event from a thread other than the one whose
operation is linearized. The same argument applies when multiple operations are
linearized in a single step. This is true for the helping mechanism of Figure 2.
In this case, we define witness states as states from which one thread can make
sure that it has been linearized, i.e. that a prior LP state (%(op)) exists. For
the simple case where the linearization point of an operation can be identified
with its own program statement, the witness state is exactly the state before
executing this statement. We prove linearizability by identifying witness states.
In our approach, we distinguish effectful witness states where the abstract data
structure is altered (like L in Figure 1), from pure (or effect-less) witness state
that leave the abstract data structure intact (like L0 in Figure 1).

Algorithm. We present our overall verification strategy in Figure 4. We first use
heuristics derived from Cave to identify a set of states as candidate witness
states (ψσ), paired with the event (ev) to be executed next; such events include
all the memory reads or writes. The abstract states (ψσ) are obtained through the
symbolic execution of Cave. The function Check verifies whether in a symbolic
state ψσ the linearization of the operation can be witnessed w.r.t. its abstract
specification ϕ. Programmers provide ϕ through the definition vals(σ, head(D))
which is translated into the symbolic version LvalsM(ψσ, head(D)).

Consider the pseudo-code of Check (given in Figure 4). In line 2 we symboli-
cally execute the event ev from the state ψσ. To check if the abstract specification
ϕ is fulfilled, in line 3, we replace the initial and final state with the ones ob-
tained by symbolic execution and then unroll the definitions LvalsM(ψσ, head(D))
and LvalsM(ψσ′ , head(D)) that are mentioned in the specification of the method,
and encode them using first order logic (FOL) with set theories following [17]. We

3 Theorems are proved in [25].

Specification ' of the concurrent
data structure D

CAVE(D)

Verified Rejected

Check(�, ev,', specpool)

Valid witness
states: (�, ev)

Candidate witness
states: (�, ev)

Has each path exactly one
e↵ectful witness state, or at
least one pure witness state?

1: Check(ψσ, ev, ϕ, specpool) =
2: let ψσ′ = symb-exec(ψσ, ev) in

3: if (smt-check(ϕ[σ 7→ ψσ, σ
′ 7→ ψσ′])) then 3

4: else if (helps(ψσ, ψσ′ , specpool)) then 3

5: else if (helped(ψσ, ψσ′ , specpool)) then 3

6: else if (hindsight(ψσ′)) then 3

7: else if (LvalsM(ψσ, head(D)) = LvalsM(ψσ′ , head(D)))
8: then 7

9: else (abort "not linearizable")

Fig. 4. General Framework. (The full pseudo code is provided in [25].)

feed the unrolled formulae to an SMT solver (the arguments v and return values r
in the specification are also replaced with proper program variables, not shown
here). Notice that satisfiability of quantifier-free formulas over sets/multisets
with set union (∪) is decidable. Concatenation (::) is considered as uninterpreted.
If the formula is provable we have identified a witness state.

This strategy only applies to the case when linearization can be syntactically
associated to instructions of the operation’s own code, ie. LPs. Lines 4-6 deal with
the cases when the linearization point might reside in operations of concurrent
threads, which will be covered in the subsequent sections. If we are not able to
prove ϕ in ψσ after these checks, at line 7, before reporting this state is not a
candidate witness, we check that the abstract data structure did not change.
We recall that we assume that only linearization events can modify the abstract
state of the data structure. Hence, if the state did change, we abort the process
in line 9, and report that the implementation could not be proved linearizable.
After all the witness states are validated, following the strategy in [22], we use
a simple data-flow analysis to verify each program path has either exactly one
witness state or at least one pure witness.

Example 1. Consider the pop method of the stack implementation of Figure 1.
With the method delineated above we obtain a symbolic state before the pro-
gram point L (we only show the shared state):

TOP 7→ (first : y) ∗ y 7→ z ∗ lsegnext(z, 0)

This state is rendered from the successful test in the pop (TOP 7→ first = y). We
will consider this state to be the witness state of pop (i.e. ψσ). The assignment
of z to TOP->first would then be performed. To verify whether this implemen-
tation is faithful to the Stack specification, we first symbolically execute the
instruction at L to render the post state after L (i.e. ψσ′):

TOP 7→ (first : z) ∗ lsegnext(z, 0) ∗ y 7→ z

According to the abstract specification of pop (Definition 3), we have to prove:

LvalsM(ψσ, TOP 7→ (first)) = r :: LvalsM(ψσ′ , TOP 7→ (first))

After unfolding, and substituting the special return symbol r with the actual
return value, we obtain:

VAL(y) :: VALS(z, 0) = VAL(y) :: VALS(z, 0)

op0 RG

SpecPool

�i
tr1��→ ⇢(op′) t,ev��→ � ��→ �′ t′,ev′���→ �′′ tr2��→ �f

witness state

 0) ↵(�0)
 0 = ↵(�)

LP state

9(op0, 0, RG) 2 SpecPool

Fig. 5. Spec Pool.

which is clearly provable. Moreover,

LvalsM(ψσ, TOP 7→ (first)) = LvalsM(ψσ′ , TOP 7→ (first))

holds for all the other states of pop. After all these verification steps, our method
concludes that the program state before L is a valid effectful witness state.

Helping Verification. Consider a trace σi
tr1−−→ %(op′)

t,ev−−→ σ
tr2−−→ σf corre-

sponding to an execution of a data structure where op′ is specified as (m, t′, v, r).
This trace is typical of algorithms implementing the helping mechanism. Here,
the event (ev) that linearizes thread t′ (the thread executing op′) is taken by a
concurrent thread t. A key ingredient of this pattern are the descriptors, which
are used to keep information about ongoing invocations performed by different
threads (c.f. popdesc in Figure 2). A thread can acknowledge its concurrent
threads through its descriptors which are used by the concurrent threads to
complete helping. In our proof, a thread under verification can retrieve the spec-
ifications of the other concurrent operations through their descriptors.

To exploit such descriptors, we add to the symbolic state, a set that represents
helped operations. We call this set the Spec Pool, and use it to keep track of
the synchronization entailed through the descriptors. Operations that perform
helping are assumed to affect the Spec Pool. In the Spec Pool, each helped
operation is equipped with (1) the condition that must hold upon its linearization
and (2) the rely actions (used by the helper thread) that linearize it.

We provide a pictorial description of the process in Figure 5. Here we consider

an event %(op′)
t,ev−−→ σ from thread t which helps a concurrent operation op′. This

event modifies the Spec Pool by inserting a tuple (op′, α(ψσ), RG) indicating
that op′ has been helped at a state σ, and RG is the rely-guarantee actions
extracted from this step [23], where α is a function that encodes a SL formula
ψσ into a FOL formula. A verification step from op′ (i.e. t′) can observe the effects
of t at state σ′ (by checking a first order logical implication between α(ψσ) and
α(ψσ′)). When verifying op′ we also need to check that σ′ can only be reached
with the help of the rely action RG, absent of which σ′ would be unreachable for
t′. If the check is successful, σ′ is considered as the witness state for op′. Figure 6
presents the definition of α(ψ). Simply stated, we keep the pure part of the SL
formula and forget about the list segments. We encode the field-value mapping
of a memory location (Etls 7→ ρ) into a conjunction of equations; each equation

α(P ∗ Π ∧ Γ) = Π ∧ αΓ (Γ)

αΓ (Γ ′ ∗ Γ ′′) = αΓ (Γ ′′) ∧

∧

pf∈dom(ρ)

pf(E) = ρ(pf) if Γ ′ = Etls 7→ ρ & Isdesc(E)

true otherwise

Fig. 6. Data Abstraction from SL formula to FOL formula.

encodes the value ρ(pf) of a field pf on the location E. We encode E only if it is
marked as a descriptor (local variables are implicitly existentially quantified).

Our approach hence reduces the problem of verifying linearizability to the
following proof obligations: (a) we must check how an operation can be helped at
the valid LP state in Figure 5 (i.e. linearized by another thread); this corresponds
to the helps function in Figure 4, (b) for the thread that is helped, we must
check the code that detects whether the operation has been helped at the valid
witness state in Figure 5; this corresponds to the helped function in Figure 4,
and (c) we must check that the helped operation is linearized exactly once.

For (a) we prove whether a given execution step in thread t can linearize
another thread t′ (with t′ 6= t), directly following Definition 2. Let us consider
how this proof works for push and pop of Figure 2. At the statement b of push we
detect the descriptor popdesc, representing a concurrent pop thread. Assuming
head(Stk) = TOP, we check:

∀ψgst,
(

LvalsM(ψgst, TOP) = v :: LvalsM(ψσ, TOP)⇒
LvalsM(ψgst, TOP) = popdesc.d :: LvalsM(ψσ′ , TOP)

)
According to Definition 2, ψgst is a necessary intermediate state in the abstract
data structure between the push and pop operations (it does not exist in the
actual execution). The precedent is obtained from the push’s operation specifi-
cation, with the argument substituted with the formal parameter v. The con-
sequent is the specification of pop’s operation, substituting the return value for
popdesc.d, known from the descriptor. Since the stack is not updated by the
instruction b, after unrolling we can prove the above formula. Both operations
are linearized in this step. After verifying that pop is helped, we create a Spec
Pool item (op′, ψ′, RG), representing the result of helping at statement b:(
pop, ∃v.popdes.g = C ∧ popdes.d = v, popdes 7→ (g : W) popdes 7→ (g : C)

)
As stated, ψ′ is the data abstraction of state σ′ while RG here only shows the
key rely-guarantee action ([21]), i.e., g is changed from W(aiting) to C(ollided).

We prove (b) by showing that if a thread t′ is linearized by another thread t,
this fact is manifest through the Spec Pool. To prove that t′ has been helped in
a state ψσ′ , we need to find a pool element (op′, ψ′, RG) such that the operation
of t′ is with the same method name to op′, and prove with an SMT solver that:

(ψ′ ⇒ α(ψσ′)) ∧ ¬(ψ′ ∧ α(ψσ′\RG))

The first conjunct implies that op′ may have been linearized by another thread,
and the second one ensures that this could only result from other threads’ inter-
ference RG. To check that this linearization could not have been possible with-
out the interference from another thread’s helps, we compute the state ψσ′\RG

by symbolically executing the method (using Cave) to the code location of σ′

dropping the rely action RG. Then the conditions recorded in the Spec Pool (the
conditions hold upon helping) must contradict ψσ′\RG. Consider the path reach-
ing the statement a2 in pop in Figure 2. The conditions in the Spec Pool for pop
(ψ′) entail the data abstraction of state at a2 (abstracted as popdesc.g = C).
The only possible way to satisfy this assertion is by the rely RG, since originally
we had popdesc.g = W at a1. We conclude that the pop was linearized by RG,
the action made by a concurrent push. We also need to ensure a program path
that witnesses helping must return the value of the return-field instrumented in
the descriptor (e.g. return popdesc.d at a2).

We prove (c) by checking that an operation can only be helped once (e.g.
helping for thread t′ should be prohibited from state σ′′ in the trace in Figure 5).
We leave the details in [25].

Our verification procedure maintains the Spec Pool as part of the abstract
state, and calls function Check of Figure 4 twice. In the first pass, we construct
the Spec Pool by identifying helping scenarios; in the second pass, we exploit
the Spec Pool to identify helped operations. Specifically, in Figure 4, when a
candidate state fails to fulfill the specification at line 3, we attempt to prove (a),
calling function helps at line 4, which identifies a set of descriptors in the state
that enable helping. If successful, the corresponding pool items are created (in
the first pass). Otherwise, at line 5, by calling function helped, we attempt proof
obligation b to check if the operation has been helped (in the second pass).

Verification with Hindsight. This pattern is based on the Hindsight Lemma
of [16]. In the interest of space we shall avoid presenting a full example like
Lazy set [9] (see [25]), which implements a set with an optimistic lock free con-
tains operations using a linked list. As in the picture below, each node contains
three fields: a value, a mark bit representing whether the item has been removed
from the list (marked with grey), and a link (denoted as n) to the following node.

1 5
7

10
15 1TOP

The fundamental invariants for this algorithm are: 1. the elements in the set are
ordered for fast lookups through the lock-free contains method, 2. the elements
in the list are all reachable from the TOP pointer, and are not marked, 3. removed
elements are marked before being unlinked, and 4. the next pointer of a removed
node never changes, hence it might still point to a node in the data structure,
until this node is in turn removed. In the figure, the set contains the elements 7
and 15, but from the removed nodes we know that it contained the elements 1, 5
and 10 at some point in the past. A concurrent contains operation, which started
before the elements were removed, may assume 1, 5 and 10 are still contained.
Following [16], we shall call nodes that are reachable from TOP (including those
that are marked) backbone nodes (e.g. 7 and 15). Conversely, nodes that cannot
be reached from TOP are called exterior nodes (e.g. 1, 5 and 10).

Lemma 1. (Hindsight [16]). Let tr be an execution of the set data structure
presented above satisfying:
1. An exterior node never becomes a backbone node.
2. The successor of an exterior node will never change.
3. If the successor of a backbone node changes, the node remains a backbone

node in the immediate following state.
Then, for any states σi = tr(i), σk = tr(k) such that 0 ≤ i ≤ k < |tr| and for
any nodes u, v, w such that u.n 7→ v is a backbone link in σi, and v.n 7→ w is a
link (not necessarily in the backbone) in σk, there exists a state σj = tr(j) such
that i ≤ j ≤ k and v.n 7→ w is a backbone link in σj.

Lemma 1 allows us to use exterior nodes and links in the current state to infer
that there existed a past state in which the exterior nodes were in the backbone.
Using this information we attempt to linearize the contains method, even if the
found node is, in the current state, an exterior node. However, Lemma 1 cannot
be used directly because, although an exterior link v.n 7→ w might be found in
the current state, its premise, that a link u.n 7→ v was present in the backbone
in a previous state, cannot be immediately established by looking at the current
state in the symbolic execution. To resolve this problem we propose Theorem 2
which we exploit to automate the application of Lemma 1 in Poling.

Theorem 2. If there is an exterior link v.n 7→ w in σ, a past state of σ in which
the link is a backbone link exists provided the following conditions:
1. The premises of Lemma 1 hold, and
2. Reach(head(D), v) can be proved in the sequential state σseq.4

The sequential counterpart σseq of a state σ in a trace of an operation op,

σi
inv(op)−−−−→ · tr2−−→ σ

tr3−−→ · res(op)−−−−→ σf , is obtained by execution from σi to σ dropping
all the steps from op’s concurrent operations (executing op sequentially).

Note that the second condition ensures a temporal traversal to v (see [16])
and hence guarantees that v.n 7→ w was once a backbone link. The verification of
this pattern (e.g. contains operation) is implemented in the hindsight function
in line 6 in the Check function (Figure 4). In this function, exploiting Theorem 2,
if an exterior link v.n 7→ w is found in a candidate state σ and Reach(head(D), v)
holds in σseq (we compute ψσseq by utilizing symbolic execution with an empty
set of rely-guarantee actions in the implementation), we construct a past state
σp and substitute it for σ when verifying the method’s specification. If the verifi-
cation succeeds, σ is a pure witness state for the verifying thread’s linearization,
that is, we can deduce the existence of LP state (σp) from witness state σ. We
also customize the symbolic execution engine to verify all the three premises in

Lemma 1: for each execution step σ
t,ev−−→ σ′, we collect exterior nodes (symbol-

ically) in σ (ψσ), and verify that the step ev does not change their successors
and they do not become reachable from head(D); we also collect backbone nodes
and check, if their successors are changed by ev, then they remain reachable
from head(D) in σ′ (ψ′σ). If any of these checks fails, the hindsight function
(Figure 4) returns false.

4 Reach is the obvious reachability predicate over SL formulas.

ψD
Inv :

∨
i

Πi ∧ Γi v.n 7→ w ∈ σ

σp ≡
∨
i

(
∨
S∈Γi

Πi ∧ exp(v, w, S) ∗ (Γi\S))

exp(v, w, true) = v.n 7→ w ∗ true
exp(v, w, z 7→ z′) = v = z ∧ v 7→ z′

exp(v, w, lseg(z, z′)) =
lseg(z, v) ∗ v.n 7→ w

∗ lseg(w, z′)
Fig. 7. Hindsight Application Rule.

To reconstruct a past state σp as above, we introduce the Hindsight Lemma
application rule in Figure 7. The rule is an adaptation of May-subtraction [23].
Intuitively, May-Subtract(P , Q) considers the ways in which an RGSep assertion
Q can be removed from another assertion P . Our application rule works as
May-Subtract(ψD

Inv, v.n 7→ w) to subtract an exterior link out of data structure
invariant, and return the remaining state with the link added back. The auxiliary
function exp (expose) considers all the ways in which v can be matched to a node

or linked list assertion. Notice that since the only thing that is assumed in
the rule (the hypotheses) is the data structure shape invariant ψD

Inv (derived
from Cave), the resulting symbolic state is an abstraction of an actual past
state. The correctness of this rule is guaranteed by the proof of Theorem 2.
Limitations. Although Poling can automatically handle concurrent data struc-
tures with non-internal linearization points, we acknowledge that it cannot verify
a class of concurrent data structure whose linearization points depend on future
behaviors [11]. We expect to extend Poling to support this class of programs
in the future.

5 Experimental Results

We evaluated Poling5 on 11 examples, divided into 3 categories shown in the
tables of Figure 8. In the first table we present algorithms provable using internal
linearization points. We compare the times that Cave (version 2.1) and Poling
take to verify the algorithms and notice that for all these programs Poling
outperforms Cave. This can be attributed to our usage of SMT solvers following
[17] to efficiently discharge linearizability proof obligations.

The second table presents algorithms falling under the hindsight pattern. We
considered set implementation algorithms that perform an optimistic contains

(or lookup) operation. Optimistic set [16] traverses the list optimistically (with-
out acquiring any locks, or synchronizing with other threads) to find a node. In
contrast, Lazy set [9], and its variant Vechev CAS set [24] use a bit for marking
nodes before deletion.

The last table includes programs that implement the helping mechanism.
Conditional compare-and-swap (CCAS) [20] is a simplified version of the well
known RDCSS algorithm [8]. If a CCAS method finds a (thread) descriptor in its
targeting shared memory location, they attempt to help complete the operation
in that descriptor before performing its own. Finally, HSY stack is the full HSY
stack implementation [10]. Our running time in this complex example is compa-
rable to a rewriting technique illustrated in [6]. As expected, Cave cannot prove
all the programs in the second and third categories.

5 Project page: https://www.cs.purdue.edu/homes/zhu103/poling/index.html

https://www.cs.purdue.edu/homes/zhu103/poling/index.html

Linearization Points
Program CAVE Poling

LockCoupling set [12] 13.28s 4.01s
Vechev DCAS set [24] 73.90s 3.15s
2lock queue [15] 2.91s 2.51s
Treiber [19] 0.28s 0.06s
MSqueue [15] 7.66s 1.12s
DGLMqueue [5] 9.40s 1.47s

Hindsight
Program Poling

Vechev CAS set [24] 868.44s
Optimistic set [16] 27.51s
Lazy set [9] 321.78s

Helping
Program Poling

CCAS [20] 0.82s
HSY stack [10] 5.98s

Fig. 8. Experimental Results.

6 Related Work and Conclusion

Related Work. Most techniques on linearizability verification (e.g., [1,2]) are
based on forward simulation arguments, and typically only work for methods
with internal linearization points local to their own code locations. To deal with
external linearization points, [3] proposed a technique limited to the case where
only read-only operations may have external linearization points.

Complete backward simulation strategies have been proposed in [18]. How-
ever, they are often difficult to automate. Other methods combine both forward
and backward simulations, using history and/or prophecy variables [21], instru-
menting the program with auxiliary state [14], or using logical relations to con-
struct relational proofs [20]. A general and modular proof strategy is proposed
in [14], that, along with lightweight instrumentation, leverages rely-guarantee
reasoning to manually verify algorithms with external linearization points. In
contrast, our method exploits witness states to infer a proof automatically. The
helping mechanism is also considered in [6] (which does not deal with the hind-
sight pattern) by rewriting the implementation so that all operations have their
linearization points within their rewritten code. Our technique does not rely on
rewritings because the relevant witness is found within the Spec Pool.

Our technique can be considered an adaptation of [17] which verifies sequen-
tial data structures using recursive definitions on heaplets. Similar to Poling,
the automata based approach [1] is also a property checking algorithm which for-
malizes linearizability specifications as automata, and checks the cross-product
of a symbolic encoding of the program with the specification automata for safety.
The main difference between Poling and [1] resides in the verification of imple-
mentations with external linearization points.

Conclusion. We describe a procedure and a tool Poling that automatically
checks the linearizability of fine-grained concurrent data structures. Poling ab-
stracts concurrent data structure into sets of locations following [17] and con-
siders linearizability verification as a property checking technique, which are
efficiently solved with an SMT solver. Poling extends prior art by incorporat-
ing important concurrent programming patterns: algorithms using helping, and
algorithms that can be proved using the hindsight lemma [16]. Our experimental
results provide evidence of the effectiveness of our tool.

References

1. P. A. Abdulla, F. Haziza, L. Hoĺık, B. Jonsson, and A. Rezine. An integrated
specification and verification technique for highly concurrent data structures. In
TACAS, 2013.

2. D. Amit, N. Rinetzky, T. Reps, M. Sagiv, and E. Yahav. Comparison under ab-
straction for verifying linearizability. In CAV, 2007.

3. J. Derrick, G. Schellhorn, and H. Wehriheim. Verifying linearizability with poten-
tial linearisation points. In FM, 2011.

4. D. Distefano, P. W. O’Hearn, and H. Yang. A local shape analysis based on
separation logic. In TACAS, 2006.

5. S. Doherty, L. Groves, V. Luchangco, and M. Moir. Formal verification of a prac-
tical lock-free queue algorithm. In FORTE, 2004.

6. C. Dragoi, A. Gupta, and T. A. Henzinger. Automatic linearizability proofs of
concurrent objects with cooperating updates. In CAV, 2013.

7. I. Filipovic, P. W. O’Hearn, N. Rinetzky, and H. Yang. Abstraction for concurrent
objects. Theor. Comput. Sci., 411, 2010.

8. T. Harris, K. Fraser, and I. Pratt. A practical multi-word compare-and-swap
operation. In DISC, 2001.

9. S. Heller, M. Herlihy, V. Luchangco, W. Moir, M an Scherer, and N. Shavit. A
lazy concurrent list-based set algorithm. In OPODIS, 2005.

10. D. Hendler, N. Shavit, and L. Yerushalmi. A scalable lock-free stack algorithm. In
SPAA, 2004.

11. T. A. Henzinger, A. Sezgin, and V. Vafeiadis. Aspect-oriented linearizability proofs.
In CONCUR, 2013.

12. M. Herlihy and N. Shavit. The Art of Multiporcessor Programming. MorganKauf-
mann, San Francisco, 2008.

13. M. Herlihy and J. Wing. Linearizability: a correctness condition for concurrent
objects. In ACM TOPLAS, 12(3), 1990.

14. H. Liang and X. Feng. Modular verification of linearizability with non-fixed lin-
earization points. In PLDI, 2013.

15. M. Michael and M. Scott. Simple, fast, and practical non-blocking and blocking
concurrent queue algorithms. In PODC, 1996.

16. P. O’Hearn, N. Rinetzky, M. Vechev, E. Yahav, and G. Yorsh. Verifying lineariz-
ability with hindsight. In PODC, 2010.

17. X. Qiu, P. Garg, A. Stefanescu, and P. Madhusudan. Natural proofs for structure,
data, and separation. In PLDI, 2013.

18. G. Schellhorn, H. Wehriheim, and J. Derrick. How to prove algorithms linearisable.
In CAV, 2012.

19. P. Treiber. System programming: coping with parallelism. In Technique Report
RJ 5118, IBM Almaden Research Center, 1986.

20. A. Turon, J. Thamsborg, A. Ahmed, L. Birkedal, and D. Dreyer. Logical relations
for fine-grained concurrency. In POPL, 2013.

21. V. Vafeiadis. Modular fine-grained concurrency verification. PhD thesis, University
of Cambridge, 2008.

22. V. Vafeiadis. Automatically proving linearizability. In CAV, 2010.
23. V. Vafeiadis. Rgsep action inference. In VMCAI, 2010.
24. M. Vechev and E. Yahav. Deriving linerizable fine-grained concurrent objects. In

PLDI, 2008.

25. H. Zhu, G. Petri, and S. Jagannathan. Poling: Smt aided linearizability proofs.
Technical report, Purdue Univsersity, 2015. https://www.cs.purdue.edu/homes/
zhu103/poling/tech.pdf.

https://www.cs.purdue.edu/homes/zhu103/poling/tech.pdf
https://www.cs.purdue.edu/homes/zhu103/poling/tech.pdf

	Poling: SMT Aided Linearizability Proofs

